首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Valpha14 NKT cells produce large amounts of IFN-gamma and IL-4 upon recognition of their specific ligand alpha-galactosylceramide (alpha-GalCer) by their invariant TCR. We show here that NKT cells constitutively express CD28, and that blockade of CD28-CD80/CD86 interactions by anti-CD80 and anti-CD86 mAbs inhibits the alpha-GalCer-induced IFN-gamma and IL-4 production by splenic Valpha14 NKT cells. On the other, the blockade of CD40-CD154 interactions by anti-CD154 mAb inhibited alpha-GalCer-induced IFN-gamma production, but not IL-4 production. Consistent with these findings, CD28-deficient mice showed impaired IFN-gamma and IL-4 production in response to alpha-GalCer stimulation in vitro and in vivo, whereas production of IFN-gamma but not IL-4 was impaired in CD40-deficient mice. Moreover, alpha-GalCer-induced Th1-type responses, represented by enhanced cytotoxic activity of splenic or hepatic mononuclear cells and antimetastatic effect, were impaired in both CD28-deficient mice and CD40-deficient mice. In contrast, alpha-GalCer-induced Th2-type responses, represented by serum IgE and IgG1 elevation, were impaired in the absence of the CD28 costimulatory pathway but not in the absence of the CD40 costimulatory pathway. These results indicate that CD28-CD80/CD86 and CD40-CD154 costimulatory pathways differentially contribute to the regulation of Th1 and Th2 functions of Valpha14 NKT cells in vivo.  相似文献   

2.
3.
Src homology 2 domain-containing protein tyrosine phosphatase (SHP) substrate-1 (SHPS-1) is a transmembrane protein that binds the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region and is expressed on the surface of CD11c(+) dendritic cells (DCs) and macrophages. In this study, we show that mice that express a mutant form of SHPS-1 lacking most of the cytoplasmic region are resistant to experimental autoimmune encephalomyelitis (EAE) in response to immunization with a peptide derived from myelin oligodendrocyte glycoprotein (MOG (35-55)). The MOG (35-55)-induced proliferation of, and production of IFN-gamma, IL-2, and IL-17, by T cells from immunized SHPS-1 mutant mice were reduced compared with those apparent for wild-type cells. The abilities of splenic DCs from mutant mice to stimulate an allogenic MLR and to prime Ag-specific T cells were reduced. Both IL-12-stimulated and TLR-dependent cytokine production by DCs of mutant mice were also impaired. Finally, SHPS-1 mutant mice were resistant to induction of EAE by adoptive transfer of MOG (35-55)-specific T cells. These results show that SHPS-1 on DCs is essential for priming of naive T cells and the development of EAE. SHPS-1 is thus a potential therapeutic target in inflammatory disorders of the CNS and other autoimmune diseases.  相似文献   

4.
Recent reports demonstrated that dendritic cells (DC) sense inflammatory and microbial signals differently, redefining their classical subdivision into an immature endocytic and a mature Ag-presenting differentiation stage. Although both signals induce DC maturation by up-regulating MHC class II and costimulatory molecules, only TLR signals such as LPS are able to trigger proinflammatory cytokine secretion by DCs, including Th1-polarizing IL-12. Here, we explored the murine Leishmania major infection model to examine the CD4(+) T cell response induced by differentially matured DCs. When partially matured TNF-DCs were injected into BALB/c mice before infection, the mice failed to control L. major infection and developed a Th2 response which was dependent on IL-4Ralpha signaling. In contrast, injections of fully matured LPS+CD40-DCs induced a Th1 response controlling the infection. Pulsing DCs with a lysate of L. major did not affect DC maturation with TNF-alpha or LPS+anti-CD40. When the expression of different Notch ligands on DCs was analyzed, we found increased expression of Th2-promoting Jagged2 in TNF-DCs, whereas LPS+CD40-DCs up-regulated the Th1-inducing Delta4 and Jagged1 molecules. The Th2 polarization induced by TNF-DCs required interaction with CD1d-restricted NKT cells. However, NKT cell activation by L. major lysate-pulsed DCs was not affected by blockade of the endogenous glycolipid, suggesting exchange with exogenous parasite-derived CD1 glycolipid Ag. In sum, the differentiation stage of DCs as well as their interaction with NKT cells determines Th1/Th2 differentiation. These results have generic implications for the understanding of DC-driven Th cell responses and the development of improved DC vaccines against leishmaniasis.  相似文献   

