首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymerase chain reaction (PCR) was compared with xenodiagnosis performed 20 years after trypanocidal chemotherapy to investigate parasite clearance. Eighty-five seropositive individuals for Chagas disease presenting a positive xenodiagnosis were treated with specific drugs; 37 in the acute phase and 48 in the chronic phase. Fifteen chronic asymptomatic patients received a placebo. Treatment in the acute phase led to PCR negative results in 73% of the cases, while xenodiagnosis was negative in 86%. In the chronic phase, PCR was negative in 65% of the patients and 83% led to xenodiagnosis negative results. Regarding the untreated group (placebo), 73% gave negative results by xenodiagnosis, of which 36% were positive by PCR. Individuals that were considered seronegative (n=10), presented unequivocally negative results in the PCR demonstrating the elimination of parasite DNA. Seventeen individuals had their antibodies titers decreased to such a level that the final results were considered as doubtful and 16 of them presented negative PCR. The molecular method represents a clear advantage over conventional techniques to demonstrate persistent infections in Chagas disease patients that underwent chemotherapy.  相似文献   

2.
Fifty nine chronic chagasic patients were simultaneously submitted to xenodiagnosis and hemoculture for Trypanosoma cruzi samples isolations. The xenodiagnosis was done with 40 Panstrongylus megistus, Triatoma infestans and Dipetalogaster maximus nymphs, performing 120 triatomines. Groups of 10 insects per specie were dissecated and the intestinal content pooled and examined, after previous trituration and homogenization. The microscopically negative material was seed into LIT medium and examined after 20 days. Twenty nine patients were parasitologically proved, being 15 only by xenodiagnosis, 4 only by hemoculture and 10 by both methods. It was discussed the parasitological comprovation difficulties in chronic chagasic patients, the value of the simultaneous utilization of different triatomine species in xenodiagnosis and the hemoculture, in a favorable positive association to the sensitivity increase in the diagnosis' disease. The 49.2% of positivity obtained in this group, visualize approaches like clinic-therapeutic assay and or epidemiological (case-control) with the purpose to investigate a possible association with T. cruzi samples and different clinic forms in Chagas' disease.  相似文献   

3.
BackgroundDogs are the primary reservoir for human visceral leishmaniasis due to Leishmania infantum. Phlebotomine sand flies maintain zoonotic transmission of parasites between dogs and humans. A subset of dogs is infected transplacentally during gestation, but at what stage of the clinical spectrum vertically infected dogs contribute to the infected sand fly pool is unknown.Methodology/Principal findingsWe examined infectiousness of dogs vertically infected with L. infantum from multiple clinical states to the vector Lutzomyia longipalpis using xenodiagnosis and found that vertically infected dogs were infectious to sand flies at differing rates. Dogs with mild to moderate disease showed significantly higher transmission to the vector than dogs with subclinical or severe disease. We documented a substantial parasite burden in the skin of vertically infected dogs by RT-qPCR, despite these dogs not having received intradermal parasites via sand flies. There was a highly significant correlation between skin parasite burden at the feeding site and sand fly parasite uptake. This suggests dogs with high skin parasite burden contribute the most to the infected sand fly pool. Although skin parasite load and parasitemia correlated with one another, the average parasite number detected in skin was significantly higher compared to blood in matched subjects. Thus, dermal resident parasites were infectious to sand flies from dogs without detectable parasitemia.Conclusions/SignificanceTogether, our data implicate skin parasite burden and earlier clinical status as stronger indicators of outward transmission potential than blood parasite burden. Our studies of a population of dogs without vector transmission highlights the need to consider canine vertical transmission in surveillance and prevention strategies.  相似文献   

4.
In order to investigate the value of the rabbit as an experimental model for Chagas' disease, 72 animals have been inoculated by intraperitoneal and conjunctival route with bloodstream forms, vector-derived metacyclic trypomastigotes and tissue culture trypomastigotes of Trypanosoma cruzi strains Y, CL and Ernane. In 95.6% of the animals trypomastigotes had been detected at the early stages of infection by fresh blood examination. The course of parasitemia at the acute phase was strongly influenced by the parasite strain and route of inoculation. At the chronic phase parasites had been recovered by xenodiagnosis and/or hemoculture in 40% of the examined animals. The xenodiagnosis studies have shown selective interactions between the T. cruzi strains and the four species of vectors used, inducing significant variability in the results. The data herein present are consistent with the parasitological requirements established for a suitable model for chronic Chagas' disease.  相似文献   

