首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to determine the effect of gender on changes in electromyographic (EMG) signal characteristics of the quadriceps muscles with increasing force and with fatigue. A total of fourteen healthy adults (seven men, seven women) participated in the study. Subjects had to perform isometric ramp contractions in knee extension with the force gradually increasing from 0 to 100% of the maximal voluntary contraction (MVC) in a 6-s period. Subjects then performed a fatigue task, consisting of a sustained maximum isometric knee extension contraction held until force decreased below 50% of the pre-fatigue MVC. Subjects also performed a single ramp contraction immediately after the fatigue task. The Root Mean Square (RMS) amplitude, mean power frequency (MPF) and median frequency (MF) of EMG signals obtained from the vastus lateralis, vastus medialis and rectus femoris were calculated at nine different force levels from the ramp contractions (10, 20, 30, 40, 50, 60, 70, 80 and 90% MVC), as well as every 5 s during the fatigue task. The main results were a more pronounced increase in EMG RMS amplitude for the three muscles and in MPF for the VL muscle with force in men compared with women. No significant effect of gender was found with regards to fatigue. These observations most likely reflect a moderately greater type II fiber content and/or area in the VL muscle of men compared to that of women.  相似文献   

2.
The purpose of this study was to assess different measurement strategies to increase the reliability of different electromyographic (EMG) indices developed for the assessment of back muscle impairments. Forty male volunteers (20 controls and 20 chronic low back pain patients) were assessed on three sessions at least 2 days apart within 2 weeks. Surface EMG signals were recorded from four pairs (bilaterally) of back muscles (multifidus at the L5 level, iliocostalis lumborum at L3, and longissimus at L1 and T10) while the subjects performed, in a static dynamometer, two static trunk extension tasks at 75% of the maximal voluntary contraction separated by a 60 s rest period: (1) a 30 s fatigue task and (2) a 5 s recovery task. Different EMG indices (based on individual muscles or averaged across bilateral homologous muscles or across all muscles) were computed to evaluate muscular fatigue and recovery. Intra-class correlation coefficient (ICC) and standard error of measurement (SEM) in percentage of the grand mean were calculated for each EMG variable. Reliable EMG indices are achieved for both healthy and chronic low back pain subjects when (1) electrodes are positioned on medial back muscles (multifidus at the L5 level and longissimus at L1) and (2) measures are averaged across bilateral muscles and/or across two fatigue tests performed within a session. The most reliable EMG indices were the bilateral average of medial back muscles (ICC range: 0.68-0.91; SEM range: 5-35%) and the average of all back muscles (ICC range: 0.77-0.91; SEM range: 5-30%). The averaging of measures across two fatigue tests is predicted to increase the reliability by about 13%. With regards to EMG indices of fatigue, the identification of the most fatigable muscle also lead to satisfactory results (ICC range: 0.74-0.79; SEM range: 21-26%). The assessment of back muscle impairments through EMG analysis necessitates the use of multiple electrodes to achieve reliable results.  相似文献   

3.
Different behaviours of the EMG power spectrum across increasing force levels have been reported for the masseter muscle. A factor that could explain these different behaviours may be the type of contraction used, as was recently shown for certain upper limb muscles5. The purpose of this study was to compare, between two types of isometric contractions, the behaviour of EMG power spectrum statistics (median frequency (MF) and mean power frequency (MPF)) obtained across increasing force levels. Ten women exerted, while biting in the intercuspal position, three 5 s ramp contractions that increased linearly from 0 to 100% of the maximal voluntary contraction (MVC). They also completed three step contractions (constant EMG amplitude) at each of the following levels: 20, 40, 60 and 80% MVC. EMG signals from the masseter muscle were recorded with miniature surface electrodes. The RMS, as well as the MPF and MF of the power spectrum were calculated at 20, 40, 60 and 80% MVC for each type of contraction. As expected, the RMS values showed similar increases with increasing levels of effort for both types of contractions. Different behaviours for both MPF (contraction*force interaction, ANOVA, P<0.05) and MF (contraction*force interaction, ANOVA, P>0.05) across increasing levels of effort were found between the two types of contraction. The use of step contractions gave rise to a decrease of both MPF and MF with increasing force, while the use of ramp contractions gave rise to an increase in both statistics up to at least 40% MVC followed by a decrease at higher force levels. These findings suggest that the type of contraction used does influence the behaviour of the spectral statistics across increasing force levels and that this could explain the differences obtained in previous studies for the masseter muscle.  相似文献   

