共查询到19条相似文献,搜索用时 0 毫秒
1.
The restrictive assumptions associated with purely genetic and purely ecological mechanisms suggest that neither of the two forces, in isolation, can offer a general explanation for the evolutionary maintenance of sex. Consequently, attention has turned to pluralistic models (i.e. models that apply both ecological and genetic mechanisms). Existing research has shown that combining mutation accumulation and parasitism allows restrictive assumptions about genetic and parasite parameter values to be relaxed while still predicting the maintenance of sex. However, several empirical studies have shown that deleterious mutations and parasitism can reduce fitness to a greater extent than would be expected if the two acted independently. We show how interactions between these genetic and ecological forces can completely reverse predictions about the evolution of reproductive modes. Moreover, we demonstrate that synergistic interactions between infection and deleterious mutations can render sex evolutionarily stable even when there is antagonistic epistasis among deleterious mutations, thereby widening the conditions for the evolutionary maintenance of sex. 相似文献
2.
Synergistic epistasis for fitness is often assumed in models of how selection acts on the frequency and distribution of deleterious mutations. Evidence for synergistic epistasis would exist if the logarithm of fitness declines more quickly with number of deleterious mutations, than predicted by a linear decline. This can be studied indirectly by quantifying the effect of different levels of inbreeding on fitness. Here, six sets (different genetic backgrounds) of three increasingly inbred Daphnia magna clones were used to assess their relative fitness according to changes in frequency in a competition experiment against a tester clone. A novelty of the mating procedure was that the inbreeding coefficients (F) of the three clones belonging to each set increased in steps of 0.25 independent of the (unknown) inbreeding coefficient of the common ancestor. The equal increase of the inbreeding coefficients is important, because deviations influence the quantification of inbreeding depression, its variance and the detection of epistasis. In a simple mathematical model we show that when working with a partially inbred population inbreeding depression is underestimated, the variance of fitness is increased, and the detection of epistasis more difficult. Further, to examine whether an interaction between inbreeding and parasitism exists, each inbred clone was tested with and without a microsporidium infection (Octosporea bayeri). We found a nonlinear decrease of the logarithm of fitness across the three levels of inbreeding, indicating synergistic epistasis. The interaction term between parasitism and inbreeding was not significant. Our results suggest that deleterious mutations may be purged effectively once the level of inbreeding is high, but that parasitism seems not to influence this effect. 相似文献
3.
4.
GUGS LUSHAI fls HUGH D. LOXDALE fls 《Biological journal of the Linnean Society. Linnean Society of London》2007,90(4):719-728
Models of population structure have emphasized the importance of sex in maintaining lineages. This is because, despite the well known ‘two‐fold cost of sex’ compared with asex, it is considered that recombination rids the genome of accumulated mutations and increases its potential for adaptive variation. However, asexual lineages of eukaryotic organisms can also rapidly gain genetic variance directly by various mutational processes, thereby proving that so‐called ‘clones’ do not have strict genetic fidelity ( Lushai & Loxdale, 2002 ; Loxdale & Lushai, 2003a ), whereas the variation so produced may well have adaptive advantage during the evolutionary process. This being so, obligated asexuals or cyclical parthenogens that occasionally indulge in sexual recombination (‘rare sex’) cannot be deemed as ‘evolutionary dead‐ends’( Lushai, Loxdale & Allen, 2003a ). In addition, the persistence of asexual lineages (i.e. lineage longevity) may also involve the integrity of the telomere region, the physical end of the chromosomes ( Loxdale & Lushai, 2003b ). In this earlier study on this topic, we argued that the persistence and ultimate senescence of eukaryotic cell lineages (based upon the frequency of ‘capped’ and ‘uncapped’ chromosomes related to telomere functionality; Blackburn, 2000 ) may directly relate to the survival and persistence of lineages of whole asexual organisms. Aphids are a good model system to test this hypothesis because they show a variety of sexual/asexual reproductive strategies, whereas their mode of asexual reproduction is of the mitotic (= apomictic) type. We also suggested that many aphid lineages require occasional or even rare sexual recombination to re‐set telomere length to allow lineages to persist. Ample empirical evidence from diverse taxa, lineages, and different developmental stages now reveals that the telomere states are indeed re‐set by recombination (homologous or meiotic), thereby rejuvenating the lineage in question. The generational clock element of telomeric functionality has also been successfully described in artificially‐induced mammalian clonal systems. It thus appears that telomere function is a central molecular mechanism instigating and promoting lineage continuity per se. By contrast, we hypothesized that other long‐lived asexuals, or the rare category of ancient asexuals such as bdelloid rotifers, have compensatory mechanisms for maintaining chromosome functional integrity, which are somewhat different from conventional telomeric repeats. In the present study, we carry the analogy between eukaryotic cell functionality and aphid lineages a stage further. Here, we hypothesize that the changing frequency of capped and uncapped telomeres, progressing to senescence in a stochastic manner, may be an underlying factor that significantly contributes to population dynamics in asexual lineage evolution. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 90 , 719–728. 相似文献
5.
