首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K D Martin  L J Parkhurst 《Biochemistry》1990,29(24):5718-5726
The tetrameric hemoglobin from Urechis caupo is nearly ideal for studying ligation to the T-state. Our previous EXAFS study had shown that the Fe is displaced 0.35 A from the mean plane of the porphyrin in the HbCO derivative. We have carried out detailed kinetic studies of oxygen and CO ligation as a function of temperature in order to characterize both the kinetics and thermodynamics of ligation in this hemoglobin. The entropy change associated with ligation essentially corresponds to simple immobilization of the ligand and is virtually the same as that we have determined for leghemoglobin, an extreme R-state-type hemoglobin. The low ligand affinities thus derive from small enthalpies of ligation, which can be correlated with the large out of plane displacement of the Fe. Only oxygen pulse measurements revealed kinetic evidence for cooperative oxygen binding, but a direct measurement of oxygen binding gave a Hill number of 1.3. An allosteric analysis gave L = 2.6 and c = 0.048 (oxygen) and c = 0.77 (CO). The higher affinity state in this weakly cooperative hemoglobin is denoted T*, and it is for this state that thermodynamic quantities have been determined. The small differences between T and T* in CO binding were nevertheless sufficient to allow us to measure by flash photolysis the rate of the T*----T conformational change in terms of an allosteric model. The half-time for this transition was calculated to be 8-14 ms at 20 degrees C.  相似文献   

2.
The effect of proflavine (3,6-diaminoacridine), an antiseptic drug, on the spectroscopic and oxygen binding properties of ferrous human adult hemoglobin (Hb) has been investigated. Upon binding of proflavine to the nitric oxide derivative of ferrous human adult hemoglobin (HbNO), the X-band EPR spectrum displays the characteristics which have been attributed to the T-state of the ligated tetramer. In parallel, oxygen affinity for the deoxygenated derivative of ferrous human adult Hb decreases in the presence of proflavine. The effect of proflavine on the spectroscopic and ligand binding properties of ferrous human adult Hb is reminiscent that of 2,3-D-glycerate bisphosphate, the physiological modulator of Hb action.  相似文献   

3.
Apparent yield strains for trabecular bone are uniform within an anatomic site but can vary across site. The overall goal of this study was to characterize the contribution of inter-site differences in trabecular architecture to corresponding variations in apparent yield strains. High-resolution, small deformation finite element analyses were used to compute apparent compressive and tensile yield strains in four sites (n = 7 specimens per site): human proximal tibia, greater trochanter, femoral neck, and bovine proximal tibia. These sites display differences in compressive, but not tensile, apparent yield strains. Inter-site differences in architecture were captured implicitly in the model geometries, and these differences were isolated as the sole source of variability across sites by using identical tissue properties in all models. Thus, the effects inter-site variations in architecture on yield strain could be assessed by comparing computed yield strains across site. No inter-site differences in computed yield strains were found for either loading mode (p > 0.19), indicating that, within the context of small deformations, inter-site variations in architecture do not affect apparent yield strains. However, results of ancillary analyses designed to test the validity of the small deformation assumption strongly suggested that the propensity to undergo large deformations constitutes an important contribution of architecture to inter-site variations in apparent compressive yield strains. Large deformations substantially reduced apparent compressive, but not tensile, yield strains. These findings indicate the importance of incorporating large deformation capabilities in computational analyses of trabecular bone. This may be critical when investigating the biomechanical consequences of trabecular thinning and loss.  相似文献   

4.
We found that recombinant human adult hemoglobin (rHb A) expressed in Escherichia coli showed heterogeneity of components with the intensity of a positive CD band at 260 nm and that it could be resolved into three components (SP-1, SP-2, and SP-3) by SP-Sepharose column chromatography. 1H NMR revealed that SP-1 is identical with native Hb A, while SP-2 and SP-3 largely contain the reversed heme isomer in both the alpha and beta subunits, with contents of approximately 50 and >80% in SP-2 and SP-3, respectively. Rotation of the heme 180 degrees about the 5,15-meso axis (reversed heme) causes an interexchange of the methyl groups at positions 2 and 7 with the vinyl groups at positions 8 and 3, respectively. To examine the effect of the modification of the heme-protein contact on the structure and function of Hb A, we compared the 1H NMR, CD, and oxygen binding properties of the three components with those of native Hb A. Native Hb A exhibits a distinct positive CD band in both the near-UV and Soret regions, but rHb A with reversed heme exhibits a very weak positive CD band at 260 nm and a prominent negative CD band in the Soret region. Cooperativity, as measured by Hill's n value, decreased from 3.18 (SP-1) to 2.94 (SP-2) to 2.63 (SP-3) with an increase in the reversed heme orientation. The effect of an allosteric effector, inositol hexaphosphate (IHP), on the oxygen binding properties was also reduced in rHb A with reversed heme. These results indicate that changes in the heme-globin contact exert a discernible influence on CD spectra and cooperative oxygen binding.  相似文献   

