共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Medvedev AE Piao W Shoenfelt J Rhee SH Chen H Basu S Wahl LM Fenton MJ Vogel SN 《The Journal of biological chemistry》2007,282(22):16042-16053
In this study, we examined whether tyrosine phosphorylation of the Toll-IL-1 resistance (TIR) domain of Toll-like receptor (TLR) 4 is required for signaling and blocked in endotoxin tolerance. Introduction of the P712H mutation, responsible for lipopolysaccharide (LPS) unresponsiveness of C3H/HeJ mice, into the TIR domain of constitutively active mouse DeltaTLR4 and mutation of the homologous P714 in human CD4-TLR4 rendered them signaling-incompetent and blocked TLR4 tyrosine phosphorylation. Mutations of tyrosine residues Y674A and Y680A within the TIR domains of CD4-TLR4 impaired its ability to elicit phosphorylation of p38 and JNK mitogen-activated protein kinases, IkappaB-alpha degradation, and activation of NF-kappaB and RANTES reporters. Likewise, full-length human TLR4 expressing Y674A or Y680A mutations showed suppressed capacities to mediate LPS-inducible cell activation. Signaling deficiencies of the Y674A and Y680A TLR4s correlated with altered MyD88-TLR4 interactions, increased associations with a short IRAK-1 isoform, and decreased amounts of activated IRAK-1 in complex with TLR4. Pretreatment of human embryonic kidney (HEK) 293/TLR4/MD-2 cells with protein tyrosine kinase or Src kinase inhibitors suppressed LPS-driven TLR4 tyrosine phosphorylation, p38 and NF-kappaB activation. TLR2 and TLR4 agonists induced TLR tyrosine phosphorylation in HEK293 cells overexpressing CD14, MD-2, and TLR4 or TLR2. Induction of endotoxin tolerance in HEK293/TLR4/MD-2 transfectants and in human monocytes markedly suppressed LPS-mediated TLR4 tyrosine phosphorylation and recruitment of Lyn kinase to TLR4, but did not affect TLR4-MD-2 interactions. Thus, our data demonstrate that TLR4 tyrosine phosphorylation is important for signaling and is impaired in endotoxin-tolerant cells, and suggest involvement of Lyn kinase in these processes. 相似文献
3.
4.
A RIP tide in neuronal signal transduction 总被引:13,自引:0,他引:13
The generation of nuclear signaling proteins by regulated intramembrane proteolysis (RIP) is a new paradigm of signal transduction. Mammalian proteins that are processed by RIP include SREBP-1, Notch-1, amyloid precursor protein (APP), and ErbB-4. Intramembranous gamma-secretase cleavage of APP plays a central role in Alzheimer's disease by generating the amyloid beta protein. An intriguing possibility is that the cognate C-terminal fragment generated by gamma-secretase cleavage could also play a role through the regulation of nuclear signaling events. Thus, RIP may contribute to both brain development and degeneration and may provide unexpected diversity to the signaling repertoire of a cell. 相似文献
5.
Corbalán R Hernández-Viadel M Llansola M Montoliu C Felipo V 《Neurochemistry international》2002,41(2-3):103-108
There is substantial evidence that hyperammonemia is one of the main factors contributing to the neurological alterations found in hepatic encephalopathy. The mechanisms by which chronic moderate hyperammonemia affects brain function involves alterations in neurotransmission at different steps. This article reviews the effects of hyperammonemia on phosphorylation of key brain proteins involved in neurotransmission (the microtubule-associated protein (MAP-2), Na+/K+-ATPase and NMDA receptors). The physiological function of these proteins is modulated by phosphorylation and its altered phosphorylation in hyperammonemia may contribute to impairment of neurotransmission. The effects of chronic hyperammonemia on signal transduction pathways associated to glutamate receptors, such as the glutamate-nitric oxide (NO)-cGMP pathway, are also reviewed. The possible contribution of the impairment of this pathway in brain in vivo to the neurological alterations present in patients with hepatic encephalopathy is discussed. 相似文献
6.
7.
The involvement of calcium and protein phosphorylation in the transduction of gravity signal was studied using corn roots of a light-insensitive variety (Zea mays L., cv. Patriot). The gravitropic response was calcium-dependent. Horizontal placement of roots preloaded with 32P for three minutes resulted in changes in protein phosphorylation of polypeptides of 32 and 35 kD. Calcium depletion resulted in decreased phosphorylation of these phosphoproteins and replenishment of calcium restored the phosphorylation. 相似文献
8.
