首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
myogenin (-/-) mice display severe skeletal muscle defects despite expressing normal levels of MyoD. The failure of MyoD to compensate for myogenin could be explained by distinctions in protein function or by differences in patterns of gene expression. To distinguish between these two possibilities, we compared the abilities of constitutively expressed myogenin and MyoD to support muscle differentiation in embryoid bodies made from myogenin (-/-) ES cells. Differentiated embryoid bodies from wild-type embryonic stem (ES) cells made extensive skeletal muscle, but embryoid bodies from myogenin (-/-) ES cells had greatly attenuated muscle-forming capacity. The inability of myogenin (-/-) ES cells to generate muscle was independent of endogenous MyoD expression. Skeletal muscle was restored in myogenin (-/-) ES cells by constitutive expression of myogenin. In contrast, constitutive expression of MyoD resulted in only marginal enhancement of skeletal muscle, although myocyte numbers greatly increased. The results indicated that constitutive expression of MyoD led to enhanced myogenic commitment of myogenin (-/-) cells but also indicated that committed cells were impaired in their ability to form muscle sheets without myogenin. Thus, despite their relatedness, myogenin's role in muscle formation is distinct from that of MyoD, and the distinction cannot be explained merely by differences in their expression properties.  相似文献   

4.
The development of muscle cells involves the action of myogenic determination factors. In this report, we show that human skeletal muscle tissue contains, besides the previously described Myf-5, two additional factors Myf-3 and Myf-4 which represent the human homologues of the rodent proteins MyoD1 and myogenin. The genes encoding Myf-3, Myf-4 and Myf-5 are located on human chromosomes 11, 1, and 12 respectively. Constitutive expression of a single factor is sufficient to convert mouse C3H 10T1/2 fibroblasts to phenotypically normal muscle cells. The myogenic conversion of 10T1/2 fibroblasts results in the activation of the endogenous MyoD1 and Myf-4 (myogenin) genes. This observation suggests that the expression of Myf proteins leads to positive autoregulation of the members of the Myf gene family. Individual myogenic colonies derived from MCA C115 cells (10T1/2 fibroblast transformed by methylcholanthrene) express various levels of endogenous MyoD1 mRNA ranging from nearly zero to high levels. The Myf-5 gene was generally not activated in 10T1/2 derived myogenic cell lines but was expressed in some MCA myoblasts. In primary human muscle cells Myf-3 and Myf-4 mRNA but very little Myf-5 mRNA is expressed. In mouse C2 and P2 muscle cell lines MyoD1 is abundantly synthesized together with myogenin. In contrast, the rat muscle lines L8 and L6 and the mouse BC3H1 cells express primarily myogenin and low levels of Myf-5 but no MyoD1. Myf-4 (myogenin) mRNA is present in all muscle cell lines at the onset of differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The migration of myogenic precursors to the vertebrate limb exemplifies a common problem in development - namely, how migratory cells that are committed to a specific lineage postpone terminal differentiation until they reach their destination. Here we show that in chicken embryos, expression of the Msx1 homeobox gene overlaps with Pax3 in migrating limb muscle precursors, which are committed myoblasts that do not express myogenic differentiation genes such as MyoD. We find that ectopic expression of Msx1 in the forelimb and somites of chicken embryos inhibits MyoD expression as well as muscle differentiation. Conversely, ectopic expression of Pax3 activates MyoD expression, while co-ectopic expression of Msx1 and Pax3 neutralizes their effects on MyoD. Moreover, we find that Msx1 represses and Pax3 activates MyoD regulatory elements in cell culture, while in combination, Msx1 and Pax3 oppose each other's trancriptional actions on MyoD. Finally, we show that the Msx1 protein interacts with Pax3 in vitro, thereby inhibiting DNA binding by Pax3. Thus, we propose that Msx1 antagonizes the myogenic activity of Pax3 in migrating limb muscle precursors via direct protein-protein interaction. Our results implicate functional antagonism through competitive protein-protein interactions as a mechanism for regulating the differentiation state of migrating cells.  相似文献   