Stuart C. Killick Darren J. Obbard Stuart A. West Tom J. Little 《Ecological Research》2008,23(1):235-240
The Red Queen hypothesis proposes that frequency-dependent selection by parasites may be responsible for the evolutionary
maintenance of sexual reproduction. We sought to determine whether parasites could be responsible for variation in the occurrence
of sexual reproduction in 21 populations of Daphnia pulex (Crustacea; Cladocera) that previous studies have shown to consist of either cyclical parthenogens, obligate parthenogens,
or a mixture of both. We measured parasite prevalence over a four-week period (which essentially encompasses an entire season
for the temporary snow-melt habitats we sampled) and regressed three different measures of sexuality against mean levels of
parasite prevalence. Levels of parasitism were low and we found no relationship between levels of sexuality and mean parasite
prevalence. Genetic variation with infection level was detected in 2 of the 21 populations, with several different clones
showing signs of overparasitism or underparasitism. Overall, however, our results suggest that parasites are not a major source
of selection in these populations and it thus seems unlikely they are responsible for maintaining breeding system variation
across the study region. 相似文献
6.
Christopher G. Wilson Paul W. Sherman 《Proceedings. Biological sciences / The Royal Society》2013,280(1765)
Sexual reproduction is costly, but it is nearly ubiquitous among plants and animals, whereas obligately asexual taxa are rare and almost always short-lived. The Red Queen hypothesis proposes that sex overcomes its costs by enabling organisms to keep pace with coevolving parasites and pathogens. If so, the few cases of stable long-term asexuality ought to be found in groups whose coevolutionary interactions with parasites are unusually weak. In theory, antagonistic coevolution will be attenuated if hosts disperse among patches within a metapopulation separately from parasites and more rapidly. We examined whether these conditions are met in natural communities of bdelloid rotifers, one of the longest-lived asexual lineages. At any life stage, these microscopic invertebrates can tolerate the complete desiccation of their ephemeral freshwater habitats, surviving as dormant propagules that are readily carried by the wind. In our field experiments, desiccation and wind transport enabled bdelloids to disperse independently of multiple fungal parasites, in both time and space. Surveys of bdelloid communities in unmanipulated moss patches confirmed that fungal parasitism was negatively correlated with extended drought and increasing height (exposure to wind). Bdelloid ecology therefore matches a key condition of models in which asexuals persist through spatio-temporal decoupling from coevolving enemies. 相似文献
7.
Individuals naturally vary in the severity of infectious disease when exposed to a parasite. Dissecting this variation into genetic and environmental components can reveal whether or not this variation depends on the host genotype, parasite genotype or a range of environmental conditions. Complicating this task, however, is that the symptoms of disease result from the combined effect of a series of events, from the initial encounter between a host and parasite, through to the activation of the host immune system and the exploitation of host resources. Here, we use the crustacean Daphnia magna and its parasite Pasteuria ramosa to show how disentangling genetic and environmental factors at different stages of infection improves our understanding of the processes shaping infectious disease. Using compatible host-parasite combinations, we experimentally exclude variation in the ability of a parasite to penetrate the host, from measures of parasite clearance, the reduction in host fecundity and the proliferation of the parasite. We show how parasite resistance consists of two components that vary in environmental sensitivity, how the maternal environment influences all measured aspects of the within-host infection process and how host-parasite interactions following the penetration of the parasite into the host have a distinct temporal component. 相似文献
8.
