首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interest and research in the use of algae for energy is growing but an analysis of the different methods for the accounting for the carbon dioxide (CO 2) emissions that result, is lacking. In this article, four accounting systems are evaluated for their completeness, simplicity, sectoral accuracy, and scale‐independence. Two options under the Kyoto Protocol (KP), a value‐chain (end‐user responsibility) approach, and Point of Uptake and Release (POUR) are evaluated. Algal material is used in biofuels, animal feeds, human foods, and food supplements, and a range of products such as paints, cosmetics, and plastics. There are also proposals for using algae as a soil amendment. This variety of uses for algal material together with the fact that it will probably contain carbon of fossil origin presents accounting challenges and reveals inconsistencies that have lain in the KPs treatment of biomass emissions. Furthermore, a key conclusion of the article is that neither proposed KP accounting approach for algae leads to correct accounting of emissions for all uses. Both value chain and POUR approaches more correctly and consistently account for algal emissions across uses. POUR offers the potential to provide comprehensive, consistent emission accounting across all uses of biomass, which represents a major step forward in accounting for CO 2 emissions due to use of biomass.  相似文献   

2.
Emissions of methane (CH4) and carbon dioxide (CO2) from spent mycelia of the mold Penicilium notatum and sludge from the effluent treatment facility (ETPS) of a pharmaceutical industry were estimated twice during a two-week composting before vermicomposting. These wastes are dumped in landfills or sometimes used in agricultural fields and no reports are available on their greenhouse gas producing potentials. The solid wastes contained appreciable organic carbon and nitrogen while very high Fe, Mn and Zn were found in ETPS only. Pure wastes did not support germination of Vigna radiata L. while mixing soil with ETPS and spent mycelia at the ratios of 12:1 and 14:1 led to 80% and 50% germination, respectively. The wastes were mixed with cowdung at the ratios of 1:1, 1:3 and 3:1 for composting. Carbon dioxide emissions were always significantly higher than CH4 emissions from all the treatments due to prevalence of aerobic condition during composting. From some treatments, CH4 emissions increased with time, indicating increasing activity of anaerobic bacteria in the waste mixtures. Methane emissions ranged from 21.6 to 231.7 microg m(-2) day(-1) while CO2 emissions were greater than thousand times at 39.8-894.8 mg m(-2) day(-1). The amount of C emitted as CH4-C and CO2-C from ranged from 0.007% to 0.081% of total C composted. Cowdung emitted highest CH4 followed by spent mycelia and ETPS while ETPS emitted more CO2 than spent mycelia but lesser than cowdung. Global warming potential of emitted CH4 was found to be in the range of 10.6-27.7 mg-CO2-equivalent on a 20-year time horizon. The results suggest that pharmaceutical wastes can be an important source of CH4 and CO2 during composting or any other stockpiling under suitable moisture conditions. The waste mixtures were found not suitable for vermicomposting after two weeks composting and earthworms did not survive long in the mixtures.  相似文献   

3.
Livestock waste-to-bioenergy generation opportunities   总被引:2,自引:0,他引:2  
The use of biological and thermochemical conversion (TCC) technologies in livestock waste-to-bioenergy treatments can provide livestock operators with multiple value-added, renewable energy products. These products can meet heating and power needs or serve as transportation fuels. The primary objective of this work is to present established and emerging energy conversion opportunities that can transform the treatment of livestock waste from a liability to a profit center. While biological production of methanol and hydrogen are in early research stages, anaerobic digestion is an established method of generating between 0.1 to 1.3m3m(-3)d(-1) of methane-rich biogas. The TCC processes of pyrolysis, direct liquefaction, and gasification can convert waste into gaseous fuels, combustible oils, and charcoal. Integration of biological and thermal-based conversion technologies in a farm-scale hybrid design by combining an algal CO2-fixation treatment requiring less than 27,000m2 of treatment area with the energy recovery component of wet gasification can drastically reduce CO2 emissions and efficiently recycle nutrients. These designs have the potential to make future large scale confined animal feeding operations sustainable and environmentally benign while generating on-farm renewable energy.  相似文献   