4.
5.
The goal of the present study was to compare electromyogram (EMG) power spectra obtained from step (constant force level) and ramp (progressive increase in the force level) isometric contractions. Data windows of different durations were also analysed for the step contractions, in order to evaluate the stability of EMG power spectrum statistics. Fourteen normal subjects performed (1) five ramp elbow extensions ranging from 0 to 100% of the maximum voluntary contraction (MVC) and (2) three stepwise elbow extensions maintained at five different levels of MVC. Spectral analysis of surface EMG signals obtained from triceps brachii and anconeus was performed. The mean power frequency (MPF) and the median frequency (MF) of each power spectrum were obtained from 256-ms windows taken at 10, 20, 40, 60 and 80% MVC for each type of contraction and in addition on 512-, 1024- and 2048-ms windows for the step contractions. No significant differences (P greater than 0.05) were found in the values of both spectral statistics between the different window lengths. Even though no significant differences (P greater than 0.05) were found between the ramp and the step contractions, significant interactions (P less than 0.05) between these two types of contraction and the force level were found for both the MPF and the MF data. These interactions point out the existence of different behaviours for both the MPF and the MF across force levels between the two types of contraction.  相似文献   

6.
The present study aimed to evaluate the effect of a resistance training program based on the electromyographic fatigue threshold (EMGFT, defined as the highest exercise intensity performed without EMG alterations), on the EMG amplitude (root mean square, RMS) and frequency (median frequency, MF) values for biceps brachii (BB), brachioradialis (BR), triceps brachii (TB) and multifidus (MT). Twenty healthy male subjects, (training group [TG], n = 10; control group [CG], n = 10), firstly performed isometric contractions, and after this, dynamic biceps curl at four different loads to determine the EMGFT. The TG training program used the BB EMGFT value (8 weeks, 2 sessions/week, 3 exhaustive bouts/session, 2 min rest between bouts). No significant differences were found for the isometric force after the training. The linear regression slopes of the RMS with time during the biceps curl presented significant decrease after training for the BB, BR and TB muscles. For the MT muscle, the slope and MF intercept values changed with training. The training program based on the EMGFT influenced EMG the amplitude more than EMG frequency, possibly related to the recruitment patterns of the muscles, although the trunk extensor muscles presented changes in the frequency parameter, showing adaptation to the training program.  相似文献   

7.
The maximal force and median frequency (MF) of the electromyogram (EMG) power density spectrum (PDS) have been compared in disused (6 weeks' immobilization) and control (contralateral) human adductor pollicis muscles during fatigue induced by voluntary or electrically-triggered (30 Hz) contractions. The results indicated that after 6 weeks' immobilization, MF was not significantly different in disused and control muscles although the force and integrated EMG were drastically reduced during a maximal voluntary contraction (MVC; by 55% and 45%, respectively, n = 8). During sustained 60 s MVC, the force decreased at the same rate in immobilized and control muscles, but the shift of MF towards lower frequency values was smaller (P less than 0.05) in disused muscle as compared to control by (14% vs 28%, respectively). In electrically-induced fatigue, the force decrease and the MF shift were larger after inactivity (41% and 43% in one subject, and 50% and 54% in the other subject, respectively) as compared to control (29% and 34% in one subject, and 37% and 38% in the other subject, respectively). These results emphasize the caution that should be exercised when EMG signals are quantified by computing the power density spectrum. The different effects of fatigue during voluntary and electrically-imposed contractions in disused and control muscles indicated that immobilization induced changes in the neural command for the contraction which compensated, at least in part, for its decreased contractile efficiency and resistance to fatigue.  相似文献   