5.
6.
Recent studies have shown that a protein-bound heme adduct formed from the reaction of BrCCl3 with myoglobin was due to bonding of the proximal histidine residue through the ring I vinyl of a heme-CCl2 moiety. The present study reveals that BrCCl3 also reacts with the heme of reduced human hemoglobin to form two protein-bound heme adducts. Edman degradation and mass spectrometry provided evidence that these protein-bound heme adducts were addition products in which heme-CCL2 or heme-CCl3 were bound to cysteine residue 93 of the beta-chain of hemoglobin. It appeared that the cysteine residue was bonded regiospecifically to the ring I vinyl group of the altered heme moiety, because the nonprotein-bound products of the reaction included the beta-carboxyvinyl and alpha-hydroxy-beta-trichloromethylethyl derivatives of the ring I vinyl moiety of heme. The absorption spectra of the protein-bound adducts in both the oxidized and reduced states were highly similar to those described for hemichromes, which are thought to be involved in the formation of Heinz bodies and subsequent red cell lysis.  相似文献   

7.
8.
Visible and near infrared magnetic circular dichroism (MCD) spectra of heme proteins and enzymes as well as those of a protein-free heme bound to 2-methylimidazole were recorded and compared at 4.2 K in unrelaxed metastable and relaxed equilibrium heme stereochemistry. The relaxed and unrelaxed stereochemistries of a 5-coordinate ferrous heme were generated by chemical reduction of iron at room temperature before freezing the sample and by photolysis of CO or O2 complexes at 4.2 K, respectively. The results are discussed in terms of a protein contribution into energies of the Fe-N epsilon(His) and Fe-N(pyrrols) bonds and their change on a ligand binding. We observed and analyzed cases of weak (myoglobin, hemoglobin) and strong (leghemoglobin, peroxidases) constraints imposed by the protein conformation on the proximal heme stereochemistry by comparing the bond energies in proteins with those in the protoheme-(2-methylimidazole) model compound. The role of a protein moiety in modulating the ligand binding properties of leghemoglobin and the heme reactivity of horseradish peroxidase is discussed.  相似文献   

9.
Due to limitations associated with whole blood for transfusions (antigen compatibility, transmission of infections, supply and storage), the use of cell-free hemoglobin as an oxygen carrier substitute has been in the center of research interest for decades. Human hemoglobin has previously been synthesized in yeast, however the challenge is to balance the expression of the two different globin subunits, as well as the supply of the prosthetic heme required for obtaining the active hemoglobin (α2β2). In this work we evaluated the expression of different combinations of α and β peptides and combined this with metabolic engineering of the heme biosynthetic pathway. Through evaluation of several different strategies we showed that engineering the biosynthesis pathway can substantially increase the heme level in yeast cells, and this resulted in a significant enhancement of human hemoglobin production. Besides demonstration of improved hemoglobin production our work demonstrates a novel strategy for improving the production of complex proteins, especially multimers with a prosthetic group.  相似文献   

