首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The autoinhibition/activation of the PMCA (plasma membrane Ca2+-ATPase) involves conformational changes in the membrane region of the protein that affect the amount of lipids directly associated with the transmembrane domain. The lipid-protein-dependence of PMCA isoforms 2 and 4 expressed and obtained in purified form from Saccharomyces cerevisiae was investigated using the phosphatidylcholine analogue [125I]TID-PC/16 {l-O-hexadecanoyl-2-O-[9-[[[2-[125I]iodo-4-(trifluoromemyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine}, which was incorporated into mixtures of dimyristoylphosphatidylcholine and the non-ionic detergent C12E10 [deca(ethylene glycol) dodecyl ether]. We found no differences between the recombinant PMCA4 and PMCA purified from erythrocytes (ePMCA). However, titration of the half-maximal activation by Ca2+/calmodulin of PMCA2 showed 30-fold higher affinity than PMCA4. PMCA2 exhibited a lower level of labelling in the autoinhibited conformation relative to PMCA4, indicating that the lower autoinhibition was correlated with a lower exposure to lipids in the autoinhibited state. Analysis of the lipid-protein stoichiometry showed that the lipid annulus of PMCA varies: (i) in accordance to the conformational state of the enzyme; and (ii) depending on the different isoforms of PMCA. PMCA2 during Ca2+ transport changes its conformation to a lesser extent than PMCA4, an isoform more sensitive to modulation by calmodulin and acidic phospholipids. This is the first demonstration of a dynamic behaviour of annular lipids and PMCA.  相似文献   

2.
Here we undertook a comparative study of the composition of the lipid annulus of three ATPases pertaining to the P-type family: plasma membrane calcium pump (PMCA), sarcoplasmic reticulum calcium pump (SERCA) and Na,K-ATPase. The photoactivatable phosphatidylcholine analogue [(125)I]TID-PC/16 was incorporated into mixtures of dimyristoyl phosphatidylcholine (DMPC) and each enzyme with the aid of the nonionic detergent C(12)E(10). After photolysis, the extent of the labeling reaction was assessed to determine the lipid:protein stoichiometry: 17 for PMCA, 18 for SERCA, 24 for the Na,K-ATPase (alpha-subunit) and 5.6 mol PC/mol protein for the Na,K-ATPase (beta-subunit).  相似文献   

3.
The asexual development of the human malaria parasite Plasmodium falciparum is largely intraerythrocytic. When 1-palmitoyl-2-[6-[(7-nitro-2-1,3-benzoxadiazole-4-yl)amino]caproyl] phosphatidylcholine (NBD-PC) was incorporated into infected and uninfected erythrocyte membranes at 0 degrees C, it remained at the cell surface. At 10 degrees C, the lipid was rapidly internalized in infected erythrocytes at all stages of parasite growth. Our results indicate that the internalization of NDB-PC was not because of endocytosis but rapid transbilayer lipid flip-flop at the infected erythrocyte membrane, followed by monomer diffusion to the parasite. Internalization of the lipid was inhibited by (a) depleting cellular ATP levels; (b) pretreating the cells with N-ethyl maleimide or diethylpyrocarbonate; and (c) 10 mM L-alpha-glycerophosphorylcholine. The evidence suggests protein-mediated and energy dependent transmembrane movement of the PC analogue. The conditions for the internalization of another phospholipid analogue N-4-nitrobenzo-2-oxa-1,3-diazoledipalmitoyl phosphatidylethanolamine (N-NBD-PE) were distinct from that of NBD-PC and suggest the presence of additional mechanism(s) of parasite-mediated lipid transport in the infected host membrane. In spite of the lack of bulk, constitutive endocytosis at the red cell membrane, the uptake of Lucifer yellow by mature infected cells suggests that microdomains of pinocytotic activity are induced by the intracellular parasite. The results indicate the presence of parasite-induced mechanisms of lipid transport in infected erythrocyte membranes that modify host membrane properties and may have important implications on phospholipid asymmetry in these membranes.  相似文献   