8.
This paper focuses on methodological issues related to surface electromyographic (EMG) signal detection from the low back muscles. In particular, we analysed (1) the characteristics (in terms of propagating components) of the signals detected from these muscles; (2) the effect of electrode location on the variables extracted from surface EMG; (3) the effect of the inter-electrode distance (IED) on the same variables; (4) the possibility of assessing fatigue during high and very low force level contractions. To address these issues, we detected single differential surface EMG signals by arrays of eight electrodes from six locations on the two sides of the spine, at the levels of the first (L1), the second (L2), and the fifth (L5) lumbar vertebra. In total, 42 surface EMG channels were acquired at the same time during both high and low force, short and long duration contractions. The main results were: (1) signal quality is poor with predominance of non-travelling components; (2) as a consequence of point (1), in the majority of the cases it is not possible to reliably estimate muscle fiber conduction velocity; (3) despite the poor signal quality, it was possible to distinguish the fatigue properties of the investigated muscles and the fatigability at different contraction levels; (4) IED affects the sensitivity of surface EMG variables to electrode location and large IEDs are suggested when spectral and amplitude analysis is performed; (5) the sensitivity of surface EMG variables to changes in electrode location is on average larger than for other muscles with less complex architecture; (6) IED influences amplitude initial values and slopes, and spectral variable initial values; (7) normalized slopes for both amplitude and spectral variables are not affected by IED and, thus, are suggested for fatigue analysis at different postures or during movement, when IED may change in different conditions (in case of separated electrodes); (8) the surface EMG technique at the global level of amplitude and spectral analysis cannot be used to characterize fatigue properties of low back muscles during very low level, long duration contractions since in these cases the non-stable MU pool has a major influence on the EMG variables. These considerations clarify issues only partially investigated in past studies. The limitations indicated above are important and should be carefully discussed when presenting surface EMG results as a means for low back muscle assessment in clinical practice.  相似文献   

9.
The purpose of the present study was to evaluate which statistical model - linear, logarithmic, quadratic or exponential - best described the fatigue-related electromyographic (EMG) changes of back and hip muscles. Twenty healthy volunteers performed a modified Biering-Sorensen test. The EMG activity of the latissimus dorsi (LD), longissimus thoracis pars thoracis (LTT) and lumborum (LTL), iliocostalis lumborum pars thoracis (ILT) and lumborum (ILL), multifidus (MF), gluteus maximus (GM) and biceps femoris (BF) was measured bilaterally using surface electrodes. Higher R(2) values were found for the quadratic models (p<0.05 for all muscles), and lower R(2) values for the logarithmic models (p<0.05 for LTT, LTL, ILL, MF and GM). The exponential models generated higher R(2) values compared to the linear ones for the LTT, LTL and MF (all p<0.05). Further analyses revealed, however, that these models did not add useful additional information, and therefore would only increase the complexity. The findings of the current study validate the use of simple linear regression techniques when studying fatigue-related EMG median frequency characteristics of back and hip muscles during isometric contractions.  相似文献   

