首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To evaluate the efficacy of selection strategies for recombinant Chinese hamster ovary (rCHO) clones undergone with dihydrofolate reductase-mediated gene amplification, rCHO cell lines producing a chimeric antibody were established using two strategies, one based on individual clones and the other based on cell pools. In a selection based on individual clones, cell cloning by limiting dilution method was performed twice, once after a round of selection of parental cell clones and once after obtaining high-producer clones. Thirty parental clones selected from 300 parental clones were cultivated independently throughout the gene amplification procedure. Using this labor-intensive strategy, it took approximately 17 weeks to obtain high-producing clones such as CS11-8 and CS18-3 clones. A selection based on cell pools, in which cell cloning was performed once at the final selection stage, required less effort and time to amplify large numbers of individual parental clones within the pool. However, high-producing clones were lost during the amplification procedure. The antibody expression level of high-producing clones such as PS7-2 and PS7-32 chosen on the basis of cell pools was less than one third of that of CS11-8 and CS18-3 clones. Taken together, a selection strategy based on individual clones is favored for establishment of high-producing rCHO clones because it is more efficient to perform cell cloning at the initial selection stage of parental cell clones.  相似文献   

2.
In order to establish a mammalian cell expression system with a minimum of selection steps and a stable expression of microgram amounts of recombinant protein (human tissue-type plasminogen activator mutants and chimeric proteins) per 10(6) cells per day, we investigated Chinese hamster ovary cells and the dihydrofolate reductase-deficient Chinese hamster ovary cell line CHO(dhfr-). The 1tPA expression vector pCMVtPA was cotransfected either with the SV40 enhancer sequence containing dhfr expression vector pMT2 or with the enhancerless dhfr expression vector pAdD26SV(A) into CHO(dhfr-) cells. With both dhfr expression plasmids, selection for dhfr+ transformants followed by single dilution cloning was sufficient to generate cell lines with a production level of up to 4.6 micrograms tPA/10(6) cells.day. This approach is useful if gene amplification procedures are time-consuming and impracticable because of a large number of recombinant proteins. In order to establish CHO cell lines with a tPA expression level as high as that in the case of CHO(dhfr-) cells, repeated dilution cloning is necessary.  相似文献   

3.
Protein disulfide isomerase (PDI), one of the ER-resident molecular chaperones, forms and isomerizes disulfide bonds. This study attempts to investigate the effect of PDI expression level on specific productivity (q) of recombinant Chinese hamster ovary (rCHO) cells producing thrombopoietin (TPO) and antibody (Ab). To regulate the PDI expression level, the Tet-Off system was introduced in TPO and Ab producing CHO cells, and stable Tet-Off cells (TPO-Tet-Off and Ab-Tet-Off) were screened using the luciferase assay. The doxycycline-regulated PDI expression system in Tet-Off rCHO cells (Tet-TPO-PDI and Tet-Ab-PDI) was established by the cotransfection of pTRE-PDI and pTK-Hyg expression vector into TPO-Tet-Off and Ab-Tet-Off cells, respectively. Subsequent screening was done by Western blot analysis of PDI and an enzyme-linked immunosorbent assay of the secreted TPO and antibody. We cultured two Tet-TPO-PDI and two Tet-Ab-PDI clones, and all these clones showed an average of 2.5-fold increase in PDI expression when compared to the basal level. In both these cell lines the PDI expression was tightly controlled by various concentrations of doxycycline. The q of TPO (q(TPO)) was unaffected but that of antibody producing cells was increased by 15-27% due to the PDI expression level.  相似文献   

4.
Apoptosis-resistant dihydrofolate reductase-deficient CHO cell line (dhfr(-) CHO-bcl2) was developed by introduction of the bcl-2 gene into the dhfr(-) CHO cell line (DUKX-B11, ATCC CRL-9096) and subsequent selection of clones stably overexpressing Bcl-2 in the absence of selection pressure. When the dhfr(-) CHO-bcl2 cell line was used as a host cell line for development of a recombinant CHO (rCHO) cell line expressing a humanized antibody, it displayed stable expression of the bcl-2 gene during rCHO cell line development and no detrimental effect of Bcl-2 overexpression on specific antibody productivity. Taken together, the results obtained demonstrate that the use of an apoptosis-resistant dhfr(-) CHO cell line as the host cell line saves the effort of establishing an apoptosis-resistant rCHO cell line and expedites the development process of apoptosis-resistant rCHO cells producing therapeutic proteins.  相似文献   