4.
Synapsin I, a major neuron-specific phosphoprotein, is localized on the cytoplasmic surface of small synaptic vesicles to which it binds with high affinity. It contains a collagenase-resistant head domain and a collagenase-sensitive elongated tail domain. In the present study, the interaction between synapsin I and phospholipid vesicles has been characterized, and the protein domains involved in these interactions have been identified. When lipid vesicles were prepared from cholesterol and phospholipids using a lipid composition similar to that found in native synaptic vesicle membranes (40% phosphatidylcholine, 32% phosphatidylethanolamine, 12% phosphatidylserine, 5% phosphatidylinositol, 10% cholesterol, wt/wt), synapsin I bound with a dissociation constant of 14 nM and a maximal binding capacity of about 160 fmol of synapsin I/microgram of phospholipid. Increasing the ionic strength decreased the affinity without greatly affecting the maximal amount of synapsin I bound. When vesicles containing cholesterol and either phosphatidylcholine or phosphatidylcholine/phosphatidylethanolamine were tested, no significant binding was detected under any conditions examined. On the other hand, phosphatidylcholine vesicles containing either phosphatidylserine or phosphatidylinositol strongly interacted with synapsin I. The amount of synapsin I maximally bound was directly proportional to the percentage of acidic phospholipids present in the lipid bilayer, whereas the Kd value was not affected by varying the phospholipid composition. A study of synapsin I fragments obtained by cysteine-specific cleavage showed that the collagenase-resistant head domain actively bound to phospholipid vesicles; in contrast, the collagenase-sensitive tail domain, though strongly basic, did not significantly interact. Photolabeling of synapsin I was performed with the phosphatidylcholine analogue 1-palmitoyl-2-[11-[4-[3-(trifluoromethyl)diazirinyl]phenyl] [2-3H]undecanoyl]-sn-glycero-3-phosphocholine; this compound generates a highly reactive carbene that selectively interacts with membrane-embedded domains of membrane proteins. Synapsin I was significantly labeled upon photolysis when incubated with lipid vesicles containing acidic phospholipids and trace amounts of the photoactivatable phospholipid. Proteolytic cleavage of photolabeled synapsin I localized the label to the head domain of the molecule.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Fusion of phosphatidylcholine (PC) vesicles and of PC-phosphatidylserine (PS) vesicles has been studied using spin-labeled PC and PS. Analysis of ESR spectra indicated transfer of phospholipid molecules between phospholipid vesicles at the instant of membrane contact by vesicular collision. The transfer rate of PC was not greatly affected by the presence of the anionic lipid in the membranes. The rate of PC transfer between PS-PC vesicles was nearly the same as that of PS transfer. Calcium ion greatly enhanced the transfer of phospholipid molecules between PS-PC vesicles. The enhancement of PS transfer occurred instantaneously. The phospholipid transfer is related to the fusion of vesicles.  相似文献   

6.
The exposure of the plasma membrane calcium pump (PMCA) to the surrounding phospholipids was assessed by measuring the incorporation of the photoactivatable phosphatidylcholine analog [(125)I]TID-PC/16 to the protein. In the presence of Ca(2+) both calmodulin (CaM) and phosphatidic acid (PA) greatly decreased the incorporation of [(125)I]TID-PC/16 to PMCA. Proteolysis of PMCA with V8 protease results in three main fragments: N, which includes transmembrane segments M1 and M2; M, which includes M3 and M4; and C, which includes M5 to M10. CaM decreased the level of incorporation of [(125)I]TID-PC/16 to fragments M and C, whereas phosphatidic acid decreased the incorporation of [(125)I]TID-PC/16 to fragments N and M. This suggests that the conformational changes induced by binding of CaM or PA extend to the adjacent transmembrane domains. Interestingly, this result also denotes differences between the active conformations produced by CaM and PA. To verify this point, we measured resonance energy transfer between PMCA labeled with eosin isothiocyanate at the ATP-binding site and the phospholipid RhoPE included in PMCA micelles. CaM decreased the efficiency of the energy transfer between these two probes, whereas PA did not. This result indicates that activation by CaM increases the distance between the ATP-binding site and the membrane, but PA does not affect this distance. Our results disclose main differences between PMCA conformations induced by CaM or PA and show that those differences involve transmembrane regions.  相似文献   

