首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Male songbirds learn their songs from an adult tutor when they are young. A network of brain nuclei known as the ‘song system’ is the likely neural substrate for sensorimotor learning and production of song, but the neural networks involved in processing the auditory feedback signals necessary for song learning and maintenance remain unknown. Determining which regions show preferential responsiveness to the bird''s own song (BOS) is of great importance because neurons sensitive to self-generated vocalisations could mediate this auditory feedback process. Neurons in the song nuclei and in a secondary auditory area, the caudal medial mesopallium (CMM), show selective responses to the BOS. The aim of the present study is to investigate the emergence of BOS selectivity within the network of primary auditory sub-regions in the avian pallium.

Methods and Findings

Using blood oxygen level-dependent (BOLD) fMRI, we investigated neural responsiveness to natural and manipulated self-generated vocalisations and compared the selectivity for BOS and conspecific song in different sub-regions of the thalamo-recipient area Field L. Zebra finch males were exposed to conspecific song, BOS and to synthetic variations on BOS that differed in spectro-temporal and/or modulation phase structure. We found significant differences in the strength of BOLD responses between regions L2a, L2b and CMM, but no inter-stimuli differences within regions. In particular, we have shown that the overall signal strength to song and synthetic variations thereof was different within two sub-regions of Field L2: zone L2a was significantly more activated compared to the adjacent sub-region L2b.

Conclusions

Based on our results we suggest that unlike nuclei in the song system, sub-regions in the primary auditory pallium do not show selectivity for the BOS, but appear to show different levels of activity with exposure to any sound according to their place in the auditory processing stream.  相似文献   

2.
Rhythm is important in the production of motor sequences such as speech and song. Deficits in rhythm processing have been implicated in human disorders that affect speech and language processing, including stuttering, autism, and dyslexia. Songbirds provide a tractable model for studying the neural underpinnings of rhythm processing due to parallels with humans in neural structures and vocal learning patterns. In this study, adult zebra finches were exposed to naturally rhythmic conspecific song or arrhythmic song. Immunohistochemistry for the immediate early gene ZENK was used to detect neural activation in response to these two types of stimuli. ZENK was increased in response to arrhythmic song in the auditory association cortex homologs, caudomedial nidopallium (NCM) and caudomedial mesopallium (CMM), and the avian amygdala, nucleus taeniae (Tn). CMM also had greater ZENK labeling in females than males. The increased neural activity in NCM and CMM during perception of arrhythmic stimuli parallels increased activity in the human auditory cortex following exposure to unexpected, or perturbed, auditory stimuli. These auditory areas may be detecting errors in arrhythmic song when comparing it to a stored template of how conspecific song is expected to sound. CMM may also be important for females in evaluating songs of potential mates. In the context of other research in songbirds, we suggest that the increased activity in Tn may be related to the value of song for assessing mate choice and bonding or it may be related to perception of arrhythmic song as aversive.  相似文献   

3.
The zebra finch learns his song by memorizing a tutor's vocalization and then using auditory feedback to match his current vocalization to this memory, or template. The neural song system of adult and young birds responds to auditory stimuli, and exhibits selective tuning to the bird's own song (BOS). We have directly examined the development of neural tuning in the song motor system. We measured song system responses to vocalizations produced at various ages during sleep. We now report that the auditory response of the song motor system and motor output are linked early in song development. During sleep, playback of the current BOS induced a response in the song nucleus HVC during the song practice period, even when the song consisted of little more than repeated begging calls. Halfway through the sensorimotor period when the song was not yet in its final form, the response to BOS already exceeded that to all other auditory stimuli tested. Moreover, responses to previous, plastic versions of BOS decayed over time. This indicates that selective tuning to BOS mirrors the vocalization that the bird is currently producing.  相似文献   

4.
Songbirds learn their song from an adult conspecific tutor when they are young, much like the acquisition of speech in human infants. When an adult zebra finch is re-exposed to its tutor's song, there is increased neuronal activation in the caudomedial nidopallium (NCM), the songbird equivalent of the auditory association cortex. This neuronal activation is related to the fidelity of song imitation, suggesting that the NCM may contain the neural representation of song memory. We found that bilateral neurotoxic lesions to the NCM of adult male zebra finches impaired tutor-song recognition but did not affect the males' song production or their ability to discriminate calls. These findings demonstrate that the NCM performs an essential role in the representation of tutor-song memory. In addition, our results show that tutor-song memory and a motor program for the bird's own song have separate neural representations in the songbird brain. Thus, in both humans and songbirds, the cognitive systems of vocal production and auditory recognition memory are subserved by distinct brain regions.  相似文献   