N-乙酰氨基葡萄糖化在信号转导中的作用 总被引:2,自引:0,他引:2
蛋白质磷酸化在生命活动以及信号转导过程中的重要作用已经被研究证实,但不少研究发现在大多数核,胞液蛋白质上不仅存在磷酸化动态修饰,还存在广泛的动态N-乙酰氨基葡萄糖修饰,N-乙酰氨基葡萄糖基转移酶和N-乙酰氨基葡萄糖基酶以类似于蛋白质激酶和磷酸酶的方式调节蛋白质是否发生N-乙酰氨基葡萄糖化。N-乙酰氨基葡萄糖化蛋白质主要分布在细胞核与胞液,其生理功能涉及细胞基本生命活动和调节信号传递。N-乙酰氨基葡萄糖的作用基础与阻断或影响蛋白质的磷酸化有关。 相似文献
9.
We have previously demonstrated that blue light induces the phosphorylation of a 15-kDa protein in crude membrane fractions of Neurospora crassa mycelia. Here we report the isolation and characterization of a mutant (?psp; phosphorylation of small proteins) that is completely defective for phosphorylation of that protein, as assayed in both crude membrane and soluble fractions. This mutation defines a unique locus that maps to linkage group VR between al-3 and his-6. To elucidate the photobiological significance of the phosphorylation of the protein, we analyzed known photobiological phenomena and discovered that the positioning of beaks on the perithecia, defined as perithecial polarity, was light-dependent in the wild type. In the psp mutant, beaks were phototropic as in the wild type, but their position was random. In a wc-1 mutant, however, beaks were positioned at random and were not phototropic. Thus light-induced perithecial polarity and phototropism of perithecial beaks are controlled differently. A psp; wc-1 double mutant showed the same phenotype as that of wc-1 with respect to these two photomorphogenetic characters. These results indicate that the wc-1 gene is epistatic to psp in the light-signal transduction pathway that controls both phototropism and perithecial polarity. 相似文献
10.
11.
Antigen- and ionophore-induced signal transduction in rat basophilic leukemia cells involves protein tyrosine phosphorylation 总被引:9,自引:0,他引:9
K T Yu R Lyall N Jariwala A Zilberstein J Haimovich 《The Journal of biological chemistry》1991,266(33):22564-22568
Treatment of rat basophilic leukemia cells (RBL-2H3) with antigen or ionophore leads to an increase in cellular protein tyrosine phosphorylation. Three major proteins of molecular mass of 72, 92, and 110 kDa are targeted by antigen and a 110-kDa species by ionophore, A23187. The antigen- and ionophore-induced tyrosine phosphorylation responses are dose-dependent and correlate with increases in serotonin release from activated cells. The presence of extracellular Ca2+ is required to sustain the antigen- and ionophore-stimulated tyrosine phosphorylation as well as mediator release. A protein tyrosine kinase inhibitor, RG 50864, differentially inhibits the antigen-stimulated tyrosine phosphorylation in the decreasing order of 72, 91, and 110-kDa proteins. The compound inhibition of the 72-kDa protein tyrosine phosphorylation correlates with that of serotonin release. In ionophore-stimulated cells, the inhibition of the 110-kDa protein tyrosine phosphorylation and serotonin release by RG 50864 occurs in parallel. These results suggest that the 72- and 110-kDa phosphoproteins may represent the respective regulators of serotonin release in antigen- and ionophore-activated cells. The 110-kDa tyrosine phosphorylated proteins from antigen- and ionophore-stimulated cells exhibit identical electrophoretic mobility and V8 protease-generated phosphopeptide maps, suggesting that these two proteins may be the same. These results provide new evidence that both the stimulatory actions of antigen and ionophore on mediator release are mediated through enhanced protein tyrosine phosphorylation in RBL-2H3 cells. Significantly, the present study suggests the presence of multiple tyrosine phosphorylation signaling pathways in RBL cells and that their selective utility may be determined by the nature of the stimulus. 相似文献
12.