5.
Dendritic cells (DCs) are important antigen-presenting cells that control Th1- and Th2-type immunological reactions by releasing cytokines and interacting directly with T cells. Leukotriene B4 (LTB4), a classical proinflammatory lipid mediator for phagocytes, was recently identified as an important attractant for effector CD4+ and CD8+ T cells. However, little information is available on the roles of LTB4 and its receptor BLT1 in DCs. Here we show that functional BLT1 expressed in mouse bone marrow-derived DCs (BMDCs) plays important role in initiating Th1-type immune response. Detailed analyses using BMDCs revealed that BLT1-deficient DCs produced less IL-12p70 than WT DCs, leading to attenuated IFN-γ production in an allogeneic mixed lymphocyte reaction. Adoptive transfer of antigen-loaded BLT1-deficient DCs into naïve WT mice induced a weakened Th1- and enhanced Th2-response in vivo compared to WT DCs. BLT1-deficient mice consistently showed much attenuated delayed-type hypersensitivity (DTH), in which Th1-type cellular responses play a key role, and popliteal lymph node cells of BLT1-deficient mice showed reduced production of Th1 cytokines after DTH induction compared to cells from WT mice. Thus, in addition to its role in inflammation, the LTB4–BLT1 axis is important in initiating Th1-type immunological reactions mediated by DCs.  相似文献   

6.
NKT cells are a unique immunoregulatory T cell population that produces large amounts of cytokines. We have investigated whether stimulation of host NKT cells could modulate acute graft-vs-host disease (GVHD) in mice. Injection of the synthetic NKT cell ligand alpha-galactosylceramide (alpha-GalCer) to recipient mice on day 0 following allogeneic bone marrow transplantation promoted Th2 polarization of donor T cells and a dramatic reduction of serum TNF-alpha, a critical mediator of GVHD. A single injection of alpha-GalCer to recipient mice significantly reduced morbidity and mortality of GVHD. However, the same treatment was unable to confer protection against GVHD in NKT cell-deficient CD1d knockout (CD1d(-/-)) or IL-4(-/-) recipient mice or when STAT6(-/-) mice were used as donors, indicating the critical role of host NKT cells, host production of IL-4, and Th2 cytokine responses mediated by donor T cells on the protective effects of alpha-GalCer against GVHD. Thus, stimulation of host NKT cells through administration of NKT ligand can regulate acute GVHD by inducing Th2 polarization of donor T cells via STAT6-dependent mechanisms and might represent a novel strategy for prevention of acute GVHD.  相似文献   

7.
The transmembrane chemokine CXCL 16 (CXCL16), which is the same molecule as the scavenger receptor that binds phosphatidylserine and oxidized lipoprotein (SR-PSOX), has been shown to mediate chemotaxis and adhesion of CXC chemokine receptor 6-expressing cells such as NKT and activated Th1 cells. We generated SR-PSOX/CXCL16-deficient mice and examined the role of this chemokine in vivo. The mutant mice showed a reduced number of liver NKT cells, and decreased production of IFN-gamma and IL-4 by administration of alpha-galactosylceramide (alphaGalCer). Of note, the alphaGalCer-induced production of IFN-gamma was more severely impaired than the production of IL-4 in SR-PSOX-deficient mice. In this context, SR-PSOX-deficient mice showed impaired sensitivity to alphaGalCer-induced anti-tumor effect mediated by IFN-gamma from NKT cells. NKT cells from wild-type mice showed impaired production of IFN-gamma, but not IL-4, after their culture with alphaGalCer and APCs from mutant mice. Moreover, Propionibacterium acnes-induced in vivo Th1 responses were severely impaired in SR-PSOX-deficient as well as NKT KO mice. Taken together, SR-PSOX/CXCL16 plays an important role in not only the production of IFN-gamma by NKT cells, but also promotion of Th1-inclined immune responses mediated by NKT cells.  相似文献   

