首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The histidine triad (HIT) protein Hint has been found to associate with mammalian Cdk7, as well as to interact both physically and genetically with the budding yeast Cdk7 homologue Kin28. To study the function of Hint and to explore its possible role in modulating Cdk7 activity in vivo, we have characterized the expression pattern of murine Hint and generated Hint-deficient (Hint(-/-)) mice. Hint was widely expressed during mouse development, with pronounced expression in several neuronal ganglia, epithelia, hearts, and testes from embryonic day 15 onward. Despite this widespread expression, disruption of Hint did not impair murine development. Moreover, Hint-deficient mice had a normal life span and were apparently healthy. Histological examination of tissues with high Hint expression in wild-type animals did not show signs of abnormal pathology in Hint(-/-) mice. Functional redundancy within the HIT family was addressed by crossing Hint(-/-) mice with mice lacking the related HIT protein, Fhit, and by assaying the expression levels of the HIT protein gene family members Hint2 and Hint3 in Hint(+/+) and Hint(-/-) tissues. Finally, Cdk7 kinase activity and cell cycle kinetics were found to be comparable in wild-type and Hint(-/-) mouse embryonic fibroblasts, suggesting that Hint may not be a key regulator of Cdk7 activity.  相似文献   

3.
4.
5.
Activating phosphorylation of cyclin-dependent kinases (Cdks) is mediated by at least two structurally distinct types of Cdk-activating kinases (Caks): the trimeric Cdk7-cyclin H-Mat1 complex in metazoans and the single-subunit Cak1 in budding yeast. Fission yeast has both Cak types: Mcs6 is a Cdk7 ortholog and Csk1 a single-subunit kinase. Both phosphorylate Cdks in vitro and rescue a thermosensitive budding yeast CAK1 strain. However, this apparent redundancy is not observed in fission yeast in vivo. We have identified mutants that exhibit phenotypes attributable to defects in either Mcs6-activating phosphorylation or in Cdc2-activating phosphorylation. Mcs6, human Cdk7 and budding yeast Cak1 were all active as Caks for Cdc2 when expressed in fission yeast. Although Csk1 could activate Mcs6, it was unable to activate Cdc2. Biochemical experiments supported these genetic results: budding yeast Cak1 could bind and phosphorylate Cdc2 from fission yeast lysates, whereas fission yeast Csk1 could not. These results indicate that Mcs6 is the direct activator of Cdc2, and Csk1 only activates Mcs6. This demonstrates in vivo specificity in Cdk activation by Caks.  相似文献   

6.
7.
8.
The cyclin-dependent kinases (CDKs) that drive the eukaryotic cell cycle must be phosphorylated within the activation segment (T-loop) by a CDK-activating kinase (CAK) to achieve full activity. Although a requirement for CDK-activating phosphorylation is conserved throughout eukaryotic evolution, CAK itself has diverged between metazoans and budding yeast, and fission yeast has two CAKs, raising the possibility that additional mammalian enzymes remain to be identified. We report here the characterization of PNQALRE (also known as CCRK or p42), a member of the mammalian CDK family most similar to the cell-cycle effectors Cdk1 and Cdk2 and to the CAK, Cdk7. Although PNQALRE/CCRK was recently proposed to activate Cdk2, we show that the monomeric protein has no intrinsic CAK activity. Depletion of PNQALRE by >80% due to RNA interference (RNAi) impairs cell proliferation, but fails to arrest the cell cycle at a discrete point. Instead, both the fraction of cells with a sub-G1 DNA content and cleavage of poly(ADP-ribose) polymerase (PARP) increase. PNQALRE knockdown did not diminish Cdk2 T-loop phosphorylation in vivo or decrease CAK activity of a cell extract. In contrast, depletion of Cdk7 by RNAi causes a proportional decrease in the ability of an extract to activate recombinant Cdk2. Our data do not support the proposed function of PNQALRE/CCRK in activating CDKs, butinstead reinforce the notion of Cdk7 as the major, and to date the only, CAK in mammalian cells.  相似文献   

9.
10.
Polo kinase is activated as cells enter mitosis and plays a central role in coordinating diverse mitotic events, yet the mechanisms leading to activation of Polo kinase are poorly understood . Work in Xenopus meiotic cell cycles has suggested that Polo kinase functions in a pathway that helps trigger activation of Cdk1 . However, studies in other organisms have suggested that activation of Polo kinase is dependent upon Cdk1 and therefore occurs downstream of Cdk1 activation . In this study, we have investigated the role of Cdk1 in the activation of budding yeast Polo kinase. The budding yeast homologs of Cdk1 and Polo kinase are referred to as Cdc28 and Cdc5. We show that signaling from Cdc28 is required to maintain Cdc5 activity in vivo. Furthermore, purified Cdc28 associated with the mitotic cyclin Clb2 is sufficient to activate purified Cdc5 in vitro. A single Cdc28 consensus phosphorylation site found at threonine 242 in the activation loop segment of Cdc5 is required for Cdc5 function in vivo and for kinase activity in vitro, whereas four other Cdc28 consensus sites are dispensable. Analysis of Cdc5 phosphorylation by mass spectrometry indicates that threonine 242 is phosphorylated in vivo. These results suggest that Cdc28 activates Cdc5 via phosphorylation of threonine 242.  相似文献   