Studies on the possible role of protein phosphorylation in the transduction of the ethylene signal 总被引:4,自引:0,他引:4
A. W. Berry D. S. C. Cowan N. V. J. Harpham R. J. Hemsley G. V. Novikova A. R. Smith M. A. Hall 《Plant Growth Regulation》1996,18(1-2):135-141
Previous work in our laboratory has demonstrated the existence of high affinity binding sites for the plant growth regulator ethylene. The ethylene binding protein (EBP), from Phaseolus cotyledons, shows many of the characteristics of a functional receptor for ethylene, has been purified on SDS-PAGE and polyclonal antibodies raised in rabbits. Current work involves the investigation of the ethylene transduction signal in a number of ethylene-responsive tissues.In peas, it has been shown that ethylene promotes the phosphorylation of specific proteins of similar molecular weight to the EBP from Phaseolus. Such ethylene-induced phosphorylation can be inhibited by the ethylene antagonist, 2,5-NBD. The antibodies raised to the EBP from Phaseolus have been shown to immunoprecipitate 32P-labelled proteins from membrane protein preparations obtained from pea tissue. Studies on ethylene binding in pea have also shown that the binding of ethylene may be regulated by phosphorylation. Thus, under conditions which promote phosphorylation, binding is inhibited, whereas the reverse is true under conditions which enhance dephosphorylation.Further work is described which examines the effect of protein kinase, protein phosphatase and calcium channel inhibitors on ethylene-induced phosphorylation in peas, together with wild-type (WT) and ethylene insensitive (eti) mutants of Arabidopsis thaliana. The effects of these treatments can be monitored in vivo using the ethylene-induced triple response as a screen. Furthermore, the protein profiles of such treated seedlings can then be compared by labelling protein extracts with 32P and subjecting the samples to SDS-PAGE followed by autoradiography. 相似文献
13.
The power and scope of chemical synthesis offer considerable opportunities to broaden the lexicon of chemical tools that can be implemented for the study of complex biological systems. To investigate individual signaling proteins and pathways, chemical tools provide a powerful complement to existing genetic, chemical genetic and immunologic methods. In particular, understanding phosphorylation-mediated signaling in real time yields important information about the regulation of cellular function and insights into the origin of disease. Recent advances in the development of photolabile caged analogs of bioactive species and fluorescence-based sensors of protein kinase activities are useful for investigating protein phosphorylation and the roles of phosphoproteins. Photolabile caged analogs allow spatial and temporal control over the release of a compound, while fluorescence-based sensors allow the real-time visualization of kinase activity. Here, we discuss recent advances that have increased the specificity and availability of these tools. 相似文献
14.
15.
Spiegel AM 《Hormone research》2000,53(Z3):17-22
G proteins couple receptors for many hormones to effectors that regulate second messenger metabolism. Several endocrine disorders have been shown to be caused by either loss- or gain-of-function mutations in G proteins or G protein-coupled receptors. In pseudohypoparathyroidism type Ia (PHP Ia), there are generalized hormone resistance (parathyroid hormone [PTH], thyroid-stimulating hormone, gonadotropins) and associated abnormal physical features, Albright hereditary osteodystrophy. Subjects with PHP Ib are normal in appearance and show renal resistance to PTH. In McCune-Albright syndrome (MAS), subjects show autonomous endocrine hyperfunction associated with fibrous dysplasia of bone and skin hyperpigmentation. Germline loss-of-function mutations have been identified in the G(s)-alpha gene in PHP Ia, and recent evidence suggests that the G(s)-alpha gene is paternally imprinted in a tissue-specific manner. Abnormal imprinting of the G(s)-alpha gene may be the cause of PHP Ib. MAS, in contrast, is caused by gain-of-function missense mutations of the G(s)-alpha gene. 相似文献
16.
The objective of this study is to investigate the signal transduction pathways that regulate heat shock protein 27 (HSP27) phosphorylation and migration of vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) induced by angiotensin II (AngII) and platelet derived growth factor-BB (PDGF-BB). The activity of HSP27 was evaluated by Western blot with specific phospho-HSP27 antibody. F-actin polymerization was detected by FITC-Phalloidine staining using confocal microscopy. Modified Boyden chamber technique was employed for VSMCs migration assessment. Within a given concentration, the phosphorylation of HSP27 induced by AngII and PDGF-BB was blocked by the specific P38MAPK inhibitor SB202190, the specific PI3K inhibitor LY294002 and the specific ERK1/2 inhibitor U0126 in a concentration-dependent manner, with a peak inhibition rate at 87.2%, 78.4% and 37.3%, respectively, induced by AngII (P < 0.01), with a peak inhibition rate at 85.0%, 55.3% and 41.0%, respectively, induced by PDGF-BB (P < 0.01).The migration of VSMCs induced by AngII and PDGF-BB was inhibited by 100 μmol/l SB202190, 30 μmol/l LY294002, and 30 μmol/l U0126, with a inhibition rate at 60.1%, 71.7% and 47.3%, respectively, provoked by AngII (P < 0.01), with a inhibition rate at 55.3%, 55.6% and 38.1%, respectively, provoked by PDGF-BB (P < 0.01). P38MAPK and PI3 K/Akt are important pathways that contribute to the phosphorylation of HSP27 and migration of VSMCs in response to AngII and PDGF-BB. ERK1/2 might be involved in HSP27 phosphorylation and migration of VSMCs provoked by AngII and PDGF-BB. 相似文献
17.