10.
The aim of the study was to investigate EMG signal features during fatigue and recovery at three locations of the vastus medialis and lateralis muscles. Surface EMG signals were detected from 10 healthy male subjects with six 8-electrode arrays located at 10%, 20%, and 30% of the distance from the medial (for vastus medialis) and lateral (vastus lateralis) border of the patella to the anterior superior spine of the pelvic. Subjects performed contractions at 40% and 80% of the maximal force (MVC) until failure to maintain the target force, followed by 20 2-s contractions at the same force levels every minute for 20 min (recovery). Average rectified value, mean power spectral frequency, and muscle fiber conduction velocity were estimated from the EMG signals in 10 epochs from the beginning of the contraction to task failure (time to task failure, mean ± SD, 70.7 ± 25.8 s for 40% MVC; 27.4 ± 16.8 s for 80% MVC) and from the 20 2 s time intervals during recovery. During the fatiguing contraction, the trend over time of EMG average rectified value depended on location for both muscles (P < 0.05). After 20-min recovery, mean frequency and conduction velocity of both muscles were larger than in the beginning of the fatigue task (P < 0.05) (supernormal values). Moreover, the trend over time of mean frequency during recovery was affected by location and conduction velocity values depended on location for both muscles (P < 0.05). The results indicate spatial dependency of EMG variables during fatigue and recovery and thus the necessity of EMG spatial sampling for global muscle assessment.  相似文献   

11.
Peripheral fatigue and muscle cooling induce similar effects on sarcolemmal propagation properties. The aim of the study was to assess the combined effects of muscle temperature (Tm) manipulation and fatigue on skeletal muscle electrical and mechanical characteristics during isometric contraction. After maximum voluntary contraction (MVC) assessment, 16 participants performed brief and sustained isometric tasks of different intensities in low (Tm(L)), high (Tm(H)) and neutral (Tm(N)) temperature conditions, before and after a fatiguing exercise (6s on/4s off at 50% MVC, to the point of fatigue). During contraction, the surface electromyogram (EMG) and force were recorded from the biceps brachii muscle. The root mean square (RMS) and conduction velocity (CV) were calculated off-line. After the fatiguing exercise: (i) MVC decreased similarly in all Tm conditions (P<0.05), while EMG RMS did not change; and (ii) CV decreased to a further extent in Tm(L) compared to Tm(N) and Tm(H) in all brief and sustained contractions (P<0.05). The larger CV drop in Tm(L) after fatigue suggests that Tm(L) and fatigue have a combined and additional effect on sarcolemmal propagation properties. Despite these changes, force generating capacity was not affected by Tm manipulation. A compensatory mechanism has been proposed to explain this phenomenon.  相似文献   

12.
The aim of the study was to quantify changes in PSDF frequency bands of the EMG signal and EMG parameters such as MF, MPF and zero crossing, with an increase in the level of muscle contractions in the range from 0.5% to 30% RMSmax and to determine the frequency bands with the lowest dependency on RMS level so that this could be used in investigating muscle fatigue.Sixteen men, aged from 23 to 33 years old (mean 26.1), who participated in the study performed two force exertion tests. Fragments of EMG which corresponded to the levels of muscle contraction of 0.5%, 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30% RMSmax registered from left and right trapezius pars descendents (TP) and left and right extensor digitorum superficialis (ED) muscles were selected for analysis. The analysis included changes in standard parameters of the EMG signal and changes in PSDF frequency bands, which occurred across muscle contraction levels. To analyze changes in PSDF across the level of muscle contraction, the spectrum was divided into six frequency bandwidths. The analysis of parameters focused on the differences in those parameters between the analyzed muscles, at different levels of muscle contraction.The study revealed that, at muscle contraction levels below 5% RMSmax, contraction level influences standard parameters of the EMG signal and that at such levels of muscle contraction every change in muscle contraction level (recruitment of additional MUs) is reflected in PSDF. The frequency band with the lowest dependency on contraction level was 76–140 Hz for which in both muscles no contraction level effect was detected for contraction levels above 5% RMSmax. The reproducibility of the results was very high, since the observations in of the left and right muscles were almost equal. The other factor, which strongly influences PSDF of the EMG signal, is probably the examined muscle structure (muscle morphology, size, function, subcutaneous layer, cross talk). It seems that low frequency bands up to 25 Hz are especially feasible for type of muscle.  相似文献   