7.
Lipid composition and Ca(2+)-ATPase activity both change with age and disease in many tissues. We explored relationships between lipid composition/structure and plasma membrane Ca(2+)-ATPase (PMCA) activity. PMCA was purified from human erythrocytes and was reconstituted into liposomes prepared from human ocular lens membrane lipids and synthetic lipids. Lens lipids were used in this study as a model for naturally ordered lipids, but the influence of lens lipids on PMCA function is especially relevant to the lens since calcium homeostasis is vital to lens clarity. Compared to fiber cell lipids, epithelial lipids exhibited an ordered to disordered phase transition temperature that was 12 degrees C lower. Reconstitution of PMCA into lipids was essential for maximal activity. PMCA activity was two to three times higher when the surrounding phosphatidylcholine molecules contained acyl chains that were ordered (stiff) compared to disordered (fluid) acyl chains. In a completely ordered lipid hydrocarbon chain environment, PMCA associates more strongly with the acidic lipid phosphatidylserine in comparison to phosphatidylcholine. PMCA associates much more strongly with phosphatidylcholine containing disordered hydrocarbon chains than ordered hydrocarbon chains. PMCA activity is influenced by membrane lipid composition and structure. The naturally high degree of lipid order in plasma membranes such as those found in the human lens may serve to support PMCA activity. The absence of PMCA activity in the cortical region of human lenses is apparently not due to a different lipid environment. Changes in lipid composition such as those observed with age or disease could potentially influence PMCA function.  相似文献   

8.
Using dialkylphospholipid (diphytanyl phosphatidylcholine) instead of the conventional diacylphospholipid (diphytanoyl phosphatidylcholine) in planar lipid bilayer membranes (BLM) led to an increase in the diffusion potential of the penetrating cation plastoquinonyl-decyl-triphenylphosphonium (SkQ1), making it close to the Nernst value, and accelerated translocation of SkQ1 across the BLM as monitored by the kinetics of a decrease in the transmembrane electric current after applying a voltage (current relaxation). The consequences of changing from an ester to an ether linkage between the head groups and the hydrocarbon chains are associated with a substantial reduction in the membrane dipole potential known to originate from dipoles of tightly bound water molecules and carbonyl groups in ester bonds. The difference in the dipole potential between BLM formed of the ester phospholipid and that of the ether phospholipid was estimated to be 100 mV. In the latter case, suppression of SkQ1-mediated proton conductivity of the BLM was also observed.  相似文献   

9.
The physical properties of lipid bilayers with a similar composition to the outer and inner leaflets of the human erythrocyte membrane have been examined in protein-free model systems. The outer leaflet (OL) was represented by a phospholipid mixture containing phosphatidylcholine and sphingomyelin extracted from human erythrocytes, while a mixture of phosphatidylcholine, phosphatidylserine and phosphatidylethanolamine represented the inner leaflet (IL). The ratio of cholesterol to phospholipid was varied in both mixtures. The lateral diffusion coefficient of fluorescent phospholipids diluted in such lipid mixtures was determined by the modulated fringe pattern photobleaching technique. Contrast curves with a single exponential decay, indicative of homogeneous samples, were obtained only for temperatures above 15 °C and for a cholesterol to phospholipid molar ratio below 0.8. The rate of lateral diffusion was approximately five times faster in IL than in OL multilayers, in agreement with former results obtained in human erythrocytes (Morrot et al. 1986). Varying the cholesterol to phospholipid ratio from 0 to 0.8 (mol/mol) enabled us to decrease the diffusion constant by only a factor of approximately 2 for both IL and OL mixtures. The order parameter of a spin-labeled phospholipid was determined in the different systems and found to be systematically smaller in IL mixtures than in OL mixtures. The present study indicates that the difference in lipid diffusivity of the two erythrocyte leaflets may be accounted for solely by a difference in phospholipid composition, and may be independent of cholesterol and protein asymmetry.Abbreviations OL outer leaflet - IL inner leaflet - RBC red blood cell - NBD-PC 1-acyl-2-[12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino] dodecanoyl phosphatidylcholine - NBD-PE 1-acyl-2-[12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino] dodecanoyl phosphatidylethanolamine - NBD-PS 1-acyl-2-[12-(7-nitrobenz-2-oxy-1,3-diazol-4-yl)amino] dodecanoyl phosphatidylserine - DMPC 1,2 dimyristoyl-sn-glycero-3-phosphocholine - DMPS 1,2 dimyristoyl-snglycero-3-phosphoserine - PC phosphatidyleholine - C/P cholesterol over phospholipid molar ratio - D lateral diffusion coefficient - S order parameter - ESR electron spin resonance - NMR nuclear magnetic resonance - EDTA ethylene diamine tetraacetic acid - TRIS tris-(hydroxymethyl)amino ethane Offprint requests to: P. F Devaux  相似文献   