5.
We describe a strategy for the selection and amplification of foreign gene expression in Chinese hamster ovary (CHO) cells employing a metallothionein gene-containing expression vector. This report describes an amplification procedure that results in an enrichment of clones exhibiting high levels of recombinant protein production and reduces the labour required for screening recombinant cell lines.  相似文献   

6.
7.
为了克服随机整合建立高表达细胞株时“位置效应”所带来的不可预知的后果,我们尝试建立基于定点整合的CHO高效表达系统。首先设计一个新的高效筛选载体pMCEscan。该载体含有报告基因(k2tPA)、扩增基因(dhfr)、重组酶识别序列(FRT)及筛选基因(neo),且neo基因的表达经过系统的弱化,确保能够对基因组中的整合位点进行大规模的高效筛选。然后利用该载体转染CHO/dhfr^-细胞并进行大规模筛选以获得足够多的阳性克隆,并对阳性克隆进行系统分析,筛选出报告基因表达水平高、单拷贝且扩增效果好的克隆,此克隆被认为筛选载体整合入CHO细胞基因组中转录热点(Hotspot)区域,从而获得了能够实现外源基因在基因组中定点整合和有效表达的CHO/dhfr-细胞系。随后利用位点特异性重组系统(FLP-FRT)将外源基因定点整合到Hotspot区域,以实现外源基因在CHO细胞基因组中的定点整合及高效表达。并利用该细胞系实现了k2tPA的高表达,表达量达到17.1μg/10^6cell·24h。该研究致力于CHO细胞基因组中高表达位点的寻找和确认,建立基于定点整合的哺乳动物细胞高效表达系统。  相似文献   

8.
太空环境改变生物工程细胞CHO(dhfr-   总被引:1,自引:0,他引:1  
目的 :了解太空诱变对生物工程细胞CHO(dhfr----  相似文献   

9.
Although Chinese hamster ovary (CHO) cells, with their unique characteristics, have become a major workhorse for the manufacture of therapeutic recombinant proteins, one of the major challenges in CHO cell line generation (CLG) is how to efficiently identify those rare, high‐producing clones among a large population of low‐ and non‐productive clones. It is not unusual that several hundred individual clones need to be screened for the identification of a commercial clonal cell line with acceptable productivity and growth profile making the cell line appropriate for commercial application. This inefficiency makes the process of CLG both time consuming and laborious. Currently, there are two main CHO expression systems, dihydrofolate reductase (DHFR)‐based methotrexate (MTX) selection and glutamine synthetase (GS)‐based methionine sulfoximine (MSX) selection, that have been in wide industrial use. Since selection of recombinant cell lines in the GS‐CHO system is based on the balance between the expression of the GS gene introduced by the expression plasmid and the addition of the GS inhibitor, L‐MSX, the expression of GS from the endogenous GS gene in parental CHOK1SV cells will likely interfere with the selection process. To study endogenous GS expression's potential impact on selection efficiency, GS‐knockout CHOK1SV cell lines were generated using the zinc finger nuclease (ZFN) technology designed to specifically target the endogenous CHO GS gene. The high efficiency (~2%) of bi‐allelic modification on the CHO GS gene supports the unique advantages of the ZFN technology, especially in CHO cells. GS enzyme function disruption was confirmed by the observation of glutamine‐dependent growth of all GS‐knockout cell lines. Full evaluation of the GS‐knockout cell lines in a standard industrial cell culture process was performed. Bulk culture productivity improved two‐ to three‐fold through the use of GS‐knockout cells as parent cells. The selection stringency was significantly increased, as indicated by the large reduction of non‐producing and low‐producing cells after 25 µM L‐MSX selection, and resulted in a six‐fold efficiency improvement in identifying similar numbers of high‐productive cell lines for a given recombinant monoclonal antibody. The potential impact of GS‐knockout cells on recombinant protein quality is also discussed. Biotechnol. Bioeng. 2012; 109:1007–1015. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
In an attempt to increase the specific thrombopoietin (TPO) productivity (q(TPO)) of recombinant Chinese hamster ovary (rCHO) cells (TPO-33), the effect of expression level of ERp57, an isoform of protein disulfide isomerase, on q(TPO) was investigated. To regulate ERp57 expression level, the Tet-Off system was first introduced in TPO-33 cells and stable Tet-Off cells (TPO-33-Tet-Off) were screened by the luciferase assay. The rCHO cells with a doxycycline-regulated ERp57 expression system (TPO-33-ERp57) were obtained by cotransfection of pTRE-ERp57 and pTK-Hyg expression vectors into TPO-33-Tet-Off cells and subsequent screening by Western blot analysis of ERp57 and an enzyme-linked immunosorbent assay of secreted TPO. Western blot analysis showed that ERp57 expression level in TPO-33-ERp57 cells could be regulated tightly by the addition of different concentrations of doxycycline to a culture medium. A doxycycline concentration of 1 microg/mL, which did not influence cell growth and TPO production of TPO-33-Tet-Off cells, was high enough to suppress the ERp57 expression to a basal level. Compared with the basal level, a 1.7-fold increase in ERp57 expression level was obtained in the absence of doxycycline. This increased expression level of ERp57 resulted in a 2.1-fold increase in q(TPO) without growth inhibition, probably as a result of the chaperone-like activity of ERp57 in CHO cells. Taken together, the results obtained here demonstrate that q(TPO) of rCHO cells can be increased by elevating the expression level of ERp57.  相似文献   