13.
Shear wave elastography (SWE) estimates shear modulus in muscle. This is interpreted as an index of muscle stiffness, but depends on muscle characteristics. This study evaluated relationship between shear modulus and myoelectric activity of lumbar multifidus and longissimus muscles to assess its validity. Intramuscular electromyography (EMG) of multifidus (deep [DM], superficial [SM] fibres) at L4/5, longissimus [LG] at L2, were recorded in nine healthy participants. Participants performed isometric trunk extension in side-lying from 0 to 30% maximal voluntary contraction (MVC) with EMG amplitude feedback. Using SWE, two regions of interest (ROI) were investigated in each muscle. Generally, shear modulus was moderately correlated with root mean squared (RMS) EMG (r = 0.50–0.78). Univariate and multiple regression analyses showed ultrasound/SWE features of ‘B-mode quality’ (24.5%), ‘%Void pixels’ (17.9%) and ‘Connective tissue’ (16.2%) explained most variation in the shear modulus/EMG relationship. Regression prediction scores generated using imaging features were correlated with r-coefficients of shear modulus/EMG relationship. When analysis was restricted to high quality data (i.e., regression prediction score above an a priori defined threshold), the shear modulus/EMG relationship increased to r = 0.70–0.96. Although a linear relationship between shear modulus/EMG was confirmed, supporting validity of SWE measures in anatomically distinct back muscles, this depends on image quality.  相似文献   

14.
A number of studies have been published that have used variables of the electromyogram (EMG) power spectrum during dynamic exercise. Despite these studies there is a shortage of studies of the validity of surface EMG registrations during repetitive dynamic contractions with respect to fatigue. The aim of this study was to investigate if the surface EMG variables mean frequency (MNF [Hz]) and the signal amplitude (RMS [microV]) are valid indicators of muscular fatigue (defined as "any exercise-induced reduction in the capacity to generate force or power output") during maximum repeated isokinetic knee extensions (i.e. criterion validity using peak torque). Twenty-one healthy volunteers performed 100 isokinetic knee extensions at 90 degrees s(-1). EMG signals were recorded from the vastus lateralis, the rectus femoris and the vastus medialis of the right thigh by surface electrodes. MNF and RMS of the EMG together with peak torque (PT [Nm]) were determined for each contraction. MNF showed consequently higher correlation coefficients with PT than RMS did. Positive correlations generally existed between MNF and PT. The majority of the subjects had positive correlations between RMS and PT (i.e. decreases both in PT and in RMS).In conclusion, at the individual level MNF generally - in contrast to RMS - showed good criterion validity with respect to biomechanical fatigue during dynamic maximum contractions.  相似文献   

15.
The purposes of this study were 1) to evaluate gender differences in back extensor endurance capacity during isometric and isotonic muscular contractions, 2) to determine the relation between absolute load and endurance time, and 3) to compare men [n = 10, age 22.4 +/- 0.69 (SE) yr] and women (n = 10, age 21.7 +/- 1.07 yr) in terms of neuromuscular activation patterns and median frequency (MF) shifts in the electromyogram (EMG) power spectrum of the lumbar and hip extensor muscles during fatiguing submaximal isometric trunk extension exercise. Subjects performed isotonic and isometric trunk extension exercise to muscular failure at 50% of maximum voluntary contraction force. Women exhibited a longer endurance time than men during the isometric task (146.0 +/- 10.9 vs. 105.4 +/- 7.9 s), but there was no difference in endurance performance during the isotonic exercise (24.3 +/- 3.4 vs. 24.0 +/- 2.8 repetitions). Absolute load was significantly related to isometric endurance time in the pooled sample (R(2) = 0.34) but not when men and women were analyzed separately (R(2) = 0.05 and 0.04, respectively). EMG data showed no differences in neuromuscular activation patterns; however, gender differences in MF shifts were observed. Women demonstrated a similar fatigability in the biceps femoris and lumbar extensors, whereas in men, the fatigability was more pronounced in the lumbar musculature than in the biceps femoris. Additionally, the MF of the lumbar extensors demonstrated a greater association with endurance time in men than in women (R(2) = 0.45 vs. 0.19). These findings suggest that gender differences in muscle fatigue are influenced by muscle contraction type and frequency shifts in the EMG signal but not by alterations in the synergistic activation patterns.  相似文献   