5.
In Human African Trypanosomosis (HAT) endemic areas, there are a number of subjects that are positive to serological tests but in whom trypanosomes are difficult to detect with the available parasitological tests. In most cases and particularly in West Africa, these subjects remain untreated, thus posing a fundamental problem both at the individual level (because of a possible lethal evolution of the disease) and at the epidemiological level (since they are potential reservoirs of trypanosomes). Xenodiagnosis may constitute an alternative for this type of cases. The objective of this study was to update the use of xenodiagnosis to detect trypanosomes in infected host characterized by low parasitaemia levels. This was carried out experimentally by infecting cattle and pigs with Trypanosoma congolense and T. brucei gambiense respectively, and by feeding tsetse flies (Glossina morsitans submorsitans and G. palpalis gambiensis, from the CIRDES colonies) on these animals at a time when the observed blood parasitaemia were low or undetectable by the classical microscopic parasitological tests used for the monitoring of infected animals. Our results showed that: i) the G. p. gambiensis colony at CIRDES could not be infected with the T. b. gambiense stocks used; ii) midgut infections of G. m. submorsitans were observed with both T. congolense and T. b. gambiense; iii) xenodiagnosis remains positive even at very low blood parasitaemia for both T. congolense and T. b. gambiense; and iv) to implement T. b. gambiense xenodiagnosis, batches of 20 G. m. submorsitans should be dissected two days after the infective meal. These results constitute a first step toward a possible implementation of xenodiagnosis to better characterize the parasitological status of seropositive individuals and the modalities of parasite transmission in HAT foci.  相似文献   

6.
Phytoplankton infections by fungal parasites in the upper, mixed layer of a mesotrophic northern temperate lake were analysed according to the following parameters: host and parasite species, host population density and prevalence of infection, resting spore formation by the parasite, and the lowest host density at which parasites appeared. The phytoplankton taxa recorded included the Cyanobacteria, Dinomastigota, Chrysophyceae, Bacillariophyceae, Chlorophyceae, Cryptophyceae and Haptophyceae, but infection was never found in the last two classes. The parasites belonged almost exclusively to the monocentric Chytridiomycetes. Fungal epidemics occurred at all times of the year. Parasites appeared at population densities as low as about 1 cell ml−1 in some host species, with infection prevalence sometimes exceeding 80%. The proportion of the total phytoplankton biovolume infected by fungi was usually much <1%, but occasionally reached 10%. Parasitism proved to be highly species-specific, with one parasite species usually infecting only one host species. In the case of Zygorhizidium planktonicum , which infected both Asterionella formosa and Synedra acus , there is evidence that two species-specific formae speciales , each infecting only one of these two host species, are present in the lake.  相似文献   

7.
The frequent co-occurrence of two or more genotypes of the same parasite species in the same individual hosts has often been predicted to select for higher levels of virulence. Thus, if parasites can adjust their level of host exploitation in response to competition for resources, mixed-clone infections should have more profound impacts on the host. Trematode parasites are known to induce a wide range of modifications in the morphology (size, shell shape or ornamentation) of their snail intermediate host. Still, whether mixed-clone trematode infections have additive effects on the phenotypic alterations of the host remains to be tested. Here, we used the snail Potamopyrgus antipodarum-infected by the trematode Coitocaecum parvum to test for both the general effect of the parasite on host phenotype and possible increased host exploitation in multi-clone infections. Significant differences in size, shell shape and spinosity were found between infected and uninfected snails, and we determined that one quarter of naturally infected snails supported mixed-clone infections of C. parvum. From the parasite perspective, this meant that almost half of the clones identified in this study shared their snail host with at least one other clone. Intra-host competition may be intense, with each clone in a mixed-clone infection experiencing major reductions in volume and number of sporocysts (and consequently multiplication rate and cercarial production) compared with single-clone infections. However, there was no significant difference in the intensity of host phenotype modifications between single and multiple-clone infections. These results demonstrate that competition between parasite genotypes may be strong, and suggest that the frequency of mixed-clone infections in this system may have selected for an increased level of host exploitation in the parasite population, such that a single-clone is associated with a high degree of host phenotypic alteration.  相似文献   

