首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hydroxyl radical-mediated oxidation of 5,5-dimethyl-1-pyrroline N-oxide, benzene, ketomethiolbutyric acid, deoxyribose, and ethanol, as well as superoxide anion and hydrogen peroxide formation was quantitated in reconstituted membrane vesicle systems containing purified rabbit liver microsomal NADPH-cytochrome P-450 reductase and cytochromes P-450 LM2, P-450 LMeb , or P-450 LM4, and in vesicle systems devoid of cytochrome P-450. The presence of cytochrome P-450 in the membranes resulted in 4-8-fold higher rates of O-2, H2O2, and hydroxyl radical production, indicating that the oxycytochrome P-450 complex constitutes the major source for superoxide anions liberated in the system, giving as a consequence hydrogen peroxide and also, subsequently, hydroxyl radicals formed in an iron-catalyzed Haber-Weiss reaction. Depletion of contaminating iron in the incubation systems resulted in small or negligible rates of cytochrome P-450-dependent ethanol oxidation. However, small amounts (1 microM) of chelated iron (e.g. Fe3+-EDTA) enhanced ethanol oxidation specifically when membranes containing the ethanol and benzene-inducible form of cytochrome P-450 (cytochrome P-450 LMeb ) were used. Introduction of the Fe-EDTA complex into P-450 LMeb -containing incubation systems caused a decrease in hydrogen peroxide formation and a concomitant 6-fold increase in acetaldehyde production; consequently, the rate of NADPH consumption was not affected. In iron-depleted systems containing cytochrome P-450 LM2 or cytochrome P-450 LMeb , an appropriate stoichiometry was attained between the NADPH consumed and the sum of hydrogen peroxide and acetaldehyde produced. Horseradish peroxidase and scavengers of hydroxyl radicals inhibited the cytochrome P-450 LMeb -dependent ethanol oxidation both in the presence and in the absence of Fe-EDTA. The results are not consistent with a specific mechanism for cytochrome P-450-dependent ethanol oxidation and indicate that hydroxyl radicals, formed in an iron-catalyzed Haber-Weiss reaction and in a Fenton reaction, constitute the active oxygen species. Cytochrome P-450-dependent ethanol oxidation under in vivo conditions would, according to this concept, require the presence of non-heme iron and endogenous iron chelators.  相似文献   

2.
Epidermal microsomal cytochrome P-450 was rapidly degraded when microsomes were aerobically exposed to ultraviolet light in the presence of hematoporphyrin derivative (HPD). Destruction of microsomal cytochrome P-450 was accompanied by loss of heme content, and inhibition of catalytic activity of the monooxygenases, including aryl hydrocarbon hydroxylase and 7-ethoxycoumarin-O-deethylase. Destruction of cytochrome P-450 by photosensitized HPD was oxygen dependent. Quenchers of singlet oxygen, including 2,5 dimethylfuran, histidine, and B-carotene, largely pre- vented photodestruction of cytochrome P-450. Inhibitors of hydroxyl radical including benzoate and mannitol, protected microsomal cytochrome P-450 from destruction. Superoxide dismutase and catalase, scavengers of superoxide anion and hydrogen peroxide, respectively, had no protective effect. These results indicate that generation of singlet oxygen and hydroxyl radicals during hematoporphyrin photosensitization is associated with rapid degradation of cytochrome P-450 and heme in epidermal microsomes, and suggest a novel target for this type of tissue damage in the skin.  相似文献   

3.
Hepatic microsornes metabolize ethanol to a free radical metabolite which forms adducts with the spin trapping agents PBN (phenyl-N-t-butylnitrone) and DMPO (5,5-dimethyl-l-pyrroline N-oxide). This ethanol radical has been identified as the I-hydroxyethyl radical through the use of 13C-labelled ethanol. A role of the cytochrome P-450 enzymes in the generation of the I-hydroxyethyl radical was suggested by requirements for oxygen and NADPH. as well as inhibition in the presence of SKF 525-A and imidazole. In contrast. the ESR signal intensity of the I-hydroxyethyl radical was diminished when either catalase. or the iron chelating agent deferoxdmine. was added to the microsomal incubations, and was increased by the addition of ADP-Fe. These observations suggest that the ethanol radicals may arise secondary to iron-catalyzed formation of hydroxyl radicals from hydrogen peroxide. This possibility was supported by enhanced rates of I-hydroxyethyl radical formation when microsomal catalase activity was inhibited by the addition of sodium azide, or by pretreatment of rats with aminotriazole. However, the reaction was relatively insensitive to scavengers of the hydroxyl radical. Thus, the mechanism of I-hydroxycthyl radical formation could involve two cytochrome P-450-dependent pathways: generation of hydrogen peroxide required for a Fenton reaction, as well as direct catalytic formation of the ethanol radical.  相似文献   