11.
Angiopoietin-1 (Ang1) is an essential molecule for blood vessel formation. In an effort to produce large quantities of Ang1, recombinant Chinese hamster ovary (rCHO) cells expressing a high level of recombinant human Ang1 protein (rhAng1) with an amino terminal FLAG-tag were constructed by transfecting the expression vector into dihydrofolate reductase-deficient CHO cells and subsequent gene amplification in a medium containing step-wise increments of methotrexate, such as 0.02, 0.08, and 0.32 μM. The rhAng1 secreted from rCHO cells was purified at a purification yield of 18.4% from the cultured medium using an anti-FLAG M2 agarose affinity gel. SDS-PAGE and Western blot analyses showed that rCHO cells secret rhAng1 as heterogeneous multimers. Moreover, rhAng1 expressed in rCHO cells is biologically active in vitro as demonstrated by its ability to bind to the Tie2 receptor and to phosphorylate Tie2. Therefore, the rhAng1 produced from CHO cells could be useful for clarifying the biological effects of exogenous rhAng1 in the future.  相似文献   

12.
When 23 recombinant Chinese hamster ovary (rCHO) cell clones were cultivated in hyperosmolar medium resulting from NaCl addition (533 mOsm/kg), their specific thrombopoietin (TPO) productivity (q(TPO)) was increased. However, due to depressed cell growth at elevated osmolality, no enhancement in the maximum TPO titer was made in batch cultures of all 23 clones. To test the feasibility of using glycine betaine, known as a strong osmoprotective compound, for improved TPO production in hyperosmotic rCHO cell cultures, hyperosmotic batch cultures of 23 clones were performed in the presence of 15 mM glycine betaine. Glycine betaine was found to have a strong osmoprotective effect on all 23 clones. Inclusion of 15 mM glycine betaine in hyperosmolar medium enabled 22 clones to grow at 542 mOsm/kg, where most clones could not grow in the absence of glycine betaine, but at a cost of reduced q(TPO). However, the relative decrease in q(TPO) varied significantly among clones. Thus, efficacy of the simultaneous use of hyperosmotic pressure and glycine betaine as a means to improve foreign protein production was variable among clones. Six out of 23 clones displayed more than a 40% increase in the maximum TPO titer in the hyperosmolar medium containing glycine betaine, compared with that in the standard medium with a physiological osmolality. Taken together, the results obtained here emphasize the importance of selection of clones for the successful use of hyperosmotic pressure and glycine betaine as an economical means to improve TPO production.  相似文献   

13.
Production of recombinant pharmaceutical proteins has made a great contribution to modern biotechnology. At present, quick advances in protein expression lead to the enhancement of product quantity and quality as well as reduction in timescale processing. In the current study, we assessed the expression level of recombinant human follicle-stimulating hormone (rhFSH) in adherent and suspension Chinese hamster ovary (CHO) cell lines by cultivation in serum-containing and chemically defined, protein-free media. The expression cassette entailing FSH subunits was transfected to CHO/dhfr- and CHO DG44 cell lines, and gene amplification was achieved using dihydrofolate reductase (DHFR)/methotrexate (MTX) system. Afterward, the expression level of rhFSH was studied using real-time PCR, Western blotting and ELISA. Our achievements revealed that stepwise increase in MTX [up to 2000 nano-molar (nM)] leads to boost the expression level of rhFSH mRNA in both cell lines, although DG44 have better results, as mRNA expression level reached 124.8- and 168.3-fold in alpha and beta subunits, respectively. DG44 cells have also the best protein production in 2000 nM MTX, which reached 1.7-fold in comparison with that of the mock group. According to the above results and many advantages of protein-free media, DG44 is preferable cell line for future steps.  相似文献   