16.
The aim of this study was to evaluate the EMG activity of lumbar multifidus (MU), longissimus thoracis (LT) and iliocostalis (IC) muscles during an upper limb resistance exercise (biceps curl). Ten healthy males performed maximal voluntary isometric contraction (MVC) of the trunk extensors, after this, the biceps curl exercise was executed at 25%, 30%, 35% and 40% one repetition maximum during 1 min, with 10 min rest between them. EMG root mean square (RMS) and median frequency (MFreq) were calculated for each lifting and lowering of the bar during the exercise bouts, to calculate slopes and intercepts. The results showed increases in the RMS and decreases in the MFreq slopes. RMS slopes were no different between muscles, indicating similar fatigue process along the exercise irrespective of the load level. MU and LT presented higher RMS irrespective of the load level, which can be related to the specific function during the standing position. On the other hand, IC and MU presented higher MFreq intercepts compared to LT, demonstrating possible differences in the muscle fiber conduction velocity of these muscles. These findings suggest that trunk muscles are differently activate during upper limb exercises, and the fatigue process affects the lumbar muscles similarly.  相似文献   

17.
The continuous wavelet transform (CWT), a time-frequency method, was used when calculating mean frequency of the power spectrum (MNF) and signal amplitude (RMS) of the surface EMG to investigate their relationships to force during a gradually increasing knee extension (ramp). Based upon the CWT, MNF was redefined to include time dependence on the EMG signal frequency contents, the short-time MNF (STMNF). Surface EMG was recorded from vastus lateralis, rectus femoris and vastus medialis in 21 clinically healthy subjects during a brief, gradually increasing contraction up to 100% of a maximum voluntary contraction (MVC), with a duration of approximately 10 s. The relationships between the EMG variables and force using linear regression were determined for each subject. For vastus lateralis, we also investigated if certain aspects of the muscle morphology (i.e., proportions and areas of different fibre types) influenced the EMG-force relationship.For the majority of subjects (17-18 out of 21 subjects) there were significant positive correlations between STMNF and force in the three muscles. No sex differences were found in intercepts or regression coefficients of STMNF. The muscle morphology had a significant influence on the STMNF-force intercept and the regression coefficient. Positive and highly significant linear correlations between RMS and force were found for all subjects and all three muscles.In conclusion, time frequency methods can be applied when investigating EMG during brief contractions associated with non-stationarity. In a great majority of the subjects, and in the three muscles, significant linear force dependencies were found for STMNF. Thus, when evaluating muscle fatigue, e.g., in ergonomic situations, it is important to consider the force level as one factor that can influence the results. Morphological variables (fibre proportions and fibre areas) influenced the STMNF-force relationship in vastus lateralis.  相似文献   