5.
Songbird males learn to sing their songs from an adult ‘tutor’ early in life, much like human infants learn to speak. Similar to humans, in the songbird brain there are separate neural substrates for vocal production and for auditory memory. In adult songbirds, the caudal pallium, the avian equivalent of the auditory association cortex, has been proposed to contain the neural substrate of tutor song memory, while the song system is involved in song production as well as sensorimotor learning. If this hypothesis is correct, there should be neuronal activation in the caudal pallium, and not in the song system, while the young bird is hearing the tutor song. We found increased song-induced molecular neuronal activation, measured as the expression of an immediate early gene, in the caudal pallium of juvenile zebra finch males that were in the process of learning to sing their songs. No such activation was found in the song system. Molecular neuronal activation was significantly greater in response to tutor song than to novel song or silence in the medial part of the caudomedial nidopallium (NCM). In the caudomedial mesopallium, there was significantly greater molecular neuronal activation in response to tutor song than to silence. In addition, in the NCM there was a significant positive correlation between spontaneous molecular neuronal activation and the strength of song learning during sleep. These results suggest that the caudal pallium contains the neural substrate for tutor song memory, which is activated during sleep when the young bird is in the process of learning its song. The findings provide insight into the formation of auditory memories that guide vocal production learning, a process fundamental for human speech acquisition.  相似文献   

6.
Vocal learning in songbirds and humans occurs by imitation of adult vocalizations. In both groups, vocal learning includes a perceptual phase during which juveniles birds and infants memorize adult vocalizations. Despite intensive research, the neural mechanisms supporting this auditory memory are still poorly understood. The present functional MRI study demonstrates that in adult zebra finches, the right auditory midbrain nucleus responds selectively to the copied vocalizations. The selective signal is distinct from selectivity for the bird''s own song and does not simply reflect acoustic differences between the stimuli. Furthermore, the amplitude of the selective signal is positively correlated with the strength of vocal learning, measured by the amount of song that experimental birds copied from the adult model. These results indicate that early sensory experience can generate a long-lasting memory trace in the auditory midbrain of songbirds that may support song learning.  相似文献   

7.
Male animals often change their behavior in response to the level of competition for mates. Male Lincoln''s sparrows (Melospiza lincolnii) modulate their competitive singing over the period of a week as a function of the level of challenge associated with competitors'' songs. Differences in song challenge and associated shifts in competitive state should be accompanied by neural changes, potentially in regions that regulate perception and song production. The monoamines mediate neural plasticity in response to environmental cues to achieve shifts in behavioral state. Therefore, using high pressure liquid chromatography with electrochemical detection, we compared levels of monoamines and their metabolites from male Lincoln''s sparrows exposed to songs categorized as more or less challenging. We compared levels of norepinephrine and its principal metabolite in two perceptual regions of the auditory telencephalon, the caudomedial nidopallium and the caudomedial mesopallium (CMM), because this chemical is implicated in modulating auditory sensitivity to song. We also measured the levels of dopamine and its principal metabolite in two song control nuclei, area X and the robust nucleus of the arcopallium (RA), because dopamine is implicated in regulating song output. We measured the levels of serotonin and its principal metabolite in all four brain regions because this monoamine is implicated in perception and behavioral output and is found throughout the avian forebrain. After controlling for recent singing, we found that males exposed to more challenging song had higher levels of norepinephrine metabolite in the CMM and lower levels of serotonin in the RA. Collectively, these findings are consistent with norepinephrine in perceptual brain regions and serotonin in song control regions contributing to neuroplasticity that underlies socially-induced changes in behavioral state.  相似文献   