Milton H. Saier 《Journal of cellular biochemistry》1993,51(1):1-6
A single type of reversible protein-phosphorylating system, the ATP-dependent protein kinase/phosphatase system, is employed in signal transduction in eukaryotes. By contrast, recent work has revealed that three types of protein-phosphorylating systems mediate signal transduction in bacteria. These systems are (1) classical protein kinase/phosphatase systems, (2) sensor-kinase/response-regulator systems, and (3) the multifaceted phosphoenolpyruvate-dependent phosphotransferase system. Physiological, structural, and mechanistic aspects of these three evolutionarily distinct systems are discussed in the papers of this written symposium. © 1993 Wiley-Liss, Inc. 相似文献
18.
Pelech S Jelinkova L Susor A Zhang H Shi X Pavlok A Kubelka M Kovarova H 《Journal of proteome research》2008,7(7):2860-2871
Kinex antibody microarray analyses was used to investigate the regulation of 188 protein kinases, 24 protein phosphatases, and 170 other regulatory proteins during meiotic maturation of immature germinal vesicle (GV+) pig oocytes to maturing oocytes that had completed meiosis I (MI), and fully mature oocytes arrested at metaphase of meiosis II (MII). Increases in apparent protein levels of protein kinases accounted for most of the detected changes during the GV to MI transition, whereas reduced protein kinase levels and increased protein phosphorylation characterized the MI to MII transition. During the MI to MII period, many of the MI-associated increased levels of the proteins and phosphosites were completely or partially reversed. The regulation of these proteins were also examined in parallel during the meiotic maturation of bovine, frog, and sea star oocytes with the Kinex antibody microarray. Western blotting analyses confirmed altered expression levels of Bub1A, IRAK4, MST2, PP4C, and Rsk2, and the phosphorylation site changes in the kinases Erk5 (T218 + Y220), FAK (S722), GSK3-beta (Y216), MEK1 (S217 + S221) and PKR1 (T451), and nucleophosmin/B23 (S4) during pig oocyte maturation. 相似文献
19.
In the Drosophila visual cascade, the transient receptor potential (TRP) calcium channel, phospholipase Cbeta (no-receptor-potential A), and an eye-specific isoform of protein kinase C (eye-PKC) comprise a multimolecular signaling complex via their interaction with the scaffold protein INAD. Previously, we showed that the interaction between INAD and eye-PKC is a prerequisite for deactivation of a light response, suggesting eye-PKC phosphorylates proteins in the complex. To identify substrates of eye-PKC, we immunoprecipitated the complex from head lysates using anti-INAD antibodies and performed in vitro kinase assays. Wild-type immunocomplexes incubated with [(32)P]ATP revealed phosphorylation of TRP and INAD. In contrast, immunocomplexes from inaC mutants missing eye-PKC, displayed no phosphorylation of TRP or INAD. We also investigated protein phosphatases that may be involved in the dephosphorylation of proteins in the complex. Dephosphorylation of TRP and INAD was partially suppressed by the protein phosphatase inhibitors okadaic acid, microcystin, and protein phosphatase inhibitor-2. These phosphatase activities were enriched in the cytosol of wild-type heads, but drastically reduced in extracts prepared from glass mutants, which lack photoreceptors. Our findings indicate that INAD functions as RACK (receptor for activated PKC), allowing eye-PKC to phosphorylate INAD and TRP. Furthermore, dephosphorylation of INAD and TRP is catalyzed by PP1/PP2A-like enzymes preferentially expressed in photoreceptor cells. 相似文献
20.
Role of carbohydrates in glycoprotein hormone signal transduction 总被引:10,自引:0,他引:10
M R Sairam 《FASEB journal》1989,3(8):1915-1926
The structure of the polypeptide chains and oligosaccharide moieties of the alpha and beta subunits of pituitary and placental glycoprotein hormones are known. The dimeric polypeptide structure (but not the carbohydrate) is important for binding of the hormone to specific receptors. The N-linked but not O-linked carbohydrates, on the other hand, are required in some manner to activate the effector system. Hormones with depleted carbohydrate content (deglycosylated hormones) interact with receptor but are unable to activate intracellular events. Because of such discordant properties, these forms act as competitive inhibitors of hormone action. Through a combination of chemical deglycosylation procedures and site-directed mutagenesis, the first site of N-glycosylation from the NH2 terminus of the common alpha subunit has been identified to be more critical for glycoprotein hormone signal transduction. Control of glycosylation by the endocrine milieu could contribute to regulation of hormone function by secreting variable forms of agonist/antagonist. 相似文献