首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mink lung epithelial cells were transfected with two cloned mouse mammary tumor virus (MMTV) DNAs, a 9-kilobase clone derived from an unintegrated exogenous viral genome and a 14-kilobase clone containing an integrated endogenous provirus along with cellular flanking sequences. Mink lung cells were chosen because they do not contain endogenous MMTV sequences. On the basis of our observation that simian virus 40 DNA efficiently transforms these cells, we isolated cell clones containing MMTV DNA by using transformation with simian virus 40 DNA as a selective marker in cotransfection experiments. Levels of the 9-kilobase MMTV mRNA representing the entire viral genome and of the spliced 4.4-kilobase mRNA which codes for the viral envelope proteins were glucocorticoid dependent in transformed cells. Expression of low levels of Pr77gag, the precursor of the group-specific viral core proteins, and of gPr73env, the precursor of the viral envelope proteins, was also hormone dependent. We conclude that these cloned MMTV DNAs contain all the information necessary for the synthesis of normal viral RNAs and proteins. These findings also provide further evidence that the DNA sequences involved in the hormone responsiveness of MMTV expression are contained within the viral genome.  相似文献   

2.
Structure of the adenovirus 2 early mRNAs   总被引:55,自引:0,他引:55  
A J Berk  P A Sharp 《Cell》1978,14(3):695-711
  相似文献   

3.
4.
Linear simian virus 40 (SV40) DNA molecules of genome length and DNA fragments smaller than genome length when prepared with restriction endonucleases and tested for transforming activity on primary cultures of baby rat kidney cells. The linear molecules of genome length (prepared with endonucleases R-EcoRI, R-BamHI, and R-HpaII or R-HapII), a 74% fragment (EcoRI/HpaII or HapII-A), and a 59% fragment (BamHI/HapII-A) could all transform rat kidney cells with the same efficiency as circular SV40 DNA. All transformed lines tested contained the SV40-specific T-antigen in 90 to 100% of the cells, which was taken as evidence that the transformation was SV40 specific. The DNA fragments with transforming activity contained the entire early region of SV40 DNA. Endo R-HpaI, which introduced one break in the early region, apparently inactivated the transforming capacity of SV40 DNA, since no transformation was observed with any of the three HpaI fragments tested. Attempts were made to rescue infectious virus from some of the transformed lines by fusion with permissive BSC-1 cells. Infectious virus was only recovered from the cells transformed by circular form I DNA. No infectious virus could be isolated from any of the other types of transformed cells.  相似文献   

5.
6.
7.
We have used DNA bound to cellulose to isolate and translate in vitro herpes simplex virus type 1 (HSV-1) mRNA's encoded by HindIII fragment L (mapping between 0.592 and 0.647), and 8.450-base-pair (8.45-kb) portion of the long unique region of the viral genome. Readily detectable, late mRNA's 2.7 and 1.9 kb in size encoding 69,000- and 58,000-dalton polypeptides, respectively, were isolated. A very minor late mRNA family composed of two colinear forms, one 2.6 kb and one 2.8 kb, was isolated and found to encode only an 85,000-dalton polypeptide. A major early mRNA, 1.8 kb in size encoding a 64,000-dalton polypeptide, was also isolated. High-resolution mapping of these mRNA's by using S1 nuclease and exonuclease VII digestion of hybrids between them and 5' and 3' end-labeled DNA fragments from the region indicated that the major early mRNA contained no detectable splices, and about half of its 3' end was complementary to the 3' region of the very minor 2.6- to 2.8-kb mRNA's encoded on the opposite strand. These mRNA's also contained no detectable splices. The major late 2.7-kb mRNA was found to be a family made up of members with no detectable splices and members with variable-length (100 to 300 bases) segments spliced out very near (ca. 50 to 100 bases) the 5' end.  相似文献   