4.
Ethanol oxidation by a reconstituted system composed of cytochrome P-450 purified from liver microsomes of phenobarbital-treated rats, NADPH-cytochrome c reductase, phospholipid and NADPH was inhibited by a series of hydroxyl radical scavenging agents. Inhibition was competitive with respect to ethanol and was specific in the sense that the metabolism of aminopyrine or benzphetamine by the reconstituted system was not affected by the scavengers. The generation of ethylene gas from 2-keto-4-thiomethylbutyric acid in an ethanol-sensitive manner provided chemical evidence consistent with the ability of the reconstituted system to generate hydroxyl radicals. These results suggest that the oxidation of ethanol by the reconstituted system reflects the interaction of ethanol with hydroxyl radicals generated during NADPH oxidation.  相似文献   

5.
The N-oxidation of N-(2-methyl-1-phenyl-2-propyl)hydroxylamine (N-hydroxyphentermine, MPPNHOH) and the N-hydroxylation of 2-methyl-1-phenyl-2-propylamine (phentermine) by reconstituted systems that contained cytochromes P-450 purified from rat liver microsomes were demonstrated. The oxidation of MPPNHOH, but not of phentermine, could also be mediated by a superoxide and hydrogen peroxide generating system that contained xanthine and xanthine oxidase. Superoxide dismutase completely inhibited the oxidation of MPPNHOH by the xanthine/xanthine oxidase system and inhibited by 70% the oxidation mediated by a reconstituted cytochrome P-450 oxidase system. The majority of the microsomal oxidation was inhibited by an antibody raised against the major isozyme of cytochrome P-450 purified from livers of phenobarbital-pretreated rats. 2-Methyl-2-nitroso-1-phenylpropane (MPPNO) was found to be an intermediate in the overall oxidation of MPPNHOH to 2-methyl-2-nitro-1-phenylpropane (MPPNO2). Superoxide dismutase appeared to inhibit the first step, the conversion of MPPNHOH to MPPNO. These observations are accounted for by a sequence of two mechanistically distinct P-450-mediated oxidations. In the first reaction, N-hydroxylation of phentermine occurs by a normal cytochrome P-450 pathway. The formed hydroxylamine then uncouples the cytochrome P-450 system to generate superoxide and hydrogen peroxide. The superoxide oxidizes MPPNHOH to MPPNO which is then oxidized to MPPNO2, the ultimate product. This superoxide-mediated oxidation represents another pathway for N-oxidation by cytochrome P-450.  相似文献   

6.
The changes in the content of purified isolated cytochrome P-450 LM2 under the action of hydrogen peroxide and during its operation in a soluble reconstituted system were studied. It was found that cytochrome P-450 LM2 inactivation by hydrogen peroxide is accompanied by a decrease in the hemoprotein activity, loss of heme, oxidation of SH-groups and changes in the oligomeric state of the enzyme. There were some differences in the mechanisms of cytochrome P-450 LM2 inactivation under the action of H2O2 and during catalysis.  相似文献   

7.
Anthranilamide was slightly hydroxylated by a reconstituted rat liver microsomal monooxygenase system with NADPH, but a large amount of hydrogen peroxide was formed with a consumption of NADPH during the reaction. Superoxide dismutase stimulated the hydroxylation by depressing the hydrogen peroxide formation, in that there was a reverse correlation between the two effects due to the dismutase. In addition, a trace of 3-hydroxyanthranilamide, one of the products, not only stimulated NADPH-dependent hydrogen peroxide formation via NADPH-cytochrome c (P-450) reductase, but also inhibited the reduction of cytochrome P-450 by NADPH in the reconstituted system. These effects of 3-hydroxyanthranilamide were also diminished by superoxide dismutase.  相似文献   