8.
Per Arneberg 《Ecography》2002,25(1):88-94
Epidemiological theory predicts positive correlations between host population density or body mass and species richness among parasite communities. Here I test these predictions by a comparative study of communities of directly transmitted mammalian parasites, gastrointestinal strongylid nematodes. I use data from 45 species of mammals, representing examination of 17 200 individual hosts. The variable studied was the average number of gastrointestinal strongylid nematode species per host population, and three different methods were used to obtain estimates of parasite species richness that are unbiased by number of host individuals examined. Analyses were done using the phylogenetically independent contrast method. Host population density and parasite species richness were strongly positively correlated when the effects of host body weight had been controlled for. Controlling for other variables did not change this, and the relationship was found regardless of method used to correct for uneven sampling effort among host species. A positive relationship between parasite species richness and host body weight was also found, but the effect of host densities had to be controlled for to see this. These relationships between host traits and species richness of directly transmitted parasites are stronger than patterns found using data on indirectly transmitted mammalian parasites, and suggests that links between host traits and parasite species richness are stronger than previously suggested. The results are consistent with parasite species richness being positively linked to pathogen transmission rates and reductions in transmission rates possibly increasing extinction probabilities in parasite populations. The results also suggest that parasites may exert a cost of increases in rate of population energy usage, and thus show that pathogens may be important in generating independence between body mass and rate of population energy usage among host species.  相似文献   

9.
To evaluate the results of xenodiagnosis in chronic Chagas patients infected for ten years or over in an area where transmission has been stemmed as well as the performance of these tests applied one or more times to determine the presence of the parasite in serum-positive patients for Trypanosoma cruzi infection, 570 xenodiagnosis were performed in 246 patients by exposing each patient to 40 Triatoma infestans nymphs of 3rd/4th stage once, twice or three times, at 30 days intervals. The 570 xenodiagnosis showed overall positive results in 50.7% with a peak 78% in patients under 20 years of age, and 60.5% in those over 60. Of the 158 patients who underwent three xenodiagnosis, 51 (32.3%) had three positive tests, 48 (30.3%) had all negative results, and the remainder had alternating positive and negative findings. There was no difference in number of positive results between the 1st, 2nd and 3rd tests; however, the 1st and 2nd trials added up to 53.2% and the sum total of all three trials was 57.7%.  相似文献   

10.
Coevolution with parasites has been implicated as an important factor driving the evolution of host diversity. Studies to date have focussed on gross effects of parasites: how host diversity differs in the presence vs. absence of parasites. But parasite-imposed selection is likely to show rapid variation through time. It is unclear whether short-term fluctuations in the strength of parasite-imposed selection tend to affect host diversity, because increases in host diversity are likely to be constrained by both the supply of genetic variation and ecological processes. We followed replicate populations of coevolving, initially isogenic, bacteria and phages through time, measuring host diversity (with respect to bacterial colony morphologies), host density and rates of parasite evolution. Both host density and time-lagged rates of parasite evolution were good independent predictors of the magnitude of bacterial within- and between-population diversities. Rapid parasite evolution and low host density decreased host within-population diversity, but increased between-population diversity. This study demonstrates that short-term changes in the rate of parasite evolution can predictably drive patterns of host diversity.  相似文献   

11.
The physiopathology of Chagas' disease has been largely defined in murine infections with virulent strains which partially represent parasite diversity. This report reviews our studies with Sylvio X10/4 parasites, a Trypanosoma cruzi clone that induces no acute phase but in C3H/He mice leads to chronic myocarditis resembling the human disease.  相似文献   

12.

Background

Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally.

Methodology/Principal Findings

Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling.

Conclusions/Significance

These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density.  相似文献   

13.
Clément Lagrue  Robert Poulin 《Oikos》2015,124(12):1639-1647
Theory predicts the bottom–up coupling of resource and consumer densities, and epidemiological models make the same prediction for host–parasite interactions. Empirical evidence that spatial variation in local host density drives parasite population density remains scarce, however. We test the coupling of consumer (parasite) and resource (host) populations using data from 310 populations of metazoan parasites infecting invertebrates and fish in New Zealand lakes, spanning a range of transmission modes. Both parasite density (no. parasites per m2) and intensity of infection (no. parasites per infected hosts) were quantified for each parasite population, and related to host density, spatial variability in host density and transmission mode (egg ingestion, contact transmission or trophic transmission). The results show that dense and temporally stable host populations are exploited by denser and more stable parasite populations. For parasites with multi‐host cycles, density of the ‘source’ host did not matter: only density of the current host affected parasite density at a given life stage. For contact‐transmitted parasites, intensity of infection decreased with increasing host density. Our results support the strong bottom–up coupling of consumer and resource densities, but also suggest that intraspecific competition among parasites may be weaker when hosts are abundant: high host density promotes greater parasite population density, but also reduces the number of conspecific parasites per individual host.  相似文献   