4.
Syngas fermentation is one possible contributor to the reduction of greenhouse gas emissions. The conversion of industrial waste gas streams containing CO or H2, which are usually combusted, directly reduces the emission of CO2 into the atmosphere. Additionally, other carbon‐containing waste streams can be gasified, making them accessible for microbial conversion into platform chemicals. However, there is still a lack of detailed process understanding, as online monitoring of dissolved gas concentrations is currently not possible. Several studies have demonstrated growth inhibition of Clostridium ljungdahlii at high CO concentrations in the headspace. However, growth is not inhibited by the CO concentration in the headspace, but by the dissolved carbon monoxide tension (DCOT). The DCOT depends on the CO concentration in the headspace, CO transfer rate, and biomass concentration. Hence, the measurement of the DCOT is a superior method to investigate the toxic effects of CO on microbial fermentation. Since CO is a component of syngas, a detailed understanding is crucial. In this study, a newly developed measurement setup is presented that allows sterile online measurement of the DCOT. In an abiotic experiment, the functionality of the measurement principle was demonstrated for various CO concentrations in the gas supply (0%–40%) and various agitation rates (300–1100 min?1). In continuous stirred tank reactor fermentation experiments, the measurement showed reliable results. The production of ethanol and 2,3‐butanediol increased with increasing DCOT. Moreover, a critical DCOT was identified, leading to the inhibition of the culture. Thus, the reported online measurement method is beneficial for process understanding. In future processes, it can be used for closed‐loop fermentation control.  相似文献   

5.
A field application of the radiocarbon ((14)C) method was developed to determine the ratio of biogenic vs. fossil CO(2) emissions from waste-to-energy plants (WTE). This methodology can be used to assign the Kyoto relevant share of fossil CO(2) emissions, which is highly relevant for emission budgets and emission trading. Furthermore, heat and electricity produced by waste incinerators might be labelled depending on the fossil or biogenic nature of the primary energy source. The method development includes representative on-site CO(2) absorption and subsequent release in the laboratory. Furthermore, a reference value for the (14)C content of pure biogenic waste (f(M,bio)) was determined as 1.130+/-0.038. Gas samples for (14)CO(2) analysis were taken at three WTEs during one month each. Results were compared to an alternative approach based on mass and energy balances. Both methods were in excellent agreement and indicated a fraction of biogenic CO(2) slightly above 50%.  相似文献   

6.
Due to the ban on meat and bone meal (MBM) as an animal feed, combustion with energy recovery has been considered a viable alternative usage for the mounting stocks of MBM. The effects of the co-combustion of MBM and peat on flue gas emissions and fluidisation were studied using a bubbling fluidised bed (BFB) test facility (20 kW). The dispersion of emissions such as nitrogen dioxide (NO2), sulphur dioxide (SO2), carbon monoxide (CO), hydrogen chloride (HCl) and particulates was investigated for a proposed site and compared to the relevant national and international regulations. Concentrations of NO2, CO and HCl were less than 10% of legislative and guideline thresholds while ground level concentrations of SO2 were also below relevant EU and world guidelines. The results indicate the potential for using MBM as a co-fuel with peat in a BFB while maintaining high air quality standards.  相似文献   

7.
8.
Reservoirs and lakes were compared to test the hypothesis that they are similar with respect to factors driving the variation in CO(2) emissions to the atmosphere. Understanding this variation is necessary for the assessment of the contribution of these freshwater ecosystems to the global carbon cycle. This study, in contrast to previous ones, included analyses of the relationships between CO(2) emissions and microbial communities. Pooled data (lakes and reservoirs) showed that variations in CO(2) emissions were strongly related to variations in temperature, dissolved organic matter (DOM) quality, and bacterial production (BP). Results also showed that lakes were characterized by higher water temperature, lower DOM quality, larger size of Daphnia, and enriched δ(13) C zooplankton compared to reservoirs. Moreover, interactions within plankton communities and relationships between CO(2) emissions and zooplankton δ(13) C signatures differed in lakes vs. reservoirs, indicating among-system type differences in food web structure and carbon cycling. As a result of these ecosystem-type characteristics, CO(2) emission variation was mainly explained by temperature and BP in lakes, and by DOM quality and the ratio of phytoplankton biomass to microheterotroph biomass in reservoirs. These results showed that differences in temperature and DOM quality between lakes and reservoirs translate into differences in microbial interactions and ultimately in the importance of factors driving CO(2) emissions to the atmosphere. They indicated that considering microbial communities and environmental variables such as temperature and DOM quality can help improve our understanding of the variation in CO(2) emissions from freshwater ecosystems.  相似文献   

