首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
Dielectric spectroscopy was used to analyze typical batch and fed‐batch CHO cell culture processes. Three methods of analysis (linear modeling, Cole–Cole modeling, and partial least squares regression), were used to correlate the spectroscopic data with routine biomass measurements [viable packed cell volume, viable cell concentration (VCC), cell size, and oxygen uptake rate (OUR)]. All three models predicted offline biomass measurements accurately during the growth phase of the cultures. However, during the stationary and decline phases of the cultures, the models decreased in accuracy to varying degrees. Offline cell radius measurements were unsuccessfully used to correct for the deviations from the linear model, indicating that physiological changes affecting permittivity were occurring. The β‐dispersion was analyzed using the Cole–Cole distribution parameters Δε (magnitude of the permittivity drop), fc (critical frequency), and α (Cole–Cole parameter). Furthermore, the dielectric parameters static internal conductivity (σi) and membrane capacitance per area (Cm) were calculated for the cultures. Finally, the relationship between permittivity, OUR, and VCC was examined, demonstrating how the definition of viability is critical when analyzing biomass online. The results indicate that the common assumptions of constant size and dielectric properties used in dielectric analysis are not always valid during later phases of cell culture processes. The findings also demonstrate that dielectric spectroscopy, while not a substitute for VCC, is a complementary measurement of viable biomass, providing useful auxiliary information about the physiological state of a culture. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

2.
The cell-specific growth rate (µ) is a critical process parameter for antibody production processes performed by animal cell cultures, as it describes the cell growth and reflects the cell physiological state. When there are changes in these parameters, which are indicated by variations of µ, the synthesis and the quality of antibodies are often affected. Therefore, it is essential to monitor and control the variations of µto assure the antibody production and achieve high product quality. In this study, a novel approach for on-line estimation of µ was developed based on the process analytical technology initiative by using an in situ dielectric spectroscopy. Critical moments, such as significant µ decreases, were successfully detected by this method, in association with changes in cell physiology as well as with an accumulation of nonglycosylated antibodies. Thus, this method was used to perform medium renewals at the appropriate time points, maintaining the values of µ close to its maximum. Using this method, we demonstrated that the physiological state of cells remained stable, the quantity and the glycosylation quality of antibodies were assured at the same time, leading to better process performances compared with the reference feed-harvest cell cultures carried out by using off-line nutrient measurements.  相似文献   

3.
The strategy of temperature downshift has been widely used in the biopharmaceutical industry to improve antibody production and cell-specific production rate (qp) with Chinese hamster ovary cells (CHO). However, the mechanism of temperature-induced metabolic rearrangement, especially important intracellular metabolic events, remains poorly understood. In this work, in order to explore the mechanisms of temperature-induced cell metabolism, we systematically assessed the differences in cell growth, antibody expression, and antibody quality between high-producing (HP) and low-producing (LP) CHO cell lines under both constant temperature (37°C) and temperature downshift (37°C→33°C) settings during fed-batch culture. Although the results showed that low-temperature culture during the late phase of exponential cell growth significantly reduced the maximum viable cell density (p < 0.05) and induced cell cycle arrest in the G0/G1 phase, this temperature downshift led to a higher cellular viability and increased antibody titer by 48% and 28% in HP and LP CHO cell cultures, respectively (p < 0.001), and favored antibody quality reflected in reduced charge heterogeneity and molecular size heterogeneity. Combined extra- and intra-cellular metabolomics analyses revealed that temperature downshift significantly downregulated intracellular glycolytic and lipid metabolic pathways while upregulated tricarboxylic acid (TCA) cycle, and particularly featured upregulated glutathione metabolic pathways. Interestingly, all these metabolic pathways were closely associated with the maintenance of intracellular redox state and oxidative stress-alleviating strategies. To experimentally address this, we developed two high-performance fluorescent biosensors, denoted SoNar and iNap1, for real-time monitoring of intracellular nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide + hydrogen (NAD+/NADH) ratio and nicotinamide adenine dinucleotide phosphate (NADPH) amount, respectively. Consistent with such metabolic rearrangements, the results showed that temperature downshift decreased the intracellular NAD+/NADH ratio, which might be ascribed to the re-consumption of lactate, and increased the intracellular NADPH amount (p < 0.01) to scavenge intracellular reactive oxygen species (ROS) induced by the increased metabolic requirements for high-level expression of antibody. Collectively, this study provides a metabolic map of cellular metabolic rearrangement induced by temperature downshift and demonstrates the feasibility of real-time fluorescent biosensors for biological processes, thus potentially providing a new strategy for dynamic optimization of antibody production processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号