18.
The purpose of this study was to evaluate gender and muscle differences in electromyographic (EMG) amplitude and median frequency mean and standard deviation during maximal voluntary contractions of the quadriceps femoris. Thirty recreationally active volunteers were assessed for isometric EMG activity of the vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscles during three 5-s maximal isometric voluntary contractions (MVCs). Median frequency of the three muscles was assessed through a power spectral analysis (fast Fourier transformation, Hanning window processing, 512 points). The power spectral analysis was performed during the middle 3 s of each contraction over 11 consecutive, 512 ms epochs overlapping each other by half their length (256 ms). The median frequency (F(med)) for each of the 11 windows was determined for each muscle. The mean and standard deviation of the F(med) across the 11 overlapping windows were then calculated for each contraction and muscle. EMG amplitude was determined by calculating the root mean square (RMS-50 ms time constant) over the same contraction period for each muscle. The mean amplitude and standard deviation about the mean value were then determined. A three-factor ANOVA with repeated measures was performed on the calculated F(med) mean and standard deviation values, and RMS standard deviations, to assess any gender, muscle, or trial differences, or interactions. A two-factor (gender by muscle) ANOVA with repeated measures was performed on the RMS mean amplitude for each muscle. Intraclass correlation coefficients (ICCs-2,1), standard errors of measurement (SEMs), and associated 95% confidence intervals were then calculated for maximal quadriceps torque and F(med) for each muscle. The results from this study demonstrated that the VL muscle displayed significantly higher F(med) values than the RF and VM muscles. The RF muscle showed significantly higher F(med) values (mean of 11 overlapping windows) than the VM muscle. Intrasession reliability was found to be high for the calculated mean values (ICC=0.85-0.96), but was shown to be low for variability (ICC=0.13-0.45). The major findings of this study support the notion that the EMG signal is "quasi-random" in nature, as demonstrated by the reproducible F(med) means and unreliable variability.  相似文献   

19.
Findings from five separate studies of EMG changes and muscle fatigue during prolonged low-level static contractions are summarized, and the possible mechanisms behind the changes are briefly discussed. Sustained static contractions (10%, 7% and 5% MVC) of up to 1 h duration were performed by finger flexors, elbow flexors and extensors, and knee extensors. In one experiment, intermittent static arm pulling (triceps) (10 s contraction and 5 s rest, average work load 14% and 10% MVC) was performed for 7 h. The endurance time for the sustained contractions was around one hour for 10% MVC, and it was shown--all in all--that the concept of "indefinite" endurance times at contractions below 15-20% MVC cannot be maintained. After 5% MVC sustained contractions for one hour a 12% reduction in MVC was seen, and significant increases in EMG amplitude and decreases in the mean spectral frequency of the EMG-power spectrum were found. Marked differences were also seen in the EMG changes in the elbow flexors and extensors, and transcutaneous electrical stimulation of the knee extensors showed that low frequency fatigue was present after the contraction. With intermittent contractions similar changes in the EMG parameters were seen after 2-3 h of contractions at 14% MVC. On average, during contractions of 10% MVC no EMG changes were detected. Increased extracellular potassium concentration in the contracting muscles is suggested as a possible explanation of these findings.  相似文献   

20.
The purpose of this study was to determine the effect of eccentric exercise on the ability to exert steady submaximal forces with muscles that cross the elbow joint. Eight subjects performed two tasks requiring isometric contraction of the right elbow flexors: a maximum voluntary contraction (MVC) and a constant-force task at four submaximal target forces (5, 20, 35, 50% MVC) while electromyography (EMG) was recorded from elbow flexor and extensor muscles. These tasks were performed before, after, and 24 h after a period of eccentric (fatigue and muscle damage) or concentric exercise (fatigue only). MVC force declined after eccentric exercise (45% decline) and remained depressed 24 h later (24%), whereas the reduced force after concentric exercise (22%) fully recovered the following day. EMG amplitude during the submaximal contractions increased in all elbow flexor muscles after eccentric exercise, with the greatest change in the biceps brachii at low forces (3-4 times larger at 5 and 20% MVC) and in the brachialis muscle at moderate forces (2 times larger at 35 and 50% MVC). Eccentric exercise resulted in a twofold increase in coactivation of the triceps brachii muscle during all submaximal contractions. Force fluctuations were larger after eccentric exercise, particularly at low forces (3-4 times larger at 5% MVC, 2 times larger at 50% MVC), with a twofold increase in physiological tremor at 8-12 Hz. These data indicate that eccentric exercise results in impaired motor control and altered neural drive to elbow flexor muscles, particularly at low forces, suggesting altered motor unit activation after eccentric exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号