6.
Rat L6E9 muscle cells commit to terminal differentiation by forming a large muscle syncitia complete with the expression of a large number of muscle-specific contractile protein genes. To determine whether these cells, which fail to synthesize MLC (myosin light chain) 1 and cardiac alpha-actin, exhibit a deficiency in the expression of muscle determination genes, we measured expression of MyoD1, myogenin, Myf-5, and MRF-4. Results show these cells do not synthesize MyoD1, yet express the other myogenic determination genes. Transient expression of exogenous MyoD1 in these cells is sufficient to activate endogenous MLC 1 and cardiac alpha-actin mRNA synthesis during muscle differentiation. Previously undetected myosin heavy chain (MHC) isoforms (beta-MHC and perinatal MHC) are also transcribed at low levels in L6E9 muscle cells, and in MyoD1-transfected L6E9 cells no change occurs in their expression. Furthermore, treatment with the demethylating agent 5-azacytidine activates expression of the endogenous MyoD1 gene in L6E9 cells and, subsequently, rescues deficiencies in their myogenic biochemical program. These results demonstrate that the endogenous MyoD1 gene in L6E9 cells is not defective and can be functionally activated. Also, the MyoD1 protein plays an essential role, which cannot be compensated by other known muscle determination proteins, in the induction of MLC 1 and cardiac alpha-actin expression.  相似文献   

7.
目的探讨成肌调节因子MyoD和myogenin在不同月龄DMD模型鼠mdx鼠的表达情况。方法取不同月龄DMD模型鼠mdx鼠以及相应的同龄正常C57鼠的腓肠肌,冰冻切片后用HE染色显示肌肉病理,SABC-DAB染色检测成肌调节因子MyoD和myogenin的表达。结果不同月龄mdx鼠肌肉坏死和再生程度不同,MyoD和myogenin在1月龄mdx鼠表达最强,在13月龄mdx鼠仍有表达,在正常同龄C57鼠不表达。结论MyoD与Myogenin在肌肉损伤后的再生修复过程中起作用,可作为鉴定肌肉前体细胞和反映肌肉再生的指标。  相似文献   

8.
A variety of differentiated cell types can be converted to skeletal muscle cells following transfection with the myogenic regulatory gene MyoD1. To determine whether multipotent embryonic stem (ES) cells respond similarly, cultures of two ES cell lines were electroporated with a MyoD1 cDNA driven by the beta-actin promoter. All transfected clones, carrying a single copy of the exogenous gene, expressed high levels of MyoD1 mRNA. Surprisingly, although maintained in mitogen-rich medium, this ectopic expression was associated with a transactivation of the endogenous myogenin and myosin light chain 2 gene but not the endogenous MyoD1, MRF4, Myf5, the skeletal muscle actin, or the myosin heavy chain genes. Preferential myogenesis and the appearance of contracting skeletal muscle fibers were observed only when the transfected cells were allowed to differentiate in vitro, via embryoid bodies, in low-mitogen-containing medium. Myogenesis was associated with the activation of MRF4 and Myf5 genes and resulted in a significant increase in the level of myogenin mRNA. Not all cells were converted to skeletal muscle cells, indicating that only a subset of stem cells can respond to MyoD1. Moreover, the continued expression of the introduced gene was not required for myogenesis. These results show that ES cells can respond to MyoD1, but environmental factors control the expression of its myogenic differentiation function, that MyoD1 functions in ES cells even under environmental conditions that favor differentiation is not dominant (incomplete penetrance), that MyoD1 expression is required for the establishment of the myogenic program but not for its maintenance, and that the exogenous MyoD1 gene can trans-activate the endogenous myogenin and MLC2 genes in undifferentiated ES cells.  相似文献   

9.
10.
Members of the myogenic regulatory gene family, including MyoD, Myf5, Myogenin and MRF4, are specifically expressed in myoblast and skeletal muscle cells and play important roles in regulating skeletal muscle development and growth. They are capable of converting a variety of non-muscle cells into myoblasts and myotubes. To better understand their roles in the development of fish muscles, we have isolated the MyoD genomic genes from gilthead seabream (Sparus aurata), analyzed the genomic structures, patterns of expression and the regulation of muscle-specific expression. We have demonstrated that seabream contain two distinct non-allelic MyoDgenes, MyoD1 and MyoD2. Sequence analysis revealed that these two MyoD genes shared a similar gene structure. Expression studies demonstrated that they exhibited overlapping but distinct patterns of expression in seabream embryos and adult slow and fast muscles. MyoD1 was expressed in adaxial cells that give rise to slow muscles, and lateral somitic cells that give rise to fast muscles. Similarly, MyoD2 was initially expressed in both slow and fast muscle precursors. However, MyoD2 expression gradually disappeared in the adaxial cells of 10- to 15-somite-stage embryos, whereas its expression in fast muscle precursor cells was maintained. In adult skeletal muscles, MyoD1 was expressed in both slow and fast muscles, whereas MyoD2 was specifically expressed in fast muscles. Treating seabream embryos with forskolin, a protein kinase A activator, inhibited MyoD1 expression in adaxial cells, while expression in fast muscle precursors was not affected. Promoter analysis demonstrated that both MyoD1 and MyoD2 promoters could drive green fluorescence protein expression in muscle cells of zebrafish embryos. Together, these data suggest that the two non-allelic MyoD genes are functional in seabream and their expression is regulated differently in fast and slow muscles. Hedgehog signaling is required for induction of MyoDexpression in adaxial cells.  相似文献   