8.
Dendritic cells (DCs) are central to innate and adaptive immunity of early kidney ischemia-reperfusion injury (IRI), and strategies to alter DC function may provide new therapeutic opportunities. Sphingosine 1-phosphate (S1P) modulates immunity through binding to its receptors (S1P1-5), and protection from kidney IRI occurs in S1P3-deficient mice. Through a series of experiments we determined that this protective effect was owing in part to differences between S1P3-sufficient and -deficient DCs. Mice lacking S1P3 on bone marrow cells were protected from IRI, and S1P3-deficient DCs displayed an immature phenotype. Wild-type (WT) but not S1P3-deficient DCs injected into mice depleted of DCs prior to kidney IR reconstituted injury. Adoptive transfer (i.e., i.v. injection) of glycolipid (Ag)-loaded WT but not S1P3-deficient DCs into WT mice exacerbated IRI, suggesting that WT but not S1P3-deficient DCs activated NKT cells. Whereas WT DC transfers activated the Th1/IFN-γ pathway, S1P3-deficient DCs activated the Th2/IL-4 pathway, and an IL-4-blocking Ab reversed protection from IRI, supporting the concept that IL-4 mediates the protective effect of S1P3-deficient DCs. Administration of S1P3-deficient DCs 7 d prior to or 3 h after IRI protected mice from IRI and suggests their potential use in cell-based therapy. We conclude that absence of DC S1P3 prevents DC maturation and promotes a Th2/IL-4 response. These findings highlight the importance of DC S1P3 in modulating NKT cell function and IRI and support development of selective S1P3 antagonists for tolerizing DCs for cell-based therapy or for systemic administration for the prevention and treatment of IRI and autoimmune diseases.  相似文献   

9.
Previously, we demonstrated that Valpha14+ NKT cells and IFN-gamma are important upstream components in neutrophil-mediated host defense against infection with Streptococcus pneumoniae. In the present study, we extended these findings by elucidating the role of IFN-gamma in this Valpha14+ NKT cell-promoted process. Administration of recombinant IFN-gamma to Jalpha18KO mice prolonged the shortened survival, promoted the attenuated clearance of bacteria and improved the reduced accumulation of neutrophils and synthesis of MIP-2 and TNF-alpha in the lungs, in comparison to wild-type (WT) mice. In addition, intravenous transfer of liver mononuclear cells (LMNC) from WT mice into Jalpha18KO mice resulted in complete recovery of the depleted responses listed above, whereas such effects were not detected when LMNC were obtained from IFN-gammaKO or Jalpha18KO mice. Activation of Valpha14+ NKT cells by alpha-galactosylceramide (alpha-GalCer) significantly enhanced the clearance of bacteria, accumulation of neutrophils and synthesis of MIP-2 and TNF-alpha in the infected lungs; this effect was significantly inhibited by a neutralizing anti-IFN-gamma antibody. Finally, in a flow cytometric analysis, TNF-alpha synthesis was detected largely by CD11b(bright+) cells in the infected lungs. Our results demonstrated that IFN-gamma plays an important role in the neutrophil-mediated host protective responses against pneumococcal infection promoted by Valpha14+ NKT cells.  相似文献   