8.
A recombinant library of human DNA sequences was screened with a segment of simian virus 40 (SV40) DNA that spans the viral origin of replication. One hundred and fifty phage were isolated that hybridized to this probe. Restriction enzyme and hybridization analyses indicated that these sequences were partially homologous to one another. Direct DNA sequencing of two such SV40-hybridizing segments indicated that this was not a highly conserved family of sequences, but rather a set of DNA fragments that contained repetitive regions of high guanine plus cytosine content. These sequences were not members of the previously described Alu family of repeats and hybridized to SV40 DNA more strongly than do Alu family members. Computer analyses showed that the human DNA segments contained multiple homologies with sequences throughout the SV40 origin region, although sequences on the late side of the viral origin contained the strongest cross-hybridizing sequences. Because of the number and complexity of the matches detected, we could not determine unambiguously which of the many possible heteroduplexes between these DNAs was thermodynamically most favored. No hybridization of these human DNA sequences to any other segment of the SV40 genome was detected. In contrast, the human DNA segments isolated cross-hybridized with many sequences within the human genome. We tested for the presence of several functional domains on two of these human DNA fragments. One SV40-hybridizing fragment, SVCR29, contained a sequence which enhanced the efficiency of thymidine kinase transformation in human cells by approximately 20-fold. This effect was seen in an orientation-independent manner when the sequence was present at the 3' end of the chicken thymidine kinase gene. We propose that this segment of DNA contains a sequence analogous to the 72-base-pair repeats of SV40. The existence of such an "activator" element in cellular DNA raises the possibility that families of these sequences may exist in the mammalian genome.  相似文献   

9.
10.
Serial passage of the non-defective form of a simian virus 40-like virus (DAR) isolated from human brain results in the appearance of three distinct classes of supercoiled DNAs: RI resistant, RI sensitive (one cleavage site) and RI “supersensitive” (three cleavage sites). The RI cleavage product of the “super sensitive” form is one-third the physical size of simian virus 40 DNA (10.4 S) and reassociates about three times more rapidly than “standard” viral DNA. To identify the portions of the DAR genome present in the 10.4 S segment, the plus strand of each of the 11 fragments of 32P-labeled simian virus 40 DNA, produced by cleavage with the Hemophilus influenzae restriction endonuclease, was hybridized in solution with the sheared RI cleavage product of the “supersensitive” class of viral DNA. Reaction was observed with fragments located in two distinct regions of the simian virus 40 genome: (1) Hin-A and C; (2) Hin-G, J, F and K.Further studies indicated that simian virus 40 complementary RNA transcribed in vitro with Escherichia coli RNA polymerase from one strand of simian virus 40 DNA reacts with both strands of the denatured 10.4 S cleavage product when hybridization is monitored with hydroxyapatite. Treatment of the 10.4 S DNA-simian virus 40 cRNA hybrid with the single-strand spcific nuclease, S1, converted approximately 50% of the radioactive counts to an acid-soluble product. These results indicate that the 10.4 S product contains a transposition of sequences originally present on one of the DAR DNA strands to the other strand. Examination of heteroduplexes formed between the 10.4 S segment and unique linear forms of DAR DNA produced with the R · Eco RI restriction endonuclease have confirmed these observations. Thus it appears that a molecular rearrangement(s) has resulted in the recombination and inversion of viral DNA sequences from two separate loci on the parental DAR genome. This 1.1 × 106 dalton segment is reiterated three times in a supercoiled molecule equivalent in physical size to parental DAR DNA.  相似文献   

11.
12.
13.
14.
Nick-translated simian virus 40 (SV40) [32P]DNA fragments (greater than 2 X 10(8) cpm/micrograms) were resolved into early- and late-strand nucleic acid sequences by hybridization with asymmetric SV40 complementary RNA. Both single-stranded DNA fractions contained less than 0.5% self-complementary sequences; both included [32P]-DNA sequences that derived from all regions of the SV40 genome. In contrast to asymmetric SV40 complementary RNA, both single-stranded [32P]DNAs annealed to viral [3H]DNA at a rate characteristic of SV40 DNA reassociation. Kinetics of reassociation between the single-stranded [32P]DNAs indicated that the two fractions contain greater than 90% of the total nucleotide sequences comprising the SV40 genome. These preparations were used as hybridization probes to detect small amounts of viral DNA integrated into the chromosomes of Chinese hamster cells transformed by SV40. Under the conditions used for hybridization titrations in solution (i.e., 10- to 50-fold excess of radioactive probe), as little as 1 pg of integrated SV40 DNA sequence was assayed quantitatively. Among the transformed cells analyzed, three clones contained approximately one viral genome equivalent of SV40 DNA per diploid cell DNA complement; three other clones contained between 1.2 and 1.6 viral genome equivalents of SV40 DNA; and one clone contained somewhat more than two viral genome equivalents of SV40 DNA. Preliminary restriction endonuclease maps of the integrated SV40 DNAs indicated that four clones contained viral DNA sequences located at a single, clone-specific chromosomal site. In three clones, the SV40 DNA sequences were located at two distinct chromosomal sites.  相似文献   