10.
Chemically modified human or bovine hemoglobins (Hb) have been developed as oxygen-carrying therapeutics and are currently under clinical evaluation. Oxidative processes, which are in many cases enhanced when modifications are introduced that lower the oxygen affinity, can limit the safety of these proteins. We have carried out a systematic evaluation of two modified human Hbs (O-R-polyHbA(0) and DBBF-Hb) and one bovine Hb (polyHbBv). We have both measured the oxidative products present in the Hb preparations and followed the oxidative reactions during 37 degrees C incubations. Autoxidation, the primary oxidative reaction which initiates the oxidative cascade, is highly correlated with P(50) (R = 0.987; p < 0.002). However, when the results for the other oxidative processes are compared, two different classes of oxidative reactions are identified. The formation of oxyferrylHb, like the rate of autoxidation, increases for all modified Hbs. However, the subsequent reactions, which lead to heme damage and eventually heme degradation, are enhanced for the modified human Hbs but are actually suppressed for bovine-modified Hbs. The rhombic heme measured by electron paramagnetic resonance, which is the initial step that causes irreversible damage to the heme, is found to be a reliable measure of the stability of ferrylHb and has the tendency to produce degradation products. DBBF-Hb, a Hb-based oxygen carrier (HBOC) for which toxic side effects have been well documented, has the highest level of rhombic heme (41-fold greater than for HbA(0)), even though its rate of autoxidation is relatively low. These findings establish the importance of these secondary oxidative reactions over autoxidation in evaluating the toxicity of HBOCs.  相似文献   

11.
12.
A spin label attached to a propionic acid group of the heme has been used to probe the heme environment of the alpha and beta chains of hemoglobin in both the subunit and tetrameric forms. The electron paramagnetic resonance (EPR) studies of hemoglobin hybrids in which the spin label is attached to either the alpha- or beta-heme (alpha2SLbeta 2 or alpha2beta2SL) and spin-labeled isolated chains (alphaSL and betaSL) show that: 1) alpha- and beta-hemes have different environments in the tetrameric forms of oxy-, deoxy-, and methemoglobins as well as in isolated single chains; 2) when isolated subunits associate to form hemoglobin tetramers, the environment of the alpha-heme changes more drastically than that of the beta-heme; 3) upon deoxygenation of hemoglobin, the structure in the vicinity of the alpha-heme changes more drastically than that of the beta-heme; and 4) upon the addition of organic phosphates to methemoglobin, the change in the spin state of the heme irons mainly arises from beta-heme. The results demonstrate conclusively that the alpha and the beta subunits of hemoglobin are structurally nonequivalent as are their structural changes as the result of ligation. The relationship of EPR spectrum and structure of hemoglobin is discussed.  相似文献   

13.
X-ray diffraction difference electron density maps at 3 A resolution obtained from di and tetra-ligated T-state hemoglobin (Hb) crystals are reported. Crystals isomorphous with native deoxyhemoglobin were obtained from ammonium sulfate solutions incubated with the synthetic allosteric effector RSR-56. RSR-56 binds at two symmetry-related Hb central water cavity sites and each molecule has major interactions with three different subunit side-chains; one effector with Arg141 alpha 2 HC3, Lys99 alpha 1 G6 and Asn108 beta 1 and the other with the symmetry related residues, Arg141 alpha 1 Lys99 alpha 2 and Asn108 beta 2. Crystals mounted in a nitrogen filled glove box were di-ligated as previously found with polyethyleneglycol Hb crystals. Crystals mounted in air under a layer of mother liquor were bright red and showed all four heme groups ligated. The difference electron density from the di-ligated crystals showed atomic movements to be restricted to the immediate neighborhood of the heme groups and the allosteric effector. By contrast, the tetra-ligated structure showed extended difference electron density near amino acid residues around both alpha and beta heme groups and along the alpha 1/beta 2 interface. Ligation of the beta heme group appears to magnify the difference density around the alpha heme groups. There is no evidence of breakage of the Bohr salt bridge, His146 beta HC3----Asp94 beta FG1, in the crystal. The observed difference electron density maps may help to clarify the way the allosteric mechanism is triggered.  相似文献   

14.
Two high precision techniques, titration microcalorimetry and thin-layer optical binding measurements, have made possible the evaluation of enthalpy changes for the overall oxygenation reactions for human hemoglobin (HbAo). Although the heat of adding three oxygen molecules could not be evaluated due to the indeterminate contribution of this species to the oxygen binding curve of the protein (Gill, S. J., Di Cera, E., Doyle, M. L., Bishop, G. A., and Robert, C. H. (1987) Biochemistry, 26, 3995-4002), the heats for binding two and four oxygen molecules were found to be simple multiples of the first binding heat. A direct consequence of equal stepwise heats is invariance of the shape of the binding curve with temperature, as pointed out by Wyman (Wyman, J. (1939) J. Biol. Chem. 127, 581-599). Titration microcalorimetry was also performed for the binding of carbon monoxide to hemoglobin. While the tight binding of CO precludes high-precision binding measurements, it does allow one to accurately determine the heat of ligation as a function of the CO bound. In these titrations a uniform heat of reaction is not observed, but the heat of binding increases markedly near the end point. This implies that the stepwise binding enthalpy for adding the third CO molecule is anomalously endothermic and for adding the fourth strongly exothermic. A similar phenomenon cannot be ruled out in the case of oxygen because of imprecision intrinsic in the analysis of the weaker ligand binding.  相似文献   