11.
We have used transient transfections in MM14 skeletal muscle cells, newborn rat primary ventricular myocardiocytes, and nonmuscle cells to characterize regulatory elements of the mouse muscle creatine kinase (MCK) gene. Deletion analysis of MCK 5'-flanking sequence reveals a striated muscle-specific, positive regulatory region between -1256 and -1020. A 206-bp fragment from this region acts as a skeletal muscle enhancer and confers orientation-dependent activity in myocardiocytes. A 110-bp enhancer subfragment confers high-level expression in skeletal myocytes but is inactive in myocardiocytes, indicating that skeletal and cardiac muscle MCK regulatory sites are distinguishable. To further delineate muscle regulatory sequences, we tested six sites within the MCK enhancer for their functional importance. Mutations at five sites decrease expression in skeletal muscle, cardiac muscle, and nonmuscle cells. Mutations at two of these sites, Left E box and MEF2, cause similar decreases in all three cell types. Mutations at three sites have larger effects in muscle than nonmuscle cells; an A/T-rich site mutation has a pronounced effect in both striated muscle types, mutations at the MEF1 (Right E-box) site are relatively specific to expression in skeletal muscle, and mutations at the CArG site are relatively specific to expression in cardiac muscle. Changes at the AP2 site tend to increase expression in muscle cells but decrease it in nonmuscle cells. In contrast to reports involving cotransfection of 10T1/2 cells with plasmids expressing the myogenic determination factor MyoD, we show that the skeletal myocyte activity of multimerized MEF1 sites is 30-fold lower than that of the 206-bp enhancer. Thus, MyoD binding sites alone are not sufficient for high-level expression in skeletal myocytes containing endogenous levels of MyoD and other myogenic determination factors.  相似文献   

12.
Fibroblast growth factor 6 (FGF6) is selectively expressed during muscle development and regeneration. We examined its effect on muscle precursor cells (mpc) by forcing stable FGF6 expression in C2C12 cells in vitro. FGF6 produced in genetically engineered mpc was active, inducing strong morphological changes, altering cell adhesion and compromising their ability to differentiate into myotubes. Expression of MyoD and myogenin, but not of Myf5, was abrogated in FGF6 engineered mpc. These effects were reversed by FGF inhibitors. Ectopic expression of MyoD also restored fiber formation indicating that FGF6 interferes with the myogenic differentiation pathway upstream of MyoD. We also report that in the presence of FGF6, the minor (0.5-2%) subpopulation of cells actively excluding Hoechst 33342 in a verapamil-dependent manner (SP phenotype) was increased to 15-20% and the expression of the mdr1a gene (but not mdr1b) was upregulated by 400-fold. Our data establish a previously undescribed link between FGF6--a muscle specific growth factor--and a multidrug resistance gene expressed in stem cells, and suggest a role for FGF6 in the maintenance of a reserve pool of progenitor cells in the skeletal muscle.  相似文献   