11.
Entry into mitosis of the eukaryotic cell cycle is driven by rising cyclin-dependent kinase (Cdk) activity. During exit from mitosis, Cdk activity must again decline. Cdk downregulation by itself, however, is not able to guide mitotic exit, if not a phosphatase reverses mitotic Cdk phosphorylation events. In budding yeast, this role is played by the Cdc14 phosphatase. We are gaining an increasingly detailed picture of its regulation during anaphase, and of the way it orchestrates ordered progression through mitosis. Much less is known about protein dephosphorylation during mitotic exit in organisms other than budding yeast, but evidence is now mounting for crucial contributions of regulated phosphatases also in metazoan cells.  相似文献   

12.
13.
Periodically regulated cyclin-dependent kinase (Cdk) is required for DNA synthesis and mitosis. Hydroxyurea (HU) inhibits DNA synthesis by depleting dNTPs, the basic unit for DNA synthesis. HU treatment triggers the S-phase checkpoint, which arrests cells at S-phase, inhibits late origin firing and stabilizes replication forks. Using budding yeast as a model system, we found that Swe1, a negative regulator of Cdk, appears at S-phase and accumulates in HU treatment cells. Interestingly, this accumulation is not dependent on S-phase checkpoint. Deltahsl1, Deltahsl7, and cdc5-2 mutants, which have defects in Swe1 degradation, show HU sensitivity because of high Swe1 protein levels. We further demonstrated that their HU sensitivity is not a result of DNA damage accumulation or incomplete DNA synthesis; instead the sensitivity is due to their dramatically delayed recovery from HU-induced S-phase arrest. Strikingly, our in vivo data indicate that Swe1 inhibits the kinase activity of Clb2-Cdk1, but not that of Clb5-Cdk1. Therefore, S-phase accumulated Swe1 prevents Clb2-Cdk1-mediated mitotic activities, but has little effects on Clb5-Cdk1-associated S-phase progression.  相似文献   

14.
15.
Granule neurons of the dentate gyrus (DG) of the hippocampus undergo continuous renewal throughout life. Among cell-cycle regulators, cyclin-dependent kinase 2 (Cdk2) is considered as a major regulator of S-phase entry. We used Cdk2-deficient mice to decipher the requirement of Cdk2 for the generation of new neurons in the adult hippocampus. The quantification of cell cycle markers first revealed that the lack of Cdk2 activity does not influence spontaneous or seizure-induced proliferation of neural progenitor cells (NPC) in the adult DG. Using bromodeoxyuridine incorporation assays, we showed that the number of mature newborn granule neurons generated de novo was similar in both wild-type (WT) and Cdk2-deficient adult mice. Moreover, the apparent lack of cell output reduction in Cdk2-/- mice DG did not result from a reduction in apoptosis of newborn granule cells as analyzed by TUNEL assays. Our results therefore suggest that Cdk2 is dispensable for NPC proliferation, differentiation and survival of adult-born DG granule neurons in vivo. These data emphasize that functional redundancies between Cdks also occur in the adult brain at the level of neural progenitor cell cycle regulation during hippocampal neurogenesis.  相似文献   

16.
Entry into mitosis is triggered by cyclinB/Cdk1, whose activity is abruptly raised by a positive feedback loop. The Greatwall kinase phosphorylates proteins of the endosulfine family and allows them to bind and inhibit the main Cdk1-counteracting PP2A-B55 phosphatase, thereby promoting mitotic entry. In contrast to most eukaryotic systems, Cdc14 is the main Cdk1-antagonizing phosphatase in budding yeast, while the PP2ACdc55 phosphatase promotes, instead of preventing, mitotic entry by participating to the positive feedback loop of Cdk1 activation. Here we show that budding yeast endosulfines (Igo1 and Igo2) bind to PP2ACdc55 in a cell cycle-regulated manner upon Greatwall (Rim15)-dependent phosphorylation. Phosphorylated Igo1 inhibits PP2ACdc55 activity in vitro and induces mitotic entry in Xenopus egg extracts, indicating that it bears a conserved PP2A-binding and -inhibitory activity. Surprisingly, deletion of IGO1 and IGO2 in yeast cells leads to a decrease in PP2A phosphatase activity, suggesting that endosulfines act also as positive regulators of PP2A in yeast. Consistently, RIM15 and IGO1/2 promote, like PP2ACdc55, timely entry into mitosis under temperature-stress, owing to the accumulation of Tyr-phosphorylated Cdk1. In addition, they contribute to the nuclear export of PP2ACdc55, which has recently been proposed to promote mitotic entry. Altogether, our data indicate that Igo proteins participate in the positive feedback loop for Cdk1 activation. We conclude that Greatwall, endosulfines, and PP2A are part of a regulatory module that has been conserved during evolution irrespective of PP2A function in the control of mitosis. However, this conserved module is adapted to account for differences in the regulation of mitotic entry in different organisms.  相似文献   