In A. vulgare sex is usually determined either by a cytoplasmic feminizing factor (F symbiotic bacteria) or by another feminizing factor (f) which behaves like a mobile element of DNA and which seems to correspond to a fragment of bacterial DNA. By inhibiting the expression of male genes carried by the Z heterochromosome, these feminizing factors induce differentiation of neo-females [ZZ(+F) or ZZ(+f)]. Such a mechanism leads to the production of progenies whose sex ratio is highly female biased. In some populations in which F and/or f factors are present, genetic females (WZ) have disappeared and all individuals (males and females) are genetic males. However in other populations, cohabitation of ZZ(+f) neo-females and females in all points similar to genetic females is observed. Such a situation may be unstable and is not likely to be explainable only by migrations of individuals from distinct populations. Owing to certain types of crosses, in particular those which involve an artificial neo-male ( = female reversed into a functional male by an implant of androgenic gland) we show here that the f factor can be transmitted as a Mendelian gene. In these progenies ZfZ females may appear: like WZ females, they breed broods whose sex ratio is unbiased. The hypothesis that the “F bacteria—A. vulgare” symbiosis may have led, after a complex co-evolutive process (F bacteria → f mobile element → insertion of f on Z heterochromosome), to the creation (from a male genotype) of a female genotype, is put forward. The consequences of such a phenomenon on the composition and the evolution of A. vulgare populations are examined. 相似文献
9.
Asexual reproduction could offer up to a two‐fold fitness advantage over sexual reproduction, yet higher organisms usually reproduce sexually. Even in facultatively parthenogenetic species, where both sexual and asexual reproduction is sometimes possible, asexual reproduction is rare. Thus, the debate over the evolution of sex has focused on ecological and mutation‐elimination advantages of sex. An alternative explanation for the predominance of sex is that it is difficult for an organism to accomplish asexual reproduction once sexual reproduction has evolved. Difficulty in returning to asexuality could reflect developmental or genetic constraints. Here, we investigate the role of genetic factors in limiting asexual reproduction in Nauphoeta cinerea, an African cockroach with facultative parthenogenesis that nearly always reproduces sexually. We show that when N. cinerea females do reproduce asexually, offspring are genetically identical to their mothers. However, asexual reproduction is limited to a nonrandom subset of the genotypes in the population. Only females that have a high level of heterozygosity are capable of parthenogenetic reproduction and there is a strong familial influence on the ability to reproduce parthenogenetically. Although the mechanism by which genetic variation facilitates asexual reproduction is unknown, we suggest that heterosis may facilitate the switch from producing haploid meiotic eggs to diploid, essentially mitotic, eggs. 相似文献
10.
The evolution of sex is a classic problem in evolutionary biology. While this topic has been the focus of much theoretical work, there is a serious dearth of empirical data. A simple yet fundamental question is how sex affects the mean and variance in fitness. Despite its importance to the theory, this type of data is available for only a handful of taxa. Here, we report two experiments in which we measure the effect of sex on the mean and variance in fitness in the monogonont rotifer, Brachionus calyciflorus. Compared to asexually derived offspring, we find that sexual offspring have lower mean fitness and less genetic variance in fitness. These results indicate that, at least in the laboratory, there are both short- and long-term disadvantages associated with sexual reproduction. We briefly review the other available data and highlight the need for future work. 相似文献
11.
12.
Drosophila kikkawai is known to be polymorphic for a single autosomal locus controlling abdomen pigmentation in females. Two
strains homozygous at this locus (Abdomen pigmentation, Abp) were established from a polymorphic Indian population: one was
homozygous (DD) for the dark allele, the other (LL) for the light allele. A Mendelian analysis of crosses at 25°C confirmed
the occurrence of a major locus, with dominance of the D allele. Phenotypic variation of pigmentation according to growth
temperature was then analyzed in DD and LL male and female flies, and in reciprocal F1. A slight difference was found between
reciprocal F1 females from a dark mother were darker but not at all temperatures. In females, the D allele exhibited an antero‐posterior
gradient of increasing expression from segment 27, with dominance over L and an increased expression at low temperatures.