13.
Abstract. We recently reported that triiodothyronine (T3) enhances MyoD gene expression and accelerates terminal differentiation in murine C2 myoblasts. In this paper, we are interested in the effects of other hormones acting through related nuclear receptors. Retinoic acid (RA), but not estradiol or dexamethasone, is also able to enhance MyoD gene expression (about threefold). However, the effects of RA and T3 on myogenesis are quite distinct, with a much more potent RA action. In deed, although T3 and RA positively regulate myogenesis with similar efficiency in poorly mitogenic conditions, in presence of high serum concentrations T3 can no longer trigger terminal differentiation whereas RA still remains efficient. Thus, serum concentration is a crucial parameter in discriminating between the effects of T3 and RA on myogenesis. The differential effects between these two hormone are likely to be related to the ability of RA-activated endogenous retinoic acid receptors (RARs) to induce C2 myoblasts growth-arrest and to extinguish AP1 activity (thought to act as an inhibitor of myogenesis) whereas T3-activated endogenous thyroid hormones receptors (THRs) are relatively inefficient. We propose that the much higher level of RARs in C2 cells versus THRs could to some extent account for the differential ability of T3 and RA to antagonize serum-regulated mitogenic pathways in myogenic cells. This study provides clear evidence for an important role of RA on MyoD gene expression and myogenesis and suggests that T3 and RA could play overlapping, but distinct, roles on muscle development.  相似文献   

14.
A mouse myogenic determination gene, MyoD1, was transfected into the human osteogenic sarcoma cell line TE85. Several stably transfected clones were isolated which, at low frequencies, formed multinucleated cells with the appearance of skeletal myotubes. Southern blot analysis confirmed the integration of multiple copies of the mouse MyoD1 gene, and Northern analysis and immunofluorescence confirmed its expression in the transfectants. Characterization of the transfectants showed that they expressed immunologically detectable myosin, desmin, mRNA for myogenin, and the delta subunit of the acetylcholine receptor. The cells assembled a functional contractile apparatus since they contracted in response to acetylcholine added to the culture medium. The presence of MyoD1 protein did not abrogate the expression of two genes active in bone cells but not in muscle cells. The transfected cells therefore displayed a chimeric phenotype by expressing simultaneously bone and muscle genes. Interestingly, treatment of the MyoD1 transfected cells with 5-aza-2'-deoxycytidine resulted in a substantial increase in the frequency of myogenic conversion. Thus, the methylation inhibitor increased the ability of MyoD1 to function as a trans-acting factor and activate the muscle phenotype.  相似文献   

15.
16.
Satellite cells are committed myogenic progenitors that give rise to proliferating myoblasts during postnatal growth and repair of skeletal muscle. To identify genes expressed at different developmental stages in the satellite cell myogenic program, representational difference analysis of cDNAs was employed to identify more than 50 unique mRNAs expressed in wild-type myoblasts and MyoD-/- myogenic cells. Novel expression patterns for several genes, such as Pax7, Asb5, IgSF4, and Hoxc10, were identified that were expressed in both quiescent and activated satellite cells. Several previously uncharacterized genes that represent putative MyoD target genes were also identified, including Pw1, Dapk2, Sytl2, and NLRR1. Importantly, many genes such as IgSF4, Neuritin, and Klra18 that were expressed exclusively in MyoD-/- myoblasts were also expressed by satellite cells in undamaged muscle in vivo but were not expressed by primary myoblasts. These data are consistent with a biological role for activated satellite cells that induce Myf5 but not MyoD. Lastly, additional endothelial and hematopoietic markers were identified supporting a nonsomitic developmental origin of the satellite cell myogenic lineage.  相似文献   

17.
18.
19.
20.
During Drosophila myogenesis, Notch signalling acts at multiple steps of the muscle differentiation process. In vertebrates, Notch activation has been shown to block MyoD activation and muscle differentiation in vitro, suggesting that this pathway may act to maintain the cells in an undifferentiated proliferative state. In this paper, we address the role of Notch signalling in vivo during chick myogenesis. We first demonstrate that the Notch1 receptor is expressed in postmitotic cells of the myotome and that the Notch ligands Delta1 and Serrate2 are detected in subsets of differentiating myogenic cells and are thus in position to signal to Notch1 during myogenic differentiation. We also reinvestigate the expression of MyoD and Myf5 during avian myogenesis, and observe that Myf5 is expressed earlier than MyoD, consistent with previous results in the mouse. We then show that forced expression of the Notch ligand, Delta1, during early myogenesis, using a retroviral system, has no effect on the expression of the early myogenic markers Pax3 and Myf5, but causes strong down-regulation of MyoD in infected somites. Although Delta1 overexpression results in the complete lack of differentiated muscles, detailed examination of the infected embryos shows that initial formation of a myotome is not prevented, indicating that exit from the cell cycle has not been blocked. These results suggest that Notch signalling acts in postmitotic myogenic cells to control a critical step of muscle differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号