14.
Recombinant Chinese hamster ovary (CHO) parental clones expressing a humanized antibody against S surface antigen of hepatitis B virus were obtained by cotransfection of heavy chain (HC) and light chain (LC) cDNA expression vectors into dihydrofolate reductase (DHFR)-deficient CHO cells. When 23 representative parental clones were subjected to stepwise selection for increasing methotrexate (MTX) resistance, such as 0.02, 0.08, 0.32, and 1.0 microM, their clonal variations in regard to antibody expression were found to be significant. Among 23 parental clones, only one clone (hu17) showed the significant increment of specific antibody productivity (q(Ab)) with increasing MTX concentration up to 0.32 microM. Compared with the parental clone (hu17), the q(Ab) of hu17 resistant at 0.32 microM MTX (hu17-0.32) was enhanced approximately 12.5-fold. To clarify the reason for the occurrence of clonal variations, Southern blot analyses of chromosomal DNAs derived from each amplified clone at 0.32 microM MTX were performed. Only the hu17-0.32 clone did not experience severe genetic rearrangement during gene amplification, and it had only one 49-kb amplification unit including the LC and HC cDNAs. A fluorescent MTX competition assay showed that the resistance against MTX toxicity of the other clones without enhanced q(Ab) at 0.32 microM MTX was obtained by mechanisms such as an impaired MTX transport system. Taken together, the data obtained here show that clonal variations in regard to antibody expression are found to be significant because clones can acquire MTX resistance by mechanisms other than DHFR-mediated gene amplification despite the stepwise selection.  相似文献   

15.
Angiopoietin-2 (Ang2) is a complex regulator of vascular remodeling that plays a role in both blood vessel sprouting and blood vessel regression through its receptor Tie2. Recombinant Chinese hamster ovary (rCHO) cell lines expressing a high level (20 microg/mL) of recombinant human Ang2 protein (rhAng2) with an amino-terminal FLAG-tag was constructed by transfecting the expression vectors into dihydrofolate reductase (dhfr)-deficient CHO cells and the subsequent gene amplification in medium containing stepwise increments in methotrexate level such as 0.02, 0.08, and 0.32 microM. The rhAng2 secreted from rCHO cells was purified at a purification yield of 53.6% from the cultured medium using an anti-FLAG M2 agarose affinity gel. SDS-PAGE and Western blot analyses showed that rCHO cells secret rhAng2 as a homodimeric glycoprotein form. Furthermore, rhAng2 binds to the Tie2 receptor and phosphorylates Tie2 in a concentration-dependent manner. Therefore, our rhAng2 could be useful for clarifying biological effect of exogenous Ang2 in the future.  相似文献   

16.
To understand the different responses of recombinant Chinese hamster ovary (rCHO) cells to low culture temperature regarding specific productivity (q), 12 parental clones and their corresponding amplified clones producing a humanized antibody were cultivated at 32 and 37 degrees C. The specific growth rate of all clones, including both parental and amplified clones, decreased by 30-63% at 32 degrees C, compared to rates at 37 degrees C. In contrast, their specific antibody productivity (qAb) was significantly enhanced at 32 degrees C. Furthermore, the degree of qAb enhancement at 32 degrees C varied a lot from 4- to 25-fold among the parental clones. At 32 degrees C, most of the amplified clones, regardless of methotrexate (MTX) levels, also showed enhanced qAb but to a lesser extent than their parental clones. However, clone 14 amplified at 0.32 microM MTX (clone 14-0.32) and clone 20 amplified at 1 microM MTX (clone 20-1.00), unlike their parental clones, did not show enhanced qAb at 32 degrees C. Thus, it was found that the enhancing effect of low culture temperature on q of rCHO cells depends on clones. Taken together, the results obtained here emphasize the importance of clonal selection for the successful application of low culture temperature to the enhanced foreign protein production in rCHO cells.  相似文献   

17.
In order to study the possible relationship between gene amplification and DNA repair we analyzed the amplification of the CAD gene in four mutants hypersensitive to UV light (CHO43RO, CHO7PV, UV5 and UV61) isolated in vitro from Chinese hamster cell lines (CHO-K1 and AA8). These mutants are characterized by different defects in the nucleotide excision repair mechanism and represent complementation groups 1, 9, 2, and 6 respectively. To evaluate the amplification ability of each cell line we measured the rate of appearance of PALA resistant clones with the Luria and Delbrück fluctuation test. Resistance to PALA is mainly due to amplification of the CAD gene. In the mutants CHO43RO, UV5 and CHO7PV we reproducibly found an amplification rate lower than in the parental cell lines (2–5 times), while in UV61 the amplification rate was about 4 times higher. This result indicates that each mutant is characterized by a specific amplification ability and that the unefficient removal of UV induced DNA damage can be associated with either a higher or a lower amplification rate. However, the analysis of randomly isolated CHO-K1 clones with normal UV sensitivity has shown variability in their amplification ability, making it difficult to relate the specific amplification ability of the mutants to the DNA repair defect and suggesting clonal heterogeneity of the parental population.  相似文献   