10.
Molecular dynamics (MD) computer simulations of five different hydrated unsaturated phosphatidylcholine lipid bilayers built up by 18:0/18:1(n-9)cis PC, 18:0/18:2(n-6)cis PC, 18:0/18:3(n-3)cis PC, 18:0/20:4(n-6)cis PC, and 18:0/22:6(n-3)cis PC molecules with 40 mol% cholesterol, and the same five pure phosphatidylcholine bilayers have been performed at 303 K. The simulation box of a lipid bilayer contained 96 phosphatidylcholines, 64 cholesterols, and 3840 water molecules (48 phosphatidylcholine molecules and 32 cholesterols per layer and 24 water molecules per phospholipid or cholesterol in each case). The lateral self-diffusion coefficients of the lipids in these systems and mass density profiles with respect to the bilayer normal have been analyzed. It has been found that the lateral diffusion coefficients of phosphatidylcholine molecules increase with increasing number of double bonds in one of the lipid chains, both in pure bilayers and in bilayers with cholesterol. It has been found as well that the lateral diffusion coefficient of phosphatidylcholine molecules of a lipid bilayer with 40 mol% cholesterol is smaller than that for the corresponding pure phosphatidylcholine bilayer.  相似文献   

11.
We have recorded (13)C nuclear magnetic resonance (NMR) spectra of [3-(13)C]Ala, [1-(13)C]Val-labeled pharaonis phoborhodopsin (ppR or sensory rhodopsin II) incorporated into egg PC (phosphatidylcholine) bilayer, by means of site-directed high-resolution solid-state NMR techniques. Seven (13)C NMR signals from transmembrane alpha-helices were resolved for [3-(13)C]Ala-ppR at almost the same positions as those of bacteriorhodopsin (bR), except for the suppressed peaks in the loop regions in spite of the presence of at least three Ala residues. In contrast, (13)C NMR signals from the loops were visible from [1-(13)C]Val-ppR but their peak positions of the transmembrane alpha-helices are not always the same between ppR and bR. The motional frequency of the loop regions in ppR was estimated as 10(5) Hz in view of the suppressed peaks from [3-(13)C]Ala-ppR due to interference with proton decoupling frequency. We found that conformation and dynamics of ppR were appreciably altered by complex formation with a cognate truncated transducer pHtr II (1-159). In particular, the C-terminal alpha-helix protruding from the membrane surface is involved in the complex formation and subsequent fluctuation frequency is reduced by one order of magnitude.  相似文献   