In males, abdomen pigmentation was uniformly light in segments 25, the D allele being repressed by the sex genotype. In segment
6, the D allele was expressed but only at low temperatures, and was either recessive to L or codominant. Phenotypic plasticity
that is, amount of change induced by different growth temperatures, was variable according to genotype and segment. It always
corresponded to a darkening of the fly at lower temperatures, but was generally much less than in D. melanogaster. In D. kikkawai,
climatic adaptation might occur more by changing the frequency of the D allele than by phenotypic plasticity.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
13.
Pairs of females of the parasitoid waspNasonia vitripennis were videotaped with one or two hosts. The presence of an additional host decreased the number of interactions between females but had no measured effect on the nature of the interactions, i.e., on whether the interaction involved physical contact or occurred while one of the females was parasitizing a host. The number of hosts did not itself affect offspring sex ratios but did influence which other factors were correlated with sex ratio. When there was one host, the proportion of sons was more positively correlated with utilization of previously drilled holes than with female-female interactions, whereas when there were two hosts, the reverse was true. Parasitizing an already parasitized host appeared to affect a female's sex ratio beyond any effects of the physical presence of another female: When two hosts were present, the proportion of sons was greater from hosts parasitized by both females than from hosts parasitized by only one female. The observation that parasitizations in previously drilled holes and female-female interactions are correlated with sex ratios is consistent with previous studies; however, that these relationships are host density dependent is a new result and remains unexplained. 相似文献
14.
A variety of field studies suggest that sex change in animalsmay be more complicated than originally depicted by the size-advantagehypothesis. A modification of the size-advantage hypothesis,the expected reproductive success threshold model, proposesthat sperm competition and size-fecundity skew can stronglyaffect reproductive pay-offs. Size-fecundity skew occurs ifa large female's fecundity is markedly higher than the aggregateof the other members of her social group and, together withpaternity dilution from sperm competition, can produce situationsin which large females benefit by deferring sex change to smallerfemales. Deferral by large females can create sex-size distributionscharacterized by the presence of large females and small sex-changedmales, and it is precisely these distributions that the traditionalsize-advantage model cannot explain. We tested the predictionsof the new model with the bucktooth parrotfish, Sparisoma radians,on coral reefs in St. Croix, U.S. Virgin Islands. Collectionsand spawning observations determined that the local environmentalregime of S. radians is characterized by pervasive sperm competition(accompanying 30% of spawns) and factors that can produce substantialsize-fecundity skew in social groups. Dominant male removalexperiments demonstrate that the largest females in social groupsoften do not change sex when provided an opportunity. Instead,smaller, lower-ranking females change sex when a harem vacancyarises. This pattern of sex change is in contrast to virtuallyall previous studies of social control of sex change in fishes,but provides strong support for the general predictions of theexpected reproductive success threshold model. 相似文献
15.
Janeczko Anna Filek Władysław Biesaga-Kościelniak Jolanta Marcińska Izabela Janeczko Zbigniew 《Plant Cell, Tissue and Organ Culture》2003,72(2):147-151
The influence of selected steroids on the in vitro generative development of Arabidopsis thalianawas investigated. The activity of the animal steroids androsterone, androstenedione, progesterone, estrone, estriol, and 17-estradiol was compared to 24-epibrassinolide, a member of the regulatory family of brassinosteroids. A. thaliana plants were cultured in vitro in media containing these steroids. The stimulatory effect of the tested substances was evaluated by measurement of the percentage of generative plants versus vegetative plants in the experimental group. It was established that androstenedione, the main testosterone precursor, and androsterone, a typical male hormone, were more effective in stimulating flowering in A. thaliana than the female hormones, estrogens and progesterone. Androsterone at a concentration of 0.1 M increased the percentage of generative plants up to 96% (control 41%). Estrogens at the same concentration decreased the number of generative plants and 24-epibrassinolide did not stimulate A. thalianagenerative development. 相似文献
16.