17.
18.
For proper development and tissue homeostasis, cell cycle progression is controlled by multilayered mechanisms. Recent studies using knock-out mice have shown that animals can develop relatively normally with deficiency for each of the G1/S-regulatory proteins, D-type and E-type cyclins, cyclin-dependent kinase 4 (Cdk4), and Cdk2. Although Cdk4-null mice show no embryonic lethality, they exhibit specific endocrine phenotypes, i.e. dwarfism, infertility, and diabetes. Here we have demonstrated that Cdk4 plays an essential non-redundant role in postnatal proliferation of the anterior pituitary. Pituitaries from wild-type and Cdk4-null embryos at embryonic day 17.5 are morphologically indistinguishable with similar numbers of cells expressing a proliferating marker, Ki67, and cells expressing a differentiation marker, growth hormone. In contrast, anterior pituitaries of Cdk4-null mice at postnatal 8 weeks are extremely hypoplastic with markedly decreased numbers of Ki67+ cells, suggesting impaired cell proliferation. Pituitary hyperplasia induced by transgenic expression of human growth hormone-releasing hormone (GHRH) is significantly diminished in the Cdk4+/- genetic background and completely abrogated in the Cdk4-/- background. Small interfering RNA (siRNA)-mediated knockdown of Cdk4 inhibits GHRH-induced proliferation of GH3 somato/lactotroph cells with restored expression of GHRH receptors. Cdk4 siRNA also inhibits estrogen-dependent cell proliferation in GH3 cells and closely related GH4 cells. In contrast, Cdk6 siRNA does not diminish proliferation of these cells. Furthermore, Cdk4 siRNA does not affect GHRH-induced proliferation of mouse embryonic fibroblasts or estrogen-dependent proliferation of mammary carcinoma MCF-7 cells. Taken together, Cdk4 is dispensable for prenatal development of the pituitary or proliferation of other non-endocrine tissues but indispensable specifically for postnatal proliferation of somato/lactotrophs.  相似文献   

19.
The activity of the cyclin-dependent kinase 1 (Cdk1), Cdc28, inhibits the transition from anaphase to G1 in budding yeast. CDC28-T18V, Y19F (CDC28-VF), a mutant that lacks inhibitory phosphorylation sites, delays the exit from mitosis and is hypersensitive to perturbations that arrest cells in mitosis. Surprisingly, this behavior is not due to a lack of inhibitory phosphorylation or increased kinase activity, but reflects reduced activity of the anaphase-promoting complex (APC), a defect shared with other mutants that lower Cdc28/Clb activity in mitosis. CDC28-VF has reduced Cdc20- dependent APC activity in mitosis, but normal Hct1- dependent APC activity in the G1 phase of the cell cycle. The defect in Cdc20-dependent APC activity in CDC28-VF correlates with reduced association of Cdc20 with the APC. The defects of CDC28-VF suggest that Cdc28 activity is required to induce the metaphase to anaphase transition and initiate the transition from anaphase to G1 in budding yeast.  相似文献   

20.
Queralt E  Lehane C  Novak B  Uhlmann F 《Cell》2006,125(4):719-732
After anaphase, the high mitotic cyclin-dependent kinase (Cdk) activity is downregulated to promote exit from mitosis. To this end, in the budding yeast S. cerevisiae, the Cdk counteracting phosphatase Cdc14 is activated. In metaphase, Cdc14 is kept inactive in the nucleolus by its inhibitor Net1. During anaphase, Cdk- and Polo-dependent phosphorylation of Net1 is thought to release active Cdc14. How Net1 is phosphorylated specifically in anaphase, when mitotic kinase activity starts to decline, has remained unexplained. Here, we show that PP2A(Cdc55) phosphatase keeps Net1 underphosphorylated in metaphase. The sister chromatid-separating protease separase, activated at anaphase onset, interacts with and downregulates PP2A(Cdc55), thereby facilitating Cdk-dependent Net1 phosphorylation. PP2A(Cdc55) downregulation also promotes phosphorylation of Bfa1, contributing to activation of the "mitotic exit network" that sustains Cdc14 as Cdk activity declines. These findings allow us to present a new quantitative model for mitotic exit in budding yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号