12.
D-beta-Hydroxybutyrate dehydrogenase is a lipid-requiring enzyme with absolute specificity for phosphatidylcholine (PC). The enzyme devoid of lipid, the apodehydrogenase, inserts spontaneously into phospholipid vesicles where it exists as a tetramer. We now find the lipid activation to be limited by the mole fraction of PC in the total phospholipid. These studies suggest that the concentration of the enzyme-PC complex, which is essential for enzymic activity, becomes diffusion limited at lower PC concentration. The lipid activation and the tryptophan fluorescence of purified D-beta-hydroxybutyrate dehydrogenase were studied in the presence of a constant "bilayer background" of approximately 100 nonactivating phospholipid molecules/enzyme monomer. Activation by PC was half-maximal at 20 PC molecules/enzyme monomer. This value was doubled when the amount of "background" phospholipid was doubled. Activation proceeded with positive cooperativity having a Hill coefficient of approximately 2.4. These data indicate interactions between at least three PC-binding sites. The quenching of tryptophan fluorescence by the phospholipid activator, 1-palmitoyl-2-(1-pyrenyl)-decanoyl-PC (2-pyrenyl-PC), gives a saturation curve with half-maximal quenching of 6 quencher molecules/enzyme monomer. This value is equivalent to an apparent phospholipid-protein dissociation constant in the two-dimensional membrane and corresponds to approximately 6 mol % of total phospholipid. In distinct contrast to the phospholipid activation curve, the fluorescence quenching saturation curve was hyperbolic and there was no specificity for PC. The fluorescence quenching by 2-pyrenyl-PC could be diminished by using a several-fold excess of PC or other phospholipids so as to reduce the mole fraction of quencher in the bilayer. It would appear that formation of enzyme-PC complex is a dynamic process consisting of at least two discernible steps: 1) a primary interaction, as measured by tryptophan quenching, which is hyperbolic and not specific for lecithin. This interaction is independent from and precedes 2) phospholipid activation of D-beta-hydroxybutyrate dehydrogenase, which is cooperative in nature and specific for lecithin.  相似文献   

13.
Because the ability of cells to replace oxidized fatty acids in membrane phospholipids via deacylation and reacylation in situ may be an important determinant of the ability of cells to tolerate oxidative stress, incorporation of exogenous fatty acid into phospholipid by human erythrocytes has been examined following exposure of the cells to t-butyl hydroperoxide. Exposure of human erythrocytes to t-butyl hydroperoxide (0.5-1.0 mM) results in oxidation of glutathione, formation of malonyldialdehyde, and oxidation of hemoglobin to methemoglobin. Under these conditions, incorporation of exogenous [9,10-3H]oleic acid into phosphatidylethanolamine is enhanced while incorporation of [9,10-3H]oleic acid into phosphatidylcholine is decreased. These effects of t-butyl hydroperoxide on [9,10-3H]oleic acid incorporation are not affected by dissipating transmembrane gradients for calcium and potassium. When malonyldialdehyde production is inhibited by addition of ascorbic acid, t-butyl hydroperoxide still decreases [9,10-3H]oleic acid incorporation into phosphatidylcholine but no stimulation of [9,10-3H]oleic acid incorporation into phosphatidylethanolamine occurs. In cells pre-treated with NaNO2 to convert hemoglobin to methemoglobin, t-butyl hydroperoxide reduces [9,10-3H]oleic acid incorporation into phosphatidylcholine by erythrocytes but does not stimulate [9,10-3H]oleic acid incorporation into phosphatidylethanolamine. Under these conditions oxidation of erythrocyte glutathione and formation of malonyldialdehyde still occur. These results indicate that membrane phospholipid fatty acid turnover is altered under conditions where peroxidation of membrane phospholipid fatty acids occurs and suggest that the oxidation state of hemoglobin influences this response.  相似文献   