10.
Type 1 diabetes (T1D) in non-obese diabetic (NOD) mice may be favored by immune dysregulation leading to the hyporesponsiveness of regulatory T cells and activation of effector T-helper type 1 (Th1) cells. The immunoregulatory activity of natural killer T (NKT) cells is well documented, and both interleukin (IL)-4 and IL-10 secreted by NKT cells have important roles in mediating this activity. NKT cells are less frequent and display deficient IL-4 responses in both NOD mice and individuals at risk for T1D (ref. 8), and this deficiency may lead to T1D (refs. 1,6-9). Thus, given that NKT cells respond to the alpha-galactosylceramide (alpha-GalCer) glycolipid in a CD1d-restricted manner by secretion of Th2 cytokines, we reasoned that activation of NKT cells by alpha-GalCer might prevent the onset and/or recurrence of T1D. Here we show that alpha-GalCer treatment, even when initiated after the onset of insulitis, protects female NOD mice from T1D and prolongs the survival of pancreatic islets transplanted into newly diabetic NOD mice. In addition, when administered after the onset of insulitis, alpha-GalCer and IL-7 displayed synergistic effects, possibly via the ability of IL-7 to render NKT cells fully responsive to alpha-GalCer. Protection from T1D by alpha-GalCer was associated with the suppression of both T- and B-cell autoimmunity to islet beta cells and with a polarized Th2-like response in spleen and pancreas of these mice. These findings raise the possibility that alpha-GalCer treatment might be used therapeutically to prevent the onset and recurrence of human T1D.  相似文献   

11.
Immunization with Torpedo acetylcholine receptor (TAChR) induces experimental autoimmune myasthenia gravis (EAMG) in C57BL/6 (B6) mice. EAMG development needs IL-12, which drives differentiation of Th1 cells. The role of IFN-gamma, an important Th1 effector, is not clear and that of IL-17, a proinflammatory cytokine produced by Th17 cells, is unknown. In this study, we examined the effect of simultaneous absence of IL-12 and IFN-gamma on EAMG susceptibility, using null mutant B6 mice for the genes of both the IL-12/IL-23 p40 subunit and IFN-gamma (dKO mice). Wild-type (WT) B6 mice served as control for EAMG induction. All mice were immunized with TAChR in Freund's adjuvant. dKO mice developed weaker anti-TAChR CD4(+)T cells and Ab responses than WT mice. Yet, they developed EAMG symptoms, anti-mouse acetylcholine receptor (AChR) Ab, and CD4(+) T cell responses against mouse AChR sequences similar to those of WT mice. dKO and WT mice had similarly reduced AChR content in their muscles, and IgG and complement at the neuromuscular junction. Naive dKO mice had significantly fewer NK, NKT, and CD4(+)CD25(+)Foxp3(+) T regulatory (Treg) cells than naive WT mice. Treg cells from TAChR-immunized dKO mice had significantly less suppressive activity in vitro than Treg cells from TAChR-immunized WT mice. In contrast, TAChR-specific CD4(+) T cells from TAChR-immunized dKO and WT mice secreted comparable amounts of IL-17 after stimulation in vitro with TAChR. The susceptibility of dKO mice to EAMG may be due to reduced Treg function, in the presence of a normal function of pathogenic Th17 cells.  相似文献   

12.
Multiple studies have demonstrated that 4-1BB (CD137), a member of the TNF receptor superfamily, is expressed on several immune cells including activated T cells. However, the expression and the role of 4-1BB on natural killer T (NKT) cells have not been fully characterized. In this study, it was shown that 4-1BB was not expressed on naive NKT cells but was rapidly induced on activated NKT cells by TCR engagement with alpha-galactosylceramide (alpha-GalCer). Also, 4-1BB signaling provided by 3H3, an agonistic anti-4-1BB mAb, promoted NKT cell activation resulting in enhanced cytokine production of NKT cells driven by alpha-GalCer. When NKT cell-driven airway immune responses were evaluated by intranasal administration of alpha-GalCer, airway hyperresponsiveness (AHR) and lung inflammation were significantly more aggravated in mice treated with 3H3 and alpha-GalCer than in mice treated with alpha-GalCer alone. These aggravations were accompanied by up-regulation of IL-4, IL-13, and IFN-gamma production. Interestingly, AHR was not developed in IL-4Ralpha-deficient mice treated with alpha-GalCer with or without 3H3 but was exacerbated in IFN-gamma-deficient mice. Our study suggests that 4-1BB on NKT cells functions as a costimulatory molecule and exacerbates the induction of NKT cell-mediated AHR, which is dependent on the IL-4Ralpha-mediated pathway.  相似文献   