14.
The population biology of parasite-induced changes in host behavior   总被引:5,自引:0,他引:5  
The ability of parasites to change the behavior of infected hosts has been documented and reviewed by a number of different authors (Holmes and Bethel, 1972; Moore, 1984a). This review attempts to quantify the population dynamic consequences of this behavior by developing simple mathematical models for the most frequently recorded of such parasite life cycles. Although changes in the behavior of infected hosts do occur for pathogens with direct life cycles, they are most commonly recorded in the intermediate hosts of parasites with complex life cycles. All the changes in host behavior serve to increase rates of transmission of the parasites between hosts. In the simplest case the changes in behavior increase rates of contact between infected and susceptible conspecific hosts, whereas in the more complex cases fairly sophisticated manipulations of the host's behavioral repertory are achieved. Three topics are dealt with in some detail: (1) the behavior of the insect vectors of such diseases as malaria and trypanosomiasis; (2) the intermediate hosts of helminths whose behavior is affected in such a way as to make them more susceptible to predation by the definitive host in the life cycle; and (3) the behavior and fecundity of molluscs infected with asexually reproducing parasitic flatworms. In each case an expression is derived for R0, the basic reproductive rate of the parasite when first introduced into the population. This is used to determine the threshold numbers of definitive and intermediate hosts needed to maintain a population of the pathogen. In all cases, parasite-induced changes in host behavior tend to increase R0 and reduce the threshold number of hosts required to sustain the infection. The population dynamics of the interaction between parasites and their hosts are then explored using phase plane analyses. This suggests that both the parasite and intermediate host populations may show oscillatory patterns of abundance. When the density of the latter is low, parasite-induced changes in host behavior increase this tendency to oscillate. When intermediate host population densities are high, parasite population density is determined principally by interactions between the parasites and their definitive hosts, and changes in the behavior of intermediate hosts are less important in determining parasite density. Analysis of these models also suggests that both asexual reproduction of the parasite within a host and parasite-induced reduction in host fecundity may be stabilizing mechanisms when they occur in the intermediate hosts of parasite species with indirect life cycles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Blood samples from 159 birds of the New-world family Tyrannidae (the flycatchers) from the eastern plains of Colombia, were examined for haematozoa parasites, in 1999-2000. Haematozoa were detected in six of 20 species. The overall prevalence was 10.1%. The most common parasites detected were microfilariae, followed by Trypanosoma and Plasmodium. The highest prevalence (9.6%) was found in the Ochre-bellied Flycatcher (Mionectes oleaginea). Mixed infections with more than one genus of blood parasite were rare and most infections encountered were of low intensity. The results of this study suggest an important role of ecologically diverse conditions determining composition, transmission, and prevalence of a blood parasite fauna, presumably through host interaction population density. Some new host parasite relationship records are presented.  相似文献   

16.
The intensity of parasite infections often increases during the reproductive season of the host as a result of parasite reproduction, increased parasite transmission and increased host susceptibility. We report within‐individual variation in immune parameters, hematocrit and body mass in adult house martins Delichon urbica rearing nestlings in nests experimentally infested with house martin bugs Oeciacus hirundinis and birds rearing nestlings in initially parasite‐free nests. From first to second broods body mass and hematocrit of breeding adult house martins decreased. In contrast leucocytes and immunoglobulins became more abundant. When their nests were infested with ectoparasites adults lost more weight compared with birds raising nestlings in nests treated with pyrethrin, whereas the decrease in hematocrit was more pronounced during infection with blood parasites. Neither experimental infestation with house martin bugs nor blood parasites had a significant effect on the amount of immune defences.  相似文献   

17.
Host–parasite coevolution has been studied extensively in the context of the evolution of sex. Although hosts typically coevolve with several parasites, most studies considered one‐host/one‐parasite interactions. Here, we study population‐genetic models in which hosts interact with two parasites. We find that host/multiple‐parasite models differ nontrivially from host/single‐parasite models. Selection for sex resulting from interactions with a single parasite is often outweighed by detrimental effects due to the interaction between parasites if coinfection affects the host more severely than expected based on single infections, and/or if double infections are more common than expected based on single infections. The resulting selection against sex is caused by strong linkage‐disequilibria of constant sign that arise between host loci interacting with different parasites. In contrast, if coinfection affects hosts less severely than expected and double infections are less common than expected, selection for sex due to interactions with individual parasites can now be reinforced by additional rapid linkage‐disequilibrium oscillations with changing sign. Thus, our findings indicate that the presence of an additional parasite can strongly affect the evolution of sex in ways that cannot be predicted from single‐parasite models, and that thus host/multiparasite models are an important extension of the Red Queen Hypothesis.  相似文献   