14.
Arora A  Williamson IM  Lee AG  Marsh D 《Biochemistry》2003,42(17):5151-5158
Phospholamban is a cardiac regulatory protein that, in its monomeric form, inhibits the Ca(2+)-ATPase. Lipid-protein interactions with a synthetic variant of phospholamban, in which all cysteine residues are replaced with alanine, have been studied by spin-label electron spin resonance (ESR) in different lipid host membranes. Both the stoichiometry and selectivity of lipid interactions were determined from the two-component ESR spectra of phospholipid species spin-labeled on the 14 C atom of the sn-2 chain. The lipid stoichiometry is determined by the oligomeric state of the protein and the selectivity by the membrane disposition of the positively charged residues in the N-terminal section of the protein. In dimyristoylphosphatidylcholine (DMPC) membranes, the stoichiometry (N(b)) is 7 lipids/monomer for the full-length protein and 4 for the transmembrane section (residues 26-52). These stoichiometries correspond to the dimeric and pentameric forms, respectively. In palmitoyloleoylphosphatidylcholine, N(b) = 4 for both the whole protein and the transmembrane peptide. In negatively charged membranes of dimyristoylphosphatidylglycerol (DMPG), the lipid stoichiometry is N(b) = 10-11 per monomer for both the full-length protein and the transmembrane peptide. This stoichiometry corresponds to monomeric dispersion of the protein in the negatively charged lipid. The sequence of lipid selectivity is as follows: stearic acid > phosphatidic acid > phosphatidylserine = phosphatidylglycerol = phosphatidylcholine > phosphatidylethanolamine for both the full-length protein and the transmembrane peptide in DMPC. Absolute selectivities are, however, lower for the transmembrane peptide. A similar pattern of lipid selectivity is obtained in DMPG, but the absolute selectivities are reduced considerably. The results are discussed in terms of the integration of the regulatory species in the lipid membrane.  相似文献   

15.
Immunofluorescence and electron microscopical studies on the intracellular distribution of intermediate filaments (IFs) have demonstrated a close proximity of these cytoskeletal structures to cellular membranes. Moreover, nonepithelial IF (protein)s have been shown to exhibit high affinities for lipids, especially for negatively charged and nonpolar lipids. Here, using hydrophobic labeling with the photoactivatable phosphatidylcholine analogue [3H]1-palmitoyl-2-[11-[4-(trifluoromethyldiazirinyl]undecanoyl+ ++]-sn- glycero-3-phosphorylcholine or with 1-azidopyrene at low and physiological ionic strength, it is demonstrated that the IF subunit protein vimentin can interact with the hydrophobic core of lipid bilayers, in addition to strong ionic relationships between both reactants. Whereas the presence of acidic phospholipids in the lipid vesicles was absolutely essential for efficient vimentin labeling, cholesterol played a synergistic role in this reaction. Proteolytic degradation of photolabeled vimentin localized the derivatization exclusively to the non-alpha-helical, highly positively charged N-terminal domain of the filament protein. Furthermore, circular dichroism studies performed on the isolated N terminus of vimentin revealed a significant increase in the alpha-helical content of the polypeptide upon its interaction with vesicles containing negatively charged phospholipids. These results indicate an amphiphilic character of the N terminus and suggest that the cationic arginine residues of the N-terminal domain react with the negatively charged head groups of acidic phospholipids prior or parallel to interaction of the polypeptide with hydrophobic regions of the lipid bilayer.  相似文献   

16.
Glycosylation of glycoproteins, proteoglycans, and glycolipids occurring in the Golgi apparatus requires the translocation of nucleotide sugars from the cytosol into the lumen of the Golgi. Translocation is mediated by specific nucleotide sugar transporters, integral Golgi membrane proteins that regulate the above glycosylation reactions. A defect in GDP-fucose transport into the lumen of the Golgi apparatus has been recently identified in a patient affected by leukocyte adhesion deficiency type II syndrome (Lubke, T., Marquardt, T., von Figura, K., and Korner, C. (1999) J. Biol. Chem. 274, 25986-25989). We have now identified and purified the rat liver Golgi membrane GDP-fucose transporter, a protein with an apparent molecular mass of 39 kDa, by a combination of column chromatography, native functional size determination on a glycerol gradient, and photoaffinity labeling with 8-azidoguanosine-5'-[alpha-(32)P] triphosphate, an analog of GDP-fucose. The purified transporter appears to exist as a homodimer within the Golgi membrane. When reconstituted into phosphatidylcholine liposomes, it was active in GDP-fucose transport and was specifically photolabeled with 8-azidoguanosine-5'-[alpha-(32)P]triphosphate. Transport was also stimulated 2-3-fold after preloading proteoliposomes with GMP, the putative antiporter.  相似文献   