8.
Thiourea and superoxide dismutase were effective antidotes to paraquat toxicity in an HL60 cell culture system, whereas other hydroxyl scavengers were ineffective. The efficacy of thioureas was not due to blockage of intracellular paraquat uptake, inhibition of NADPH-P-450 reductase, or reaction with the paraquat radical. Thiourea also competitively inhibited the reduction of cytochrome c by the xanthine/xanthine oxidase superoxide-generating system, and the release of iron from ferritin by superoxide radicals. The reaction of superoxide with thiourea produced a sulfhydryl compound distinct from products formed by hydrogen peroxide or hydroxyl radicals. Spectrophotometric and chromatographic studies indicated the carbon-sulfide double bond was converted to a sulfhydryl group which reacted with Ellman's reagent. Additional confirmatory evidence for the sulfhydryl compound was obtained with carbon-13 NMR and mass spectroscopies. Thus, thioureas are direct scavengers of superoxide radicals as well as hydroxyl radicals and hydrogen peroxide. The rate constant for the reduction of thiourea by superoxide was estimated at 1.1 x 10(3) M-1 s-1. The implication of this finding on free radical studies, the mechanism of paraquat toxicity, and the metabolism of thioureas is discussed.  相似文献   

9.
Experiments were carried out to evaluate whether the molecular mechanism for ethanol oxidation by microsomes, a minor pathway of alcohol metabolism, involved generation of hydroxyl radical (.OH). Microsomes oxidized chemical .OH scavengers (KMB, DMSO, t-butyl alcohol, benzoate) by a reaction sensitive to catalase, but not SOD. Iron was required for microsomal .OH generation in view of the potent inhibition by desferrioxamine; however, the chelated form of iron was important. Microsomal .OH production was effectively stimulated by ferric EDTA or ferric DTPA, but poorly increased with ferric ATP, ferric citrate, or ferric ammonium sulfate. By contrast, the latter ferric complexes effectively increased microsomal chemiluminescence and lipid peroxidation, whereas ferric EDTA and ferric DTPA were inhibitory. Under conditions that minimize .OH production (absence of EDTA, iron) ethanol was oxidized by a cytochrome P-450-dependent process independent of reactive oxygen intermediates. Under conditions that promote microsomal .OH production, the oxidation of ethanol by .OH becomes more significant in contributing to the overall oxidation of ethanol by microsomes. Experiments with inhibitors and reconstituted systems containing P-450 and NADPH-P-450 reductase indicated that the reductase is the critical enzyme locus for interacting with iron and catalyzing production of reactive oxygen species. Microsomes isolated from rats chronically fed ethanol catalyzed oxidation of .OH scavengers, light emission, and inactivation of added metabolic enzymes at elevated rates, and displayed an increase in ethanol oxidation by a .OH-dependent and a P-450-dependent pathway. It is possible that enhanced generation of reactive oxygen intermediates by microsomes may contribute to the hepatotoxic effects of ethanol.  相似文献   

10.
The effect of flavone and 7,8-benzoflavone on the metabolism of benzo[a]pyrene to fluorescent phenols by five cytochrome P-450 isozymes obtained from rabbit liver microsomes was determined. Benzo[a]pyrene metabolism was stimulated more than 5-fold by the addition of 600 microM flavone to a reconstituted monooxygenase system consisting of NADPH, cytochrome P-450 reductase, dilauroylphosphatidylcholine, and cytochrome P-450LM3c or cytochrome P-450LM4. In contrast, an inhibitory effect of flavone on benzo[a]pyrene metabolism was observed when cytochrome P-450LM2, cytochrome P-450LM3b, or cytochrome P-450LM6 was used in the reconstituted system. 7,8-Benzoflavone (50-100 microM) stimulated benzo[a]pyrene metabolism by the reconstituted monooxygenase system about 10-fold when cytochrome P-450LM3c was used, but benzo[a]pyrene hydroxylation was strongly inhibited when 7,8-benzoflavone was added to the cytochrome P-450LM6-dependent system. Smaller effects of 7,8-benzoflavone were observed on the metabolism of benzo[a]pyrene by the cytochrome P-450LM2-, cytochrome P-450LM3b-, and cytochrome P-450LM4-dependent monooxygenase systems. These results demonstrate that the activating and inhibiting effects of flavone and 7,8-benzoflavone on benzo[a]pyrene metabolism depend on the type of cytochrome P-450 used in the reconstituted monooxygenase system.  相似文献   