9.
闽江河口潮汐湿地二氧化碳和甲烷排放化学计量比   总被引:3,自引:0,他引:3  
王维奇  曾从盛  仝川  王纯 《生态学报》2012,32(14):4396-4402
为了阐明河口潮汐湿地碳源温室气体排放的化学计量比特征,对闽江河口潮汐湿地二氧化碳和甲烷排放进行了测定与分析。结果表明:芦苇湿地和短叶茳芏湿地二氧化碳与甲烷排放均呈现正相关;涨潮前、涨落潮过程和落潮后芦苇湿地和短叶茳芏湿地CO2∶CH4月平均值分别为55.4和185.0,96.3和305.5,68.7和648.6,3个过程芦苇湿地和短叶茳芏湿地CO2∶CH4差异均不显著(P>0.05),2种植物湿地CO2∶CH4对潮汐的响应并不一致,但均在涨潮前表现为最低;涨潮前、涨落潮过程和落潮后均表现为芦苇湿地CO2∶CH4低于短叶茳芏湿地(P<0.05);河口潮汐湿地CO2∶CH4为空间变异性>时间变异性,潮汐、植物和温度均对CO2∶CH4的变化具有一定的调节作用。  相似文献   

10.
Materials use is an important factor influencing carbon dioxide (CO2) emissions because significant amounts of carbon dioxide are released during the production of materials from natural resources, and because products and wastes can function as important sinks for CO2. This article analyzes the impact of Western European materials use on CO2 emissions. The material flows for steel, cement, petrochemicals, and wood products are analyzed in more detail. The analysis shows that particular characteristics of the materials system must be considered in the development of emission reduction strategies. It is important to select a relatively closed system for policymaking, as in Western Europe, in order to prevent unwanted transboundary effects. The materials stored in the form of products, and the net exports of materials, products, and waste limit the potential of a recycling strategy. Carbon storage in products and waste disposal sites is significant both for synthetic and natural organic materials, but is not accounted for in natural organic materials in current emissions statistics. Accordingly the emissions accounting practices should be modified to reflect the storage of such materials.  相似文献   

11.
Carbon‐based materials (CBMs) for energetic and material purposes combine biogenic and anthropogenic carbon cycles. In the latter, numerous manufactured products with various in‐use lifespans accumulate as anthropogenic carbon stocks. Understanding the behavior of these stocks is an important requirement to estimate not only future waste amounts, source for secondary raw materials, but also the impacts and effects in carbon emissions and carbon management. Previous models have estimated material stock changes; however, a lack of research in carbon stocks is perceived. Moreover, studies follow in‐use lifespan estimation approaches, such as decay functions, which do not coincide with observed consumption and waste treatment patterns. In the first part of this article, we present a carbon stock‐flow model to analyze inter‐relationships between carbon flows and stocks from raw materials to waste treatment processes considering a consumer perspective, where the dynamics of anthropogenic carbon stocks are completely described. In the second part, we study the pulp and paper industry in Germany under a scenario approach to analyze the behavior, development, and impacts of paper stocks and flows between 2010 and 2040. The model provided coherent results, with industrial data estimating 33.9 million metric tons in 2010 in paper stocks, equivalent to 410 kilograms per person. Consumption per capita and in‐use lifespan of products were identified as the most significant variables in carbon stock building. Model simulations show a sustained growth in stocks for the next 30 years, with increase in waste and carbon emissions. But in combination with recycling and reuse mechanisms and consumption patterns, environmental impacts are reduced.  相似文献   