17.
We have examined the internalization and degradation of a fluorescent analog of phosphatidylcholine after its insertion into the plasma membrane of cultured Chinese hamster fibroblasts. 1-acyl-2-(N-4- nitrobenzo-2-oxa-1,3-diazole)-aminocaproyl phosphatidylcholine (C6-NBD- PC) was incorporated into the cell surface by liposome-cell lipid transfer at 2 degrees C. The fluorescent lipid remained localized at the plasma membrane as long as the cells were kept at 2 degrees C; however, when the cells were warmed to 37 degrees C, internalization of some of the fluorescent lipid occurred. Most of the internalized C6-NBD- PC accumulated in the Golgi apparatus although a small amount was found randomly distributed throughout the cytoplasm in punctate fluorescent structures. Internalization of the fluorescent lipid at 37 degrees C was blocked by the presence of inhibitors of endocytosis. Incubation of cells containing C6-NBD-PC at 37 degrees C resulted in a rapid degradation of the fluorescent lipid. This degradation occurred predominantly at the plasma membrane. The degradation of C6-NBD-PC resulted in the release of NBD-fatty acid into the medium. We have compared the internalization of the fluorescent lipid with that of a fluorescent protein bound to the cell surface. Both fluorescent lipid and protein remained at the plasma membrane at 2 degrees C and neither were internalized at 37 degrees C in the presence of inhibitors of endocytosis. However, when incubated at 37 degrees C under conditions that permit endocytosis, the two fluorescent species appeared at different intracellular sites. Our data suggest that there is no transmembrane movement of C6-NBD-PC and that the fluorescent probe reflects the internalization of the outer leaflet of the plasma membrane lipid bilayer. The results are consistent with the Golgi apparatus as being the primary delivery site of phospholipid by bulk membrane movement from the plasma membrane.  相似文献   

18.
The purpose of this work was to obtain structural information about conformational changes in the membrane region of the sarcoplasmic reticulum (SERCA) and plasma membrane (PMCA) Ca2+ pumps. We have assessed changes in the overall exposure of these proteins to surrounding lipids by quantifying the extent of protein labeling by a photoactivatable phosphatidylcholine analog 1-palmitoyl-2-[9-[2′-[125I]iodo-4′-(trifluoromethyldiazirinyl)-benzyloxycarbonyl]-nonaoyl]-sn-glycero-3-phosphocholine ([125I]TID-PC/16) under different conditions. We determined the following. 1) Incorporation of [125I]TID-PC/16 to SERCA decreases 25% when labeling is performed in the presence of Ca2+. This decrease in labeling matches qualitatively the decrease in transmembrane surface exposed to the solvent calculated from crystallographic data for SERCA structures. 2) Labeling of PMCA incubated with Ca2+ and calmodulin decreases by approximately the same amount. However, incubation with Ca2+ alone increases labeling by more than 50%. Addition of C28, a peptide that prevents activation of PMCA by calmodulin, yields similar results. C28 has also been shown to inhibit ATPase SERCA activity. Interestingly, incubation of SERCA with C28 also increases [125I]TID-PC/16 incorporation to the protein. These results suggest that in both proteins there are two different E1 conformations as follows: one that is auto-inhibited and is in contact with a higher amount of lipids (Ca2+ + C28 for SERCA and Ca2+ alone for PMCA), and one in which the enzyme is fully active (Ca2+ for SERCA and Ca2+-calmodulin for PMCA) and that exhibits a more compact transmembrane arrangement. These results are the first evidence that there is an autoinhibited conformation in these P-type ATPases, which involves both the cytoplasmic regions and the transmembrane segments.Although membrane proteins constitute more than 20% of the total proteins, the structure of only few of them is known in detail. An important group of integral membrane proteins are ion-motive ATPases. These proteins belong to the family of P-type ATPases, which share in common the formation of an acid-stable phosphorylated intermediate as part of its reaction cycle. Crystallographic information is available for a few members of this family. There are several crystal structures of the Ca2+ pump of sarcoplasmic reticulum (SERCA)2 revealing different conformations (15), and recently, crystal structures of the H+-ATPase (6) and of the Na,K-ATPase were reported as well (7).We are interested in obtaining structural information about the plasma membrane calcium pump (PMCA). This pump is an integral part of the Ca2+ signaling mechanism (8). It is highly regulated by calmodulin, which activates this protein by binding to an auto-inhibitory region and changing the conformation of the pump from an inhibited state to an activated one (8, 9). Crystallization of PMCA is particularly challenging because there is no natural source from which this protein can be obtained in large quantities. Moreover, the presence of several isoforms in the same tissue further complicates efforts to obtain a homogeneous sample suitable for crystallization.Information about the structure and assembly of the transmembrane domain of an integral membrane protein can also be obtained from the analysis of the lipid-protein interactions. In this work, we have used a hydrophobic photolabeling method to study the noncovalent interactions between PMCA and the surrounding phospholipids under different experimental conditions that lead to known conformations. We employed the photoactivatable phosphatidylcholine analog 1-palmitoyl-2-[9-[2′-[125I]iodo-4′-(trifluoromethyldiazirinyl)-benzyloxycarbonyl]-nonaoyl]-sn-glycero-3-phosphocholine ([125I]TID-PC/16) that has been previously used to analyze lipid-protein interfaces (1012). This reagent is located in the phospholipidic milieu, and upon photolysis it reacts indiscriminately with its molecular neighbors. It is thus possible to directly analyze the interaction between a membrane protein and lipids belonging to its immediate environment (1315). By measuring the amount of labeling of SERCA in conditions that promote conformations for which there are well resolved crystal structures, we were able to validate this photolabeling approach as a convenient tool for analyzing conformational changes within transmembrane regions. Furthermore, using this technique on PMCA and comparing the results obtained for SERCA, we were able to draw structural conclusions about these proteins under activated and inhibited states.  相似文献   