11.
Pyrazole, an effective inhibitor of alcohol dehydrogenase, was previously shown to be a scavenger of the hydroxyl radical. 4-Hydroxypyrazole is a major metabolite in the urine of animals administered pyrazole in vivo. Experiments were conducted to show that 4-hydroxypyrazole was a product of the interaction of pyrazole with hydroxyl radical generated from three different systems. The systems utilized were the iron-catalyzed oxidation of ascorbate, the coupled oxidation of hypoxanthine by xanthine oxidase, and NADPH-dependent microsomal electron transfer. Ferric-EDTA was added to all the systems to catalyze the production of hydroxyl radicals. A HPLC procedure employing either uv detection or electrochemical detection was utilized to assay for the production of 4-hydroxypyrazole. The three systems all supported the oxidation of pyrazole to 4-hydroxypyrazole by a reaction which was sensitive to inhibition by competitive hydroxyl radical scavengers such as ethanol, mannitol, or dimethyl sulfoxide and to catalase. The sensitivity to catalase implicates H2O2 as the precursor of the hydroxyl radical by all three systems. Superoxide dismutase inhibited production of 4-hydroxypyrazole only in the xanthine oxidase reaction system. In the absence of ferric-EDTA (and azide), microsomes catalyzed the oxidation of pyrazole to 4-hydroxypyrazole by a cytochrome P-450-dependent reaction which was independent of hydroxyl radicals. This latter pathway may be primarily responsible for the in vivo metabolism of pyrazole to 4-hydroxypyrazole. The production of 4-hydroxypyrazole from the interaction of pyrazole with hydroxyl radicals may be a sensitive, rapid technique for the detection of these radicals in certain tissues or under certain conditions, e.g., increasing oxidative stress.  相似文献   

12.
Hydroxylation of aniline, catalyzed by rabbit liver microsomal cytochromes P-450 in reconstituted systems, was inhibited by catalase, superoxide dismutase, catechol, mannitol, hydroquinone, dimethylsulfoxide and benzoate, whereas the cytochrome P-450-catalyzed O-demethylation of paranitroanisole, measured under the same conditions, was unaffected by these agents. A similar inhibition profile of the hydroxylation reaction was observed in reconstituted systems where cytochrome P-450 had been replaced by hemoglobin. The results indicate that aniline hydroxylation is mediated by hydroxyl radicals generated in an iron-catalyzed Haber-Weiss reaction between O2? and H2O2 and may explain some of the special properties of this reaction previously described.  相似文献   

13.
The role of epidermal microsomal enzymes in catalyzing bleomycin-mediated chain breakage in calf-thymus DNA and in DNA isolated from neonatal rat epidermis was studied. Aerobic incubation of bleomycin with epidermal microsomes, epidermal or calf-thymus DNA and NADPH caused substantial chain breakage of the DNA which was dependent upon concentrations of drug, microsomal protein and NADPH. The reactive oxygen scavenger superoxide dismutase, the metal chelator EDTA, and cytochrome c each inhibited the enzyme-mediated chain breakage reaction. Scavengers of hydrogen peroxide and hydroxyl radicals, including catalase and benzoate and inhibitors of microsomal cytochrome P-450-dependent monooxygenases such as 1-benzylimidazole, metyrapone and alpha-naphthoflavone, had no inhibitory effects on bleomycin-mediated DNA chain breakage. In contrast, ascorbic acid significantly enhanced DNA damage by bleomycin. These studies indicate that mammalian epidermis possesses membrane-bound enzyme activity capable of enhancing bleomycin-mediated chain breakage of DNA and that oxidation/reduction of adventitious iron and generation of reactive oxygen participate in the reaction. These responses in the epidermis could directly relate to the mechanism of action of intralesional injections of bleomycin which are used quite effectively in the management of recalcitrant human warts. Either epidermal or wart virus DNA or both could be targets for this pharmacologic effect of the drug which is augmented by epidermal microsomal enzymes.  相似文献   