12.
黄汉志  贾俊松  张振旭 《生态学报》2023,43(20):8390-8403
查明县域尺度下土地利用变化碳排放,对于推进县域低碳发展和土地资源的可持续利用与管理具有重要意义。以江西省为例,基于2000-2020年江西省土地利用数据、社会经济数据等,利用空间自相关模型和对数平均迪氏指数分解法(LMDI) 法,对其县域土地利用碳排放时空演变及影响因素进行分析。结果表明:①2000-2020年间,区县土地利用碳排放均呈上升趋势,碳排放量增速和平均碳排放强度均有下降,但部分区县碳排放增速在2015年后出现提高的变化特征。建设用地是碳排放量增长的首要碳源,林地则具有重要的碳汇作用。②空间上,土地利用变化碳排放呈现出明显的空间差异,表现为北高南低的分布特征和较为稳定的聚类模式,即轻度和重度及以上排放区空间分布上较为集中。经济发达区县成为碳排放量增长"核心",欠发达区县则是碳排放量增长"外围",且这种"核心-外围"格局在不断强化。③总体上,抑制碳排放量增长的主要因素为碳排放强度及土地利用效率;驱动因素则有经济发展水平和建设用地规模。但部分区县碳排放强度可能表现为"前期驱动后期抑制"作用,且抑制作用小于驱动作用,故这类区县土地利用碳排放量仍显著增长。因此,江西省各区县应积极调整产业结构和继续降低碳排放强度及通过优化土地资源配置,提高土地利用效率,如用适度集约模式提高建设用地利用效率以免盲目性扩张浪费。另外,欠发达地区和发达地区需加强在资金、技术等领域的交流与合作,不同区县还应因地制宜,各自明确发展目标,走具有各自县域特色的低碳高质量发展道路。  相似文献   

13.
We examine decoupling conditions of domestic extraction of materials, energy use, and sulfur dioxide (SO2) emissions from gross domestic product (GDP) for two BRIC (Brazil, Russia, India and China) countries (i.e., China and Russia) and two Organisation for Economic Co‐operation and Development (OECD) countries (Japan and the United States) during 2000–2007, using a pair of decoupling indicators for resource use (Dr) and waste emissions (De) and the decoupling chart, which can distinguish between absolute decoupling, relative decoupling, and non‐decoupling. We find that (1) during 2000–2007, decoupling between environmental indicators and GDP was higher in the two OECD countries as compared with the two BRIC countries. The key reason is that these countries were in different development stages with different economic growth rates. (2) Changes in environmental policies can significantly influence the degree of decoupling in a country. (3) China, Japan, and the United States were more successful in decoupling SO2 emissions from GDP than in decoupling material and energy use from GDP. The main reason is that, unlike resource use, waste emissions (e.g., SO2 emissions) can be reduced by effective end‐of‐pipe treatment. (4) The decoupling indicator is different from the changing rate of resource use and waste emissions. If two countries have different GDP growth rates, even though they may have similar values using the decoupling indicator, they may show different rates of change for resource use and waste emissions.  相似文献   

14.
食物是人类生存和发展的基础,然而城市化过程中食物消费产生的碳排放也影响着生态环境与人类福祉。双碳目标下,如何协调食物消费增长与低碳减排之间的矛盾,亟需从不同尺度制定绿色消费优化策略。基于此,从居民食物消费碳排放研究的发文态势、研究方法以及研究内容3个方面进行归纳和梳理。研究发现:①由居民食物消费引起的碳排放问题仍是未来学术界的研究热点之一;②从生产端、消费端及系统视角3个方面对居民食物消费碳排放概念和内涵进行理解,有助于界定碳排放核算边界;③目前居民食物消费碳排放核算的主流测算方法包括生命周期评价(LCA)、碳排放系数、投入产出分析(IOA)和物质流分析(MFA)方法这4种;④从碳排放分布特征看,国内外学者从不同尺度(全球、国家、地区、省域、城市)、不同方式(直接与间接)、不同环节(生产与消费等)、不同消费结构(植物型与动物型)等多角度对其进行探讨;⑤从影响机制来看,基于多尺度时空融合视角量化分析居民食物消费碳排放作用机理这一科学问题值得关注。因此,综合考虑人口、社会、经济等多要素,同时考虑空间异质性,识别居民食物消费碳排放关键机制,构建面向双碳目标的碳减排潜力情景并揭示不同情景下的碳减排贡献,将有助于提出最优的居民生活绿色消费模式。  相似文献   