18.
The kinetic and isotypic pattern of hypergammaglobulinemia has been investigated in C3H/HeJ infected with Trypanosoma cruzi. Hypergammaglobulinemia appeared 14 days postinfection, increased until Day 28 postinfection, and persisted throughout the chronic phase (greater than 60 days of infection). The main isotype secreted was IgG2a, reaching 10-fold the control level. High titers of autoantibodies were found of IgM and IgG subclasses. Isotypic characterization of antibodies against myosin, myelin, and keratin, was performed and determined to be IgG2a subclass in the chronic stage of infection. Specific responses against T. cruzi took place 2 weeks postinfection when the parasitemia was high. Interestingly, parasite-specific response was maximal after 4 weeks of infection and plateaued during the chronic phase when parasites were rare. In contrast to the humoral polyclonal response in the chronic stage, showing a preferential IgG2a pattern, the anti-T. cruzi response consisted of all the different isotypes: IgM, IgG1, IgG3, IgG2a, and IgG2b, throughout the infection. Identical patterns of parasite antigens were recognized by IgG2a and IgG2b antibodies. Few different antigens were identified by the IgG3. Some antigens were recognized by several isotypes, others by only one isotype. With regard to the existence of antigenic cross-reactivities between host and parasite, we designed absorption experiments on parasite-specific immunoadsorbent showing that specific antibodies eluted from the column failed to recognize the natural antigens. These studies suggest that nonspecific and antiparasite-specific responses may be maintained by different regulatory pathways.  相似文献   

19.
The feeding frequency of blood-feeding invertebrates in the wild is largely unknown but is an important predictor for the potential of disease transmission and for estimating the effects blood feeding may have on the host population. We present a method to estimate the mean feeding frequency per individual parasite from the frequency distribution of fed and unfed individuals in the wild. We used three populations of the cimicid species, Afrocimex constrictus, that parasitises the fruit bat Rousettus aegyptiacus. We found that the area occupied by a bug refugium was a good predictor of the number of bugs in that refugia. The estimated parasite population sizes ranged from ca. 25,000 to 3 million bugs. Their mean abundance was 1-15 bugs per host individual. Preventing feeding by bugs in their natural habitat showed that bugs took approximately 20 days to return to an unfed stage. A formula is presented by which the distribution of digestion stages in the samples was used to calculate that A. constrictus feeds approximately every 7-10 days. The dry weight of a full blood meal was approximated as 13.3 mg. Therefore A. constrictus is estimated to draw an average of 1-28 microL blood per host per day. We suggest that any of our methods can be adjusted to be used in other haematophagous insects to estimate host and parasite population size, mean parasite abundance and blood meal size as well as mean feeding frequency in the wild, including the bed bug species that parasitise humans.  相似文献   

20.
Host–parasite evolutionary interactions are typically considered in a pairwise species framework. However, natural infections frequently involve multiple parasites. Altering parasite diversity alters ecological and evolutionary dynamics as parasites compete and hosts resist multiple infection. We investigated the effects of parasite diversity on host–parasite population dynamics and evolution using the pathogen Pseudomonas aeruginosa and five lytic bacteriophage parasites. To manipulate parasite diversity, bacterial populations were exposed for 24 hours to either phage monocultures or diverse communities containing up to five phages. Phage communities suppressed host populations more rapidly but also showed reduced phage density, likely due to interphage competition. The evolution of resistance allowed rapid bacterial recovery that was greater in magnitude with increases in phage diversity. We observed no difference in the extent of resistance with increased parasite diversity, but there was a profound impact on the specificity of resistance; specialized resistance evolved to monocultures through mutations in a diverse set of genes. In summary, we demonstrate that parasite diversity has rapid effects on host–parasite population dynamics and evolution by selecting for different resistance mutations and affecting the magnitude of bacterial suppression and recovery. Finally, we discuss the implications of phage diversity for their use as biological control agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号