15.
16.
17.
The effect of dimethyl adipimidate, a bifunctional imidoester, on the oxygen affinity of hemoglobin A has been studied. Treatment of human oxyhemoglobin with 5 mM dimethyl adipimidate at pH 8.5, room temperature is accompanied by an increase in oxygen affinity in the presence and absence of 2,3-diphosphoglyceric acid. Circular dichroism measurements in the ultraviolet region indicate that dimethyl adipimidate-treated hemoglobin exhibits a reduced conformational change upon deoxygenation. In order to study the contribution of reacted individual subunits, alpha and beta subunits of dimethyl adipimidate-treated and untreated hemoglobin have been separated and reconstituted to form hybrid tetramers containing either the alpha-treated (alpha t beta c) or the beta-treated subunits (alpha c beta t). Electrophoresis on sodium dodecyl sulfate polyacrylamide gels of isolated alpha and beta globin subunits as well as hybrid tetramers from dimethyl adipimidate-treated hemoglobin reveals that 20% of the globin subunits are cross-linked. In the absence of 2,3-diphosphoglyceric acid, modification of alpha subunits increases the oxygen affinity and reduces the conformational change of the tetramer upon deoxygenation whereas modification of beta subunits has no effect. However, treatment of beta subunits decreases the effect of 2,3-diphosphoglyceric acid on the oxygen affinity of the hybrids and reduces the 2,3-diphosphoglyceric acid-induced spectral changes in oxyhemoglobin. Therefore the interaction of dimethyl adipimidate with both the alpha and beta subunits contributes to regulating the oxygen affinity of human hemoglobin.  相似文献   

18.
The relevance of three-dimensional structures of proteins, determined by X-ray crystallography, is an important issue that is becoming even more critical in light of the Structural Genomics Initiative. As a case study, a detailed comparison of functional properties of the T quaternary states of genetically or chemically modified human hemoglobins (Hbs) in solution and in the crystal was performed. Oxygen affinities of Hbs in crystals correlate with the rate constants of their initial combination with carbon monoxide (CO) in solution, indicating that changes in ligand affinity caused by the modifications are similarly observed in both physical states.  相似文献   

19.
E W Findsen  P Simons  M R Ondrias 《Biochemistry》1986,25(24):7912-7917
The effects of protein dehydration upon the equilibrium and dynamic properties of the heme active site in human hemoglobin (HbA) have been probed by resonance Raman scattering. Spectra of equilibrium carbonmonoxy-HbA and the photolytic heme transient species generated within 10 ns of ligand photolysis have been obtained from thin films of protein in various stages of dehydration. These data provide detailed information concerning the response of the heme and its bonding interactions with both the proximal histidine and carbon monoxide as a function of protein hydration. For protein hydration levels of 0.4-1.0 g of H2O/g of protein, our results indicate that the C = O stretching mode of carbonmonoxy-HbA is dramatically affected by protein hydration levels, thus corroborating the infrared results of Brown et al. [Brown, W. E., Sutcliffe, J. W., & Pulsinelli, P. D. (1983) Biochemistry 22, 2914-2923]. However, we find that both heme skeletal modes and the Fe-C bond strength are largely insensitive to dehydration. Moreover, the proximal pocket geometry (as reflected in the behavior of the Fe-proximal histidine stretching mode) immediately following ligand photolysis was found to be very similar to that of R-state solution hemoglobin. At protein hydration levels below the theoretical monolayer limit, small changes in the resonance Raman spectra of both equilibrium HbCO and the transient heme species generated subsequent to ligand photolysis are detected. These include broadening of the Fe-C stretching mode in equilibrium HbCO and a small shift to lower frequency of the Fe-His mode in the photolytic transient species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号