15.
城市餐饮业食物浪费碳足迹——以北京市为例   总被引:6,自引:0,他引:6  
食物浪费及其造成的环境影响已成为全球广泛关注的热点。无论从生命周期还是碳足迹的视角来看,食物浪费意味着生产、运输、加工与储存这些被浪费掉的食物过程中所投入的各种资源的浪费以及不必要的温室气体排放。以北京市餐饮食物浪费问题为切入点,在通过问卷调查和称重方法对餐饮食物浪费状况进行调查的基础上,将整个食物生命周期各供应链环节相应的温室气体排放纳入考量,估算了北京市餐饮食物浪费的碳排放量。研究结果表明:北京市餐饮食物浪费总量为39.86×10~4t/a。其中,蔬菜类浪费量最高,约占浪费总量的43.16%,其次为肉类和主食类,分别占食物浪费总量的20.59%和16.66%。北京市餐饮食物浪费所产生的总碳足迹为192.51×10~4—208.52×10~4t CO_2eq。其中,农业生产阶段的碳排放量最大为99.34×10~4t CO2eq,占食物浪费总碳足迹的47.64%。其次是消费阶段的碳足迹77.96×10~4t CO_2eq,占食物浪费总碳足迹的37.39%,再次是餐厨垃圾处理阶段的碳足迹28.54×104tCO2eq,占食物浪费总碳足迹的13.68%。这些不同供应链环节的碳排放比例,为透视食物浪费所带来的环境影响提供了新的认知,也为遏制食物浪费提供了科学的理论依据。  相似文献   

16.
The establishment of sustainable soil waste management practices implies minimizing their environmental losses associated with climate change (greenhouse gases: GHGs) and ecosystems acidification (ammonia: NH3). Although a number of management strategies for solid waste management have been investigated to quantify nitrogen (N) and carbon (C) losses in relation to varied environmental and operational conditions, their overall effect is still uncertain. In this context, we have analyzed the current scientific information through a systematic review. We quantified the response of GHG emissions, NH3 emissions, and total N losses to different solid waste management strategies (conventional solid storage, turned composting, forced aerated composting, covering, compaction, addition/substitution of bulking agents and the use of additives). Our study is based on a meta‐analysis of 50 research articles involving 304 observations. Our results indicated that improving the structure of the pile (waste or manure heap) via addition or substitution of certain bulking agents significantly reduced nitrous oxide (N2O) and methane (CH4) emissions by 53% and 71%, respectively. Turned composting systems, unlike forced aerated composted systems, showed potential for reducing GHGs (N2O: 50% and CH4: 71%). Bulking agents and both composting systems involved a certain degree of pollution swapping as they significantly promoted NH3 emissions by 35%, 54%, and 121% for bulking agents, turned and forced aerated composting, respectively. Strategies based on the restriction of O2 supply, such as covering or compaction, did not show significant effects on reducing GHGs but substantially decreased NH3 emissions by 61% and 54% for covering and compaction, respectively. The use of specific additives significantly reduced NH3 losses by 69%. Our meta‐analysis suggested that there is enough evidence to refine future Intergovernmental Panel on Climate Change (IPCC) methodologies from solid waste, especially for solid waste composting practices. More holistic and integrated approaches are therefore required to develop more sustainable solid waste management systems.  相似文献   

17.
Carbon balance of anaerobic granulation process: carbon credit   总被引:1,自引:0,他引:1  
Wong BT  Show KY  Lee DJ  Lai JY 《Bioresource technology》2009,100(5):1734-1739
The concept of carbon credit arose out of increasing awareness of the need to reduce emissions of greenhouse gases to combat global warming which was formalized in the Kyoto protocol. In addition to contribution to sustainable development with energy recovery in the form of methane, carbon credits can be claimed by application of advanced anaerobic processes in wastewater treatment for reducing emissions of greenhouse gases. As anaerobic granular systems are capable of handling high organic loadings concomitant with high strength wastewater and short hydraulic retention time, they could render much more carbon credits than other conventional anaerobic systems. This study investigated the potential carbon credit derived from laboratory-scale upflow anaerobic sludge blanket (UASB) reactors based on a carbon balance analysis. Methane emission reduction could be calculated by calculating the difference of UASB reactors and open lagoon treatment systems. Based on the 2.5l bench-scale reactor, the total CH(4) emissions reduction was calculated as 29 kg CO(2)/year. On scaling up to a typical full-scale anaerobic digester, the total CH(4) emissions reduction could achieve 46,420 tons CO(2) reduction/year. The estimated carbon credits would amount to 278,500 US$ per year by assuming a carbon price of 6 US$ per metric ton CO(2) reduction. The analysis postulated that it is financially viable to invest in advanced anaerobic granular treatment system from the revenue generated from carbon credits.  相似文献   