8.
《Journal of Physiology》2013,107(3):193-202
Songbirds constitute a powerful model system for the investigation of how complex vocal communication sounds are represented and generated, offering a neural system in which the brain areas involved in auditory, motor and auditory–motor integration are well known. One brain area of considerable interest is the nucleus HVC. Neurons in the HVC respond vigorously to the presentation of the bird’s own song and display song-related motor activity. In the present paper, we present a synthesis of neurophysiological studies performed in the HVC of one songbird species, the canary (Serinus canaria). These studies, by taking advantage of the singing behavior and song characteristics of the canary, have examined the neuronal representation of the bird’s own song in the HVC. They suggest that breeding cues influence the degree of auditory selectivity of HVC neurons for the bird’s own song over its time-reversed version, without affecting the contribution of spike timing to the information carried by these two song stimuli. Also, while HVC neurons are collectively more responsive to forward playback of the bird’s own song than to its temporally or spectrally modified versions, some are more broadly tuned, with an auditory responsiveness that extends beyond the bird’s own song. Lastly, because the HVC is also involved in song production, we discuss the peripheral control of song production, and suggest that interspecific variations in song production mechanisms could be exploited to improve our understanding of the functional role of the HVC in respiratory–vocal coordination.  相似文献   

9.
Sensitive periods and circuits for learned birdsong   总被引:2,自引:0,他引:2  
Experience influences the development of certain behaviors and their associated neural circuits during a discrete period after birth. Songbirds, with their highly quantifiable vocal output and well-delineated vocal control circuitry, provide an excellent context in which to examine the neural mechanisms regulating sensitive periods for learning. Recent discoveries indicate that auditory input to the vocal control circuitry in songbirds is dynamically modulated and show that neural circuitry previously thought to be used only in plastic juvenile song may also actively maintain stable adult song. These findings provide important clues to how sensitive periods for auditory feedback and vocal plasticity are regulated during song development.  相似文献   

10.
The zebra finch acquires its song by first memorizing a model song from a tutor and then matching its own vocalizations to the memory trace of the tutor song, called a template. Neural mechanisms underlying this process require a link between the neural memory trace and the premotor song circuitry, which drives singing. We now report that a premotor song nucleus responds more to the tutor song model than to every other stimulus examined, including the bird's own song (BOS). Neural tuning to the song model occurred only during waking and peaked during the template-matching period of development, when the vocal motor output is sculpted to match the tutor song. During the same developmental phase, the BOS was the most effective excitatory stimulus during sleep. The preference for BOS compared to tutor song inverted with sleep/wake state. Thus, song preference shifts with development and state.  相似文献   

11.
The avian auditory system has become a model system to investigate how vocalizations are memorized and processed by the brain in order to mediate behavioral discrimination and recognition. Recent studies have shown that most of the avian auditory system responds preferentially and efficiently to sounds that have natural spectro-temporal statistics. In addition, neurons in secondary auditory forebrain areas have plastic response properties and are the most active when processing behaviorally relevant vocalizations. Physiological measurements show differential responses for vocalizations that were recently learned in discrimination tasks, and for the tutor song, a longer-term auditory memory that is used to guide vocal learning in male songbirds.  相似文献   

12.
Social experiences can profoundly shape social behavior and the underlying neural circuits. Across species, the formation of enduring social relationships is associated with both neural and behavioral changes. However, it remains unclear how longer‐term relationships between individuals influence brain and behavior. Here, we investigated how variation in social relationships relates to variation in female preferences for and neural responses to song in a pair‐bonding songbird. We assessed variation in the interactions between individuals in male‐female zebra finch pairs and found that female preferences for their mate's song were correlated with the degree of affiliation and amount of socially modulated singing, but not with the frequency of aggressive interactions. Moreover, variation in measures of pair quality and preference correlated with variation in the song‐induced expression of EGR1, an immediate early gene related to neural activity and plasticity, in brain regions important for auditory processing and social behavior. For example, females with weaker preferences for their mate's song had greater EGR1 expression in the nucleus Taeniae, the avian homologue of the mammalian medial amygdala, in response to playback of their mate's courtship song. Our data indicate that the quality of social interactions within pairs relates to variation in song preferences and neural responses to ethologically relevant stimuli and lend insight into neural circuits sensitive to social information. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1029–1040, 2016  相似文献   

13.
Like many other songbird species, male zebra finches learn their song from a tutor early in life. Song learning in birds has strong parallels with speech acquisition in human infants at both the behavioral and neural levels. Forebrain nuclei in the 'song system' are important for the sensorimotor acquisition and production of song, while caudomedial pallial brain regions outside the song system are thought to contain the neural substrate of tutor song memory. Here, we exposed three groups of adult zebra finch males to either tutor song, to their own song, or to novel conspecific song. Expression of the immediate early gene protein product Zenk was measured in the song system nuclei HVC, robust nucleus of the arcopallium (RA) and Area X. There were no significant differences in overall Zenk expression between the three groups. However, Zenk expression in the HVC was significantly positively correlated with the strength of song learning only in the group that was exposed to the bird's own song, not in the other two groups. These results suggest that the song system nucleus HVC may contain a neural representation of a memory of the bird's own song. Such a representation may be formed during juvenile song learning and guide the bird's vocal output.  相似文献   