15.
The genomes of the two nondefective adenovirus 2/simian virus 40 (Ad2/SV 40) hybrid viruses, nondefective Ad2/SV 40 hybrid virus 1 (Ad2+ND1) and nondefective hybrid virus 3 (Ad2+ND3), WERE FORMED BY A DELETION OF ABOUT 5% OF Ad2 DNA and insertion of part of the SV40 genome. We have compared the cytoplasmic RNA synthesized during both the early and late stages of lytic infection of human cells by these hybrid viruses to that expressed in Ad2-infected and SV40-infected cells. Separated strands of the six fragments of 32P-labeled Ad2 DNA produced by cleavage with the restriction endonuclease EcoRI (isolated from Escherichia coli) and the four fragments of 32P-labeled SV40 DNA produced by cleavage with both a restriction nuclease isolated from Haemophilus parainfluenzae, Hpa1, and EcoRI were prepared by electrophoresis of denatured DNA in agarose gels. The fraction of each fragment strand expressed as cytoplasmic RNA was determined by annealing fragmented 32P-labeled strands to an excess of cellular RNA extracted from infected cells. The segment of Ad2 DNA deleted from both hybrid virus genomes is transcribed into cytoplasmic mRNA during the early phase of Ad2 infection. Hence, we suggest that Ad2 codes for at least one "early" gene product which is nonessential for virus growth in cell culture. In both early Ad2+ND1 and Ad2+ND3-infected cells, 1,000 bases of Ad2 DNA adjacent to the integrated SV40 sequences are expressed as cytoplasmic RNA but are not similarly expressed in early Ad2-infected cells. The 3' termini of this early hybrid virus RNA maps in the vicinity of 0.18 on the conventional SV40 map and probably terminates at the same position as early lytic SV40 cytoplasmic RNA. Therefore, the base sequence in this region of SV40 DNA specifies the 3' termini of early messenger RNA present in both hybrid virus and SV40-infected cells.  相似文献   

16.
Analysis of the nucleotide sequences at the 5' ends of RNA-primed nascent DNA chains (Okazaki fragments) and of their locations in replicating simian virus 40 (SV40) DNA revealed the precise nature of Okazaki fragment initiation sites in vivo. The primary initiation site for mammalian DNA primase was 3'-purine-dT-5' in the DNA template and the secondary site was 3'-purine-dC-5', with the 5' end of the RNA primer complementary to either the dT or dC. The third position of the initiation site was variable with a preference for dT or dA. About 81% of the available 3'-purine-dT-5' sites and 20% of the 3'-purine-dC-5' sites were used. Purine-rich sites, such as PuPuPu and PyPuPu , were excluded. The 5'-terminal ribonucleotide composition of Okazaki fragments corroborated these conclusions. Furthermore, the length of individual RNA primers was not unique, but varied in size from six to ten bases with some appearing as short as three bases and some as long as 12 bases, depending on the initiation site used. This result was consistent with the average size (9 to 11 bases) of RNA primers isolated from specific regions of the genome. Excision of RNA primers did not appear to stop at the RNA-DNA junction, but removed a variable number of deoxyribonucleotides from the 5' end of the nascent DNA chain. Finally, only one-fourth of the replication forks contained an Okazaki fragment, and the distribution of their initiation sites between the two arms revealed that Okazaki fragments were initiated exclusively (99%) on retrograde DNA templates. The data obtained at two genomic sites about 350 and 1780 bases from ori were essentially the same as that reported for the ori region (Hay & DePamphilis , 1982), suggesting that the mechanism used to synthesize the first DNA chain at ori is the same as that used to synthesize Okazaki fragments throughout the genome.  相似文献   

17.
We have constructed well defined oligomeric molecules of simian virus 40 (SV40) DNA as probes for investigating mechanisms by which cultured somatic cells recombine DNA. Restriction enzyme fragments from different temperature-sensitive mutants were joined in a head-to-tail orientation to create partial dimers 1.84 genome lengths in size. These molecules are too large to fit into a viral capsid. Therefore an assay that depends on production of progeny virus after infection with oligomeric DNA is a selective measure of precise conversion of oligomers to monomers. By constructing oligomers from appropriate combinations of temperature-sensitive DNAs, we have been able to study the conversion process in several defined regions of the SV40 genome. Our results indicate that conversion of oligomers to monomers occurs uniformly throughout the genome and is not dependent on normal viral DNA replication. These data indicate that conversion occurs primarily by general, homology-dependent recombination. At least one secondary mechanism that generates a low level of wild-type progeny was also detected. Studies with heteroduplex molecules indicate that repair of mismatched bases may be the secondary mechanism.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号