18.
CO不仅是中国主要的空气污染物之一,还是温室效应的贡献者。农业用地每年消耗了大量的CO通量,土地利用/覆盖格局对于调控CO空间分布发挥了较大的作用。针对土地利用/覆盖调控CO空间分布开展研究,以华北平原为例揭示人类活动对CO空间异质性的影响。研究发现2010至2020年华北平原CO排放量由4964×104 t降低至2683×104 t,大部分耕地CO浓度由90 t/km2下降至45 t/km2以下。CO浓度空间集聚程度呈现先降低后升高趋势,Moran′s I指数由0.25增加至0.41。经济发展迅速的地区CO污染较为严重,北京和周边城市形成了CO污染高-高集聚区,周口和淮北等城市则形成了低-低集聚区。总体来看,CO浓度呈低-低集聚分布的区域不断扩大,反映出CO减排措施已经初见效果。研究表明土地利用/覆盖在类型与结构方面的差异影响了CO的排放、扩散以及氧化消耗,增加了大气CO收支的不确定性,对CO空间分布具有一定的调控作用。通过分析土地利用/覆盖与CO空间分布的关联性,探究土地利用/覆盖及景观格局对区...  相似文献   

19.
黑龙江省温带森林火灾碳排放的计量估算   总被引:2,自引:0,他引:2  
魏书精  罗碧珍  孙龙  胡海清 《生态学报》2014,34(11):3048-3063
森林火灾干扰作为森林生态系统重要的干扰因子,剧烈地改变着森林生态系统的结构、功能、格局与过程,对区域乃至全球的碳循环与碳平衡产生重要影响。随着全球气候变暖,森林火灾干扰的频率和强度进一步加剧,其排放的含碳气体对大气中温室气体浓度的贡献率更大,进而加快气候变暖的速率。科学有效地对森林火灾碳排放及含碳气体排放量进行计量估算,对了解区域乃至全球的碳循环及碳平衡具有重要的理论价值和实践意义。根据黑龙江省温带森林1953—2012年火灾统计资料和森林调查数据,结合地理信息系统GIS技术,通过野外火烧迹地调查以及实验室的控制环境实验来确定森林火灾碳排放计量中的各种参数,在林分水平上,利用排放因子的方法,估算了黑龙江省温带森林60年间火灾碳排放量和含碳气体排放量。结果表明:黑龙江省温带森林60年间火灾碳排放量为5.88×107t,年均排放量为9.80×105t,约占全国年均森林火灾碳排放量的8.66%;含碳气体CO2、CO、CH4和非甲烷烃(nonmethane hydrocarbons,NMHC)的排放量分别为1.89×108、1.06×107、6.33×105和4.43×105t,含碳气体CO2、CO、CH4和NMHC的年均排放量分别为3.15×106、1.77×105、1.05×104和7.38×103t,分别占全国年均森林火灾各含碳气体排放量的7.74%、6.52%、9.42%和6.53%。研究发现针阔混交林型的森林火灾面积占总过火林地面积的57.54%,由于其燃烧效率较低,在森林火灾中的碳排放量仅占排放总量的38.57%;尤其是针阔混交林森林火灾面积占总过火林地面积的20.71%,而碳排放量仅占总排放量的9.67%;且CO2的排放因子较低,其CO2排放量仅占总排放量的8.95%。同时研究表明,黑龙江省温带森林年均的碳排放对该区域的碳循环与碳平衡产生重要影响,并针对研究结果提出了应对气候变化的森林经营可持续管理策略,亦提出了科学的林火管理策略及其合理化的林火管理路径。  相似文献   

20.
For waste management, methane emissions from landfills and their effect on climate change are of serious concern. Current models for biogas generation that focus on the economic use of the landfill gas are usually based on first order chemical reactions (exponential decay), underestimating the long-term emissions of landfills. The presented study concentrated on the curve fitting and the quantification of the gas generation during the final degradation phase under optimal anaerobic conditions. For this purpose the long-term gas generation (240–1,830 days) of different mechanically biologically treated (MBT) waste materials was measured. In this study the late gas generation was modeled by a log–normal distribution curve to gather the maximum gas generation potential. According to the log–normal model the observed gas sum curve leads to higher values than commonly used exponential decay models. The prediction of the final phase of landfill gas generation by a fitting model provides a basis for CO2 balances in waste management and some information to which extent landfills serve as carbon sink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号