18.
The establishment of erythropoietin (EPO) producing Chinese hamster ovary (CHO) cell lines was conducted using Cre-mediated cassette exchange. The characterization of site-specific recombination mediated by Cre-recombinase during the cell line development was also performed. A total of six parental clones, which had various green fluorescence levels ranging from high to low and containing a single copy of insertion vector (pEGFP-m2), were screened. The EPO targeting vector (pIC-m2-EPO) was targeted into the 6 parental clones by Cre-mediated cassette exchange. Correctly targeted clones were obtained from 4 out of 6 parental clones with 0∼15% of targeting efficiencies. Moreover, there was a positive relationship (R2 = 0.87) between fluorescence levels of the parental clones before Cre-mediated cassette exchange and specific EPO productivities (q EPO ) of the correctly targeted clones after Cre-mediated cassette exchange. Therefore, it was verified that the chromosomal loci’s characteristic gene expression level was not modified even after cassette exchange mediated by Cre recombinase during the development of EPO producing CHO cell lines. This finding implies that the reproducible development of CHO cell lines largely producing a desired protein is expected to be achieved by Cre-mediated cassette exchange.  相似文献   

19.
MicroRNAs (miRNAs) play important roles in global gene regulation. Researchers in recombinant protein production have proposed miRNAs as biomarkers and cell engineering targets. However, miRNA expression remains understudied in Chinese Hamster Ovary cells, one of the most commonly used host cell systems for therapeutic protein production. To profile highly conserved miRNA expression, we used the miRCURY? miRNA array for screening miRNAs in CHO cells. The selection criteria for further miRNA profiling included positive hybridization signals and experimentally validated predicted regulatory targets. On the basis of screening, we selected 16 miRNAs for quantitative RT‐PCR profiling. We profiled miR expression in parental CHO DG44 and CHO K1 cell lines as well as four recombinant DG44‐derived CHO lines producing a recombinant human IgG. We observed that miR‐221 and miR‐222 were significantly downregulated in all IgG‐producing cell lines when compared with parental DG44, whereas miR‐125b was significantly downregulated in one IgG‐producing line. In another IgG‐producing line, miR‐19a was significantly upregulated. miRNA expression was also profiled in two of these lines that were amplified by stepwise increase of methotrexate. In both amplified cell lines, let‐7b and miR‐221 were significantly downregulated. In parental CHO K1, let‐7b, miR‐15b, and miR‐17 were significantly downregulated when compared with DG44. The results reported here are the first steps toward profiling highly conserved miRNAs and studying the clonal difference in miRNA expression in CHO cells and may shed light on using miRNAs in cell engineering. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

20.
Discovery of the cold-inducible RNA-binding protein (CIRP) in mouse fibroblasts suggests that growth suppression at hypothermic conditions is due to an active response by the cell rather than due to passive thermal effects. To determine the effect of down-regulated CIRP expression on cell growth and erythropoietin (EPO) production in recombinant Chinese hamster ovary (rCHO) cells at low culture temperature, stable CHO cell clones with reduced CIRP expression level were established by transfecting (rCHO) cells with the CIRP siRNA vector with a target sequence of TCGTCCTTCCATGGCTGTA. For comparison of the degree of specific growth rate (micro) reduction at low culture temperature, three CIRP-reduced clones with different mu and three control clones transfected with null vector were cultivated at two different temperatures, 32 degrees C and 37 degrees C. Unlike mouse fibroblasts, alleviation of hypothermic growth arrest of rCHO cells by CIRP down-regulation was insignificant, as shown by statistical analysis using the t-test (P<0.18, n=3). The ratios of mu at 32 degrees C to micro at 37 degrees C of CIRP-reduced clones and control clones were 0.29+/-0.03 and 0.25+/-0.03 on an average, respectively. Furthermore, it was also found that overexpression of CIRP did not inhibit rCHO cell growth significantly at 37 degrees C. Taken together, the data obtained show that down-regulation of only CIRP in rCHO cells, unlike mouse fibroblasts, is not sufficient to recover growth arrest at low-temperature culture (32 degrees C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号