14.
Among avian species that communicate using vocalization, songbirds (oscine Passeriformes), hummingbirds (Trochiliformes), and parrots (Psittaciformes) are vocal learners. Early studies showed that songbirds require auditory feedback for song development in young and maintenance in adults. To determine whether auditory feedback is also necessary for adult song maintenance in non-passerine species, we deprived adult male budgerigars (Psittaciformes) of auditory input by surgical cochlear removal. Songs of the deafened birds changed within 6 months after auditory deprivation. In postoperative songs, high narrowband syllables, which comprised frequency-modulated narrowband elements with relatively high fundamental frequencies of 2–4 kHz, decreased significantly. High harmonic broadband syllables, with fundamental frequencies ≥2 kHz, also decreased. The altered proportions of syllables were subsequently retained, and maintained 12 months after deafening. The sequence linearity score, a parameter representing the stereotypy of the syllable sequence, was higher than that before deafening. The inter-syllable silence was prolonged. Little change was observed in the songs of intact and sham-operated birds. The significant decrease in high-frequency syllables and song alteration followed by stabilization resembled the results with songbirds, although song stabilization took a long time in budgerigars. Therefore, our results suggest that psittacine budgerigars and oscine songbirds require auditory feedback similarly for adult song maintenance.  相似文献   

15.
Male songbirds learn to produce their songs, and females attend to these songs during mate choice. The evidence that female song preferences are learned early in life, however, is mixed. Here we review studies that have found effects of early song learning on adult song preferences, and those that have not. In at least some species, early experience with song can modify adult song preferences. Whether this learning needs to occur during an early sensitive phase, akin to male imitative vocal learning, or not remains an open question. Studies of the neural bases for female song preferences highlight activity (as measured by immediate-early gene induction) in regions of the auditory forebrain as often, but not always, being associated with song preferences. Immediate-early gene induction in these regions, however, is not specific to songs experienced early in life. On the whole, inherited factors, early experience, and adult experience all appear to play a role in shaping female songbirds preferences for male songs.  相似文献   

16.
In many songbirds, vocal learning depends upon appropriate auditory experience during a sensitive period that coincides with the formation and reorganization of song-related neural pathways. Because some effects of early sensory experience on neural organization and early learning have been linked to activation of N-methyl-D-aspartate (NMDA) receptors, we measured binding to this receptor within the neural system controlling song behavior in zebra finches. Quantitative autoradiography was used to measure binding of the noncompetitive antagonist [3H]MK-801 (dizocilpine) in the brains of both adult and juvenile male zebra finches, focusing on four telencephalic regions implicated in song learning and production. Overall, the pattern of MK-801 binding in zebra finches was similar to the pattern found in rats (Monaghan and Cotman, 1985, J. Neurosci. 5:2909-2919; Sakurai, Cha, Penney, and Young, 1991, Neuroscience 40:533-543). That is, binding was highest in the telencephalon, intermediate in thalamic regions, and virtually absent from the brain stem and cerebellum. The telencephalic song areas exhibited intermediate levels of binding, and binding in the juveniles was not significantly different from adult levels in most song nuclei. However, in the lateral magnocellular nucleus of the anterior neostriatum (IMAN), binding at 30 days of age was significantly higher than binding in adults. Given the established role of NMDA receptors in other developing neural systems, both their presence in song control nuclei and their developmental regulation within a region implicated in song learning suggest that NMDA receptors play a role in mediating effects of auditory experience on the development of song behavior.  相似文献   

17.

Background

Like human speech, birdsong is a learned behavior that supports species and individual recognition. Norepinephrine is a catecholamine suspected to play a role in song learning. The goal of this study was to investigate the role of norepinephrine in bird''s own song selectivity, a property thought to be important for auditory feedback processes required for song learning and maintenance.

Methodology/Principal Findings

Using functional magnetic resonance imaging, we show that injection of DSP-4, a specific noradrenergic toxin, unmasks own song selectivity in the dorsal part of NCM, a secondary auditory region.