Hiroyuki Takahashi 《Primates; journal of primatology》2001,42(3):183-191
Taking advantage of a marked yearly fluctuation in the number of estrous females, I studied the differences in mating success
between troop males and non-troop males in an unprovisioned group of Japanese macaques. Fluctuation in the defendability of
estrous females by troop males, as predicted by the operational sex ratio (the number of estrous females per troop male),
strongly affected the mating with ejaculation (successful mating) per observation day of both troop and non-troop males. When
operational sex ratio was low, troop males monopolized successful mating inside the troop. No successful mating of non-troop
males was observed inside the troop. In contrast, both troop and non-troop males were able to mate often inside the troop
when operational sex ratio was high. These findings suggest that troop males obtained the benefit of secured successful mating
in the troop because troop males could mate successfully even in mating seasons with a low operational sex ratio, and the
chance of successful mating for non-troop males will increase as the ability of troop males to monopolize estrous females
decreases. 相似文献
17.
Many social behaviors are conditional, but behavioral comparisonsbetween populations do not normally distinguish genetic andenvironmental causation. As a result, the opportunity to testpredictions about the evolution of strategic conditionality(genotype x environment interaction) is lost. We apply theseconcepts in an examination of how interpopulation differencesin mean and variance of sex ratio have led to genetic differencesin the allocation of male effort to mate guarding versus nonguardingbetween genetically isolated populations of the soapberry bugin Oklahoma and Florida. We observed the mating behavior ofmales from the two populations at a series of experimental sexratios, and modeled their mating decisions as first-order Markovchains of independent mating states. Likelihood ratio testsof these behavioral sequences showed that the populations differedsignificantly in their response to sex ratio, and that onlymales from the variable environment (Oklahoma) altered theirbehavior in response to differences in female availability amongthe treatments. The flexible strategy of this population maybe adaptive and probably has evolved in response to sex ratiovariability. 相似文献
18.
The three disulfide bonds of the gene-3-protein of the phage fd are essential for the conformational stability of this protein, and it unfolds when they are removed by reduction or mutation. Previously, we used an iterative in vitro selection strategy to generate a stable and functional form of the gene-3-protein without these disulfides. It yielded optimal replacements for the disulfide bonds as well as several stabilizing second-site mutations. The best selected variant showed a higher thermal stability compared with the disulfide-bonded wild-type protein. Here, we investigated the molecular basis of this strong stabilization by solving the crystal structure of this variant and by analyzing the contributions to the conformational stability of the selected mutations individually. They could mostly be explained by improved side-chain packing. The R29W substitution alone increased the midpoint of the thermal unfolding transition by 14 deg and the conformational stability by about 25 kJ mol− 1. This key mutation (i) removed a charged side chain that forms a buried salt bridge in the disulfide-containing wild-type protein, (ii) optimized the local packing with the residues that replace the C46-C53 disulfide and (iii) improved the domain interactions. Apparently, certain residues in proteins indeed play key roles for stability. 相似文献
19.
Luis E. Castañeda Christian C. Figueroa Hermann M. Niemeyer 《Journal of insect physiology》2010,56(9):1058-1064
‘Superclones’ are predominant and time-persistent genotypes, exhibiting constant fitness across different environments. However, causes of this ecological success are still unknown. Therefore, we studied the physiological mechanisms that could explain this success, evaluating the effects of wheat chemical defences on detoxification enzymes [cytochrome P450 monooxygenases (P450), glutathione S-transferases (GST), esterases (EST)], standard metabolic rate (SMR), and fitness-related traits [adult body mass and intrinsic rate of increase (rm)] of two ‘superclones’ (Sa1 and Sa2) of the grain aphid, Sitobion avenae. Additionally, we compared ‘superclones’ with a less-frequent genotype (Sa46). Genotypes were reared on three wheat cultivars with different levels of hydroxamic acids (Hx; wheat chemical defences). Detoxification enzymes and SMR did not differ between wheat hosts. However, GST and EST were different between ‘superclones’ and Sa46, while Sa1 showed a higher SMR than Sa2 or Sa46 (p = 0.03). Differences between genotypes were found for rm, which was higher for Sa1 than for Sa2 or Sa46. For all cases, genotype-host interactions were non-significant, except for aphid body mass. In conclusion, ‘superclones’ exhibit a broad host range, flat energetic costs for non-induced detoxification enzymes, and low variation in their reproductive performance on different defended hosts. However, physiological specialization of ‘superclones’ that could explain their ecological success was not evident in this study. 相似文献