14.
Liver microsomes incubated with a NADPH regenerating system, ethanol and the spin trapping agent 4-pyridyl-1-oxide-t-butyl nitrone (4-POBN) produced an electron spin resonance (ESR) signal which has been assigned to the hydroxyethyl free radical adduct of 4-POBN by using 13C-labelled ethanol. The free radical formation was dependent upon the activity of the microsomal monoxygenase system and increased following chronic feeding of the rats with ethanol. The production of hydroxyethyl free radicals was stimulated by the addition of azide, while catalase and OH. scavengers decreased it. This suggested that hydroxyl radicals (OH.) produced in a Fenton-type reaction from endogenously formed hydrogen peroxide were involved in the free radical activation of ethanol. Consistently, the supplementation of iron, under various forms, also increased the intensity of the ESR signal which, on the contrary, was inhibited by the iron-chelating agent desferrioxamine. Microsomes washed with a solution containing desferrioxamine and incubated in a medium treated with Chelex X-100 in order to remove contaminating iron still produced hydroxyethyl radicals, although at a reduced rate. Under these conditions the free radical formation was apparently independent from the generation of OH. radicals, whereas addition of cytochrome P-450 inhibitors decreased the hydroxyethyl radical formation, suggesting that a cytochrome P-450-mediated process might also be involved in the activation of ethanol. Reduced glutathione (GSH) was found to effectively scavenge the hydroxyethyl radical, preventing its trapping by 4-POBN. The data presented suggest that ethanol-derived radicals could be generated during the microsomal metabolism of alcohol probably through two different pathways. The detection of ethanol free radicals might be relevant in understanding the pathogenesis of the liver lesions which are a consequence of alcohol abuse.  相似文献   

15.
The iron-catalysed production of hydroxyl radicals, by rat liver microsomes (microsomal fractions), assessed by the oxidation of substrate scavengers and ethanol, displayed a biphasic response to the concentration of O2 (varied from 3 to 70%), reaching a maximal value with 20% O2. The decreased rates of hydroxyl-radical generation at lower O2 concentrations correlates with lower rates of production of H2O2, the precursor of hydroxyl radical, whereas the decreased rates at elevated O2 concentrations correlate with lower rates (relative to 20% O2) of activity of NADPH-cytochrome P-450 reductase, which reduces iron and is responsible for redox cycling of iron by the microsomes. The oxidation of aniline or aminopyrine and the cytochrome P-450/oxygen-radical-independent oxidation of ethanol also displayed a biphasic response to the concentration of O2, reaching a maximum at 20% O2, which correlates with the dithionite-reducible CO-binding spectra of cytochrome P-450. Microsomal lipid peroxidation increased as the concentration of O2 was raised from 3 to 7 to 20% O2, and then began to level off. This different pattern of malondialdehyde generation compared with hydroxyl-radical production probably reflects the lack of a role for hydroxyl radical in microsomal lipid peroxidation. These results point to the complex role for O2 in microsomal generation of oxygen radicals, which is due in part to the critical necessity for maintaining the redox state of autoxidizable components of the reaction system.  相似文献   

16.
The interaction of microsomes with iron and NADPH to generate active oxygen radicals was determined by assaying for low level chemiluminescence. The ability of several ferric complexes to catalyze light emission was compared to their effect on microsomal lipid peroxidation or hydroxyl radical generation. In the absence of added iron, microsomal light emission was very low; chemiluminescence could be enhanced by several cycles of freeze-thawing of the microsomes. The addition of ferric ammonium sulfate, ferric-citrate, or ferric-ADP produced an increase in chemiluminescence, whereas ferric-EDTA or -diethylenetriaminepentaacetic acid (detapac) were inhibitory. The same response to these ferric complexes was found when assaying for malondialdehyde as an index of microsomal lipid peroxidation. In contrast, hydroxyl radical generation, assessed as oxidation of chemical scavengers, was significantly enhanced in the presence of ferric-EDTA and -detapac and only weakly elevated by the other ferric complexes. Ferric-desferrioxamine was essentially inert in catalyzing any of these reactions. Chemiluminescence and lipid peroxidation were not affected by superoxide dismutase, catalase, or competitive hydroxyl radical scavengers whereas hydroxyl radical production was decreased by the latter two but not by superoxide dismutase. Chemiluminescence was decreased by the antioxidants propylgallate or glutathione and by inhibiting NADPH-cytochrome P-450 reductase with copper, but was not inhibited by metyrapone or carbon monoxide. The similar pattern exhibited by ferric complexes on microsomal light emission and lipid peroxidation, and the same response of both processes to radical scavenging agents, suggests a close association between chemiluminescence and lipid peroxidation, whereas both processes can be readily dissociated from free hydroxyl radical generation by microsomes.  相似文献   