19.
The binding of the major water-soluble lens protein alpha-crystallin to the lens plasma membrane has been investigated by reassociating purified alpha-crystallin with alpha-crystallin-depleted membranes and with phospholipid vesicles in which the lens membrane protein MP26 had been reconstituted. alpha-Crystallin reassociates at high affinity (Kd = 13 X 10(-8)M) with alkali-washed lens plasma membranes but not with lens plasma membranes treated with guanidine/HCl, nor with phospholipid vesicles or erythrocyte membranes. Binding to lens plasma membranes is dependent on salt, temperature and pH and occurs in a saturable manner. Reconstitution of MP26 into phospholipid vesicles and subsequent analysis of alpha-crystallin binding suggests the involvement of this transmembrane protein. Binding ist not influenced by pretreatment of membranes with proteases, suggesting that the 4-kDa cytoplasmic fragment of MP26 is not necessary for alpha-crystallin binding. Labeling experiments using (trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine as a probe for intrinsic membrane proteins further showed that alpha-crystallin contains hydrophobic regions on its surface which might enable this protein to make contact with the lipid bilayer. Newly synthesized alpha-crystallin, in lens culture, is not associated with the plasma membrane, suggesting that the assembly of alpha-crystallin aggregates does not take place in a membrane-bound mode.  相似文献   

20.
Composition of octyl glucoside-phosphatidylcholine mixed micelles   总被引:3,自引:0,他引:3  
The composition of mixed micelles of egg phosphatidylcholine (PC) and octyl glucoside was studied by a novel technique based on measuring resonance energy-transfer efficiency between two fluorescent lipid probes present in trace amounts. Equations were derived for calculating the stoichiometry of the composition of mixed micelles from the energy-transfer measurements. These were applied to determining the average number of lipid molecules in the octyl glucoside-egg PC mixed micelle as a function of detergent concentration. The average number of detergent molecules in these mixed micelles was independent of lipid concentration in the range studied (0-500 microM). The dependence of mixed micelle stoichiometry on the concentration of aqueous (monomeric) octyl glucoside is consistent with the assumptions of ideal mixing of the two amphiphiles in the mixed micelles and that mixed micelles can be treated as a distinct phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号