Conclusions/Significance

The level of norepinephrine throughout the telencephalon is known to be high in alert birds and low in sleeping birds. Our results suggest that norepinephrine activity can be further decreased, giving rise to a strong own song selective signal in dorsal NCM. This latent own song selective signal, which is only revealed under conditions of very low noradrenergic activity, might play a role in the auditory feedback and/or the integration of this feedback with the motor circuitry for vocal learning and maintenance.  相似文献   

18.
Juvenile male zebra finches develop their song by imitation. Females do not sing but are attracted to males' songs. With functional magnetic resonance imaging and event‐related potentials we tested how early auditory experience shapes responses in the auditory forebrain of the adult bird. Adult male birds kept in isolation over the sensitive period for song learning showed no consistency in auditory responses to conspecific songs, calls, and syllables. Thirty seconds of song playback each day over development, which is sufficient to induce song imitation, was also sufficient to shape stimulus‐specific responses. Strikingly, adult females kept in isolation over development showed responses similar to those of males that were exposed to songs. We suggest that early auditory experience with songs may be required to tune perception toward conspecific songs in males, whereas in females song selectivity develops even without prior exposure to song. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2010  相似文献   

19.
Neurons in the song system nuclei of songbirds exhibit a strong preference for the sound of the birds own song relative to that of conspecific songs. This selectivity is observed in the high vocal center and the nucleus interface of the nidopallium, two song nuclei that receive input from the birds auditory system. To investigate the role of the auditory system in generating the selective responses observed in the song system, we recorded auditory responses in the zebra finch primary auditory forebrain, field L, and in a secondary auditory area, the caudal mesopallium. Field L and caudal mesopallium project directly or indirectly to the high vocal center and nucleus interface of the nidopallium and are presumed to provide substantial auditory input to the song system. We found that, on average, neurons in field L and caudal mesopallium did not show positive selective responses for the birds own song or tutor song relative to conspecific song. Moreover, there were no particular sub-areas in the auditory telencephalon that were relatively more selective than the average. The selectivity for the birds own song would therefore be restricted to song nuclei and would arise in one processing step, potentially found at the interface between the auditory and the song systems.Abbreviations BOS birds own song - CM caudal mesopallium (older term: caudal hyperstriatum ventrale or cHV) - Con conspecific song - HVC high vocal center - LMAN lateral magnocellular nucleus of the anterior nidopallium (older term: lateral magnocellular nucleus of the anterior neostriatum) - LPS pallial-subpallial lamina (older term: lamina medularis dorsalis or LMD) - NCM caudal medial nidopallium (older term: caudo-medial neostriatum) - NIf nucleus interface of the nidopallium (older term: nucleus interface of the neostriatum) - RA robust nucleus of arcopallium (older term: robust nucleus of the archistriatum) - Rev reverse BOS - Revorder reverse order of BOS - Uva nucleus uvaeformis of the thalamusNew avian brain terminology has been used in this paper (). Older terms are given in parentheses in the list of abbreviations  相似文献   

20.
In zebra finches early auditory experience is critical for normal song development. Young males first listen to and memorize a suitable song model and then use auditory feedback from their own vocalizations to mimic that model. During these two phases of vocal learning, song-related brain regions exhibit large, hormone-induced changes in volume and neuron number. Overlap between these neural changes and auditory-based vocal learning suggests that processing and acquiring auditory input may influence cellular processes that determine neuron number in the song system. We addressed this hypothesis by measuring neuron density, nuclear volume, and neuron number within the song system of normal male zebra finches and males deafened prior to song learning (10 days of age). Measures were obtained at 25, 50, 65, and 120 days of age, and included four song nuclei: the hyperstriatum ventralis pars caudalis or higher vocal center (HVc), Area X, the robust nucleus of the archistriatum (RA), and the lateral magnocellular nucleus of the anterior neostriatum (IMAN). In both HVc and Area X, nuclear volume and neuron number increased markedly with age in both normal and deafened birds. The volume of RA also increased with age and was not affected by early deafening. In IMAN, deafening also did not affect the overall age-related loss of neurons, although at 25 days neuron number was slightly less in deafened than in normal birds. We conclude that while the addition and loss of neurons in the developing song system may provide plasticity essential for song learning, these changes do not reflect learning.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号