17.
The arylcyclopropanes (cyclopropylarenes) cyclopropylbenzene and diphenylcyclopropane are oxidized by rabbit liver microsomal cytochrome P-450, both by the microsomal fraction and by the purified cytochrome in a reconstituted system. The products formed, principally benzoic acid, are due to an unusual triple oxidation of the substrate, which probably remains attached to the active site during the several steps of the oxidation. Both substrates were found to be inhibitors of the cytochrome P-450-dependent O-de-ethylation of 7-ethoxycoumarin. Model oxidation studies with cumene hydroperoxide as oxidizing agent and rabbit liver microsomal fraction as source of enzyme gave similar products to the microsomal and reconstituted systems. The significance of these results in the mechanism of oxidation catalysed by cytochrome P-450 is discussed.  相似文献   

18.
2-Dimethylamino-3-chloro-1,4-naphthaquinone (DCNQ) was used to study oxygen and substrate activation in microsomal system. DCNQ was shown to be bound to microsomal cytochrome P-450 as a type I substrate; its N-demethylation was catalyzed by cytochrome P-450. Cytochrome P-450 and NADPH-cytochrome P-450 reductase are capable of DCNQ reduction to semi- and hydroquinones. The OH-radical formed in the presence of DCNQ, NADPH and reductase was detected, using a spin trap (5,5-dimethylpyrroline-N-oxide). The OH-radical formation was shown to be stimulated by the Fe-EDTA complex. Using the OH-radical scavengers (mannitol, N-butanol, alpha-naphthol) and the catalase inhibitor sodium azide, it was shown that the OH-radical participates in microsomal oxidation of DCNQ and aminopyrine. It was assumed that in the course of microsomal oxidation the reduced DCNQ is responsible for: i) stimulation of molecular oxygen reduction to H2O2; ii) reduction of Fe ions (Fe3+----Fe2+) which cause the decomposition of H2O2 in the Fenton reaction resulting in the formation of a strong oxidizing agent--a hydroxyl radical.  相似文献   

19.
Inactivation of cytochrome P-450 LM2 induced by hydrogen peroxide formed in the active site of the enzyme was studied. Catalase did not protect cytochrome P-450 LM2 from inactivation during its operation in a soluble reconstituted system. The hemoprotein inactivation in this system was found to depend on the ratio of hemo- to flavoproteins. It was demonstrated that cytochrome P-450 LM2 inactivation during catalysis is accompanied by cleavage of the hemoprotein molecule. It is probable that this fact plays a key role in regulation of enzyme decay.  相似文献   

20.
Lipophilic chelates of divalent copper, possessing superoxide dismutase-like activity, have been proposed to enhance the decay of oxycytochrome P-450 to explain their inhibitory effect on microsomal mixed-function oxidation reactions (Richter, C., Azzi, A., Weser, U., and Wendel, A. (1977) J. Biol. Chem. 252, 5061-5066). The present investigation, however, failed to provide evidence in favor of this hypothesis. In particular, it was found that the reported inhibition of cytochrome P-450-catalyzed hydroxylation reactions by copper-tyrosine is associated with an inhibition rather than a stimulation of the formation of hydrogen peroxide, the product of the dismutation of the superoxide radicals generated as a result of the decay of oxycytochrome P-450. The attenuation of both these reactions was shown to be the consequence of an impaired function of the NADPH-cytochrome P-450 reductase. Additional sites of interaction of copper chelates and the microsomal electron transport system appear to exist since divalent copper was found to undergo reduction reactions with NADPH and NADH as electron donors. These reduction reactions do not involve superoxide radicals and, therefore, are unrelated to the ability of copper chelates to function in a superoxide dismutase-like manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号