13.
Natural killer T (NKT) cells are a unique T-cell population that is positively selected by CD1d-expressing cells. In this study, we examined the kinetics of conventional CD4+TCRbeta+ and CD4-TCRbeta+ cells along with various NKT cell populations from WT and CD1d KO mice after oral Listeria monocytogenes (Lm) infection at different time points in tissue compartments. We found that CD4+TCRbeta+ cells expressing NK1.1+ (NKT) were constitutively expressed in the lung of both strains of mice, but disappeared after infection. In contrast, CD4-TCRbeta+ NK1.1+ cells migrated to the spleen. Here, we demonstrated that endogenous IL-12 was predominantly expressed in the spleen of CD1d KO mice 2 days after infection, whereas IL-4 was predominantly expressed in the liver of WT mice. Higher levels of IFN-gamma were expressed in MLN of CD1d KO but not in WT mice on day 5. Thus, tissue-specific ligands orchestrate the localization and activation of NKT cells to control immune response to Listeria, which may explain the difference in disease susceptibility.  相似文献   

14.
WSX-1 is the alpha subunit of the IL-27R complex expressed by T, B, NK/NKT cells, as well as macrophages and dendritic cells (DCs). Although it has been shown that IL-27 has both stimulatory and inhibitory effects on T cells, little is known on the role of IL-27/WSX-1 on DCs. LPS stimulation of splenic DCs in vivo resulted in prolonged CD80/CD86 expression on WSX-1-deficient DCs over wild-type DCs. Upon LPS stimulation in vitro, WSX-1-deficient DCs expressed Th1-promoting molecules higher than wild-type DCs. In an allogeneic MLR assay, WSX-1-deficient DCs were more potent than wild-type DCs in the induction of proliferation of and IFN-gamma production by responder cell proliferation. When cocultured with purified NK cells, WSX-1-deficient DCs induced higher IFN-gamma production and killing activity of NK cells than wild-type DCs. As such, Ag-pulsed WSX-1-deficient DCs induced Th1-biased strong immune responses over wild-type DCs when transferred in vivo. WSX-1-deficient DCs were hyperreactive to LPS stimulation as compared with wild-type DCs by cytokine production. IL-27 suppressed LPS-induced CD80/86 expression and cytokine production by DCs in vitro. Thus, our study demonstrated that IL-27/WSX-1 signaling potently down-regulates APC function and Th1-promoting function of DCs to modulate overall immune responses.  相似文献   

15.
We recently reported that the direct antitumor effectors in the liver induced by alpha-galactosylceramide (alpha-GalCer) are NK cells that are activated by the IFN-gamma produced from NK1.1 Ag(+) T cells (NKT cells) specifically stimulated with alpha-GalCer, whereas NKT cells cause hepatocyte injury through the Fas-Fas ligand pathway. In the present study, we investigated how mouse age affects the alpha-GalCer-induced effect using young (6-wk-old), middle-aged (30-wk-old), and old (75-wk-old) mice. The serum IFN-gamma and IL-4 concentrations as well as alanine aminotransferase levels after the alpha-GalCer injection increased in an age-dependent manner. An alpha-GalCer injection also induced an age-dependent increase in the Fas ligand expression on liver NKT cells. Under the stimulus of alpha-GalCer in vitro, the liver mononuclear cells from old and middle-aged mice showed vigorous proliferation, remarkable antitumor cytotoxicity, and enhanced production of both IFN-gamma and IL-4 in comparison to those of young mice, all of which were mediated mainly by NK1.1(+) cells. Furthermore, liver mononuclear cells from old mice stimulated with alpha-GalCer showed a more potent Fas-Fas ligand-mediated cytotoxicity against primary cultured hepatocytes than did those from young mice. Most alpha-GalCer-injected old mice, but no young mice, died, while anti-IFN-gamma Ab pretreatment completely inhibited mouse mortality. However, alpha-GalCer-induced hepatic injury did not improve at all by anti-IFN-gamma Ab treatment, and the Fas-ligand expression of liver NKT cells did not change. Taken together, the synthetic ligand-mediated function of NKT cells is age-dependently up-regulated, and the produced IFN-gamma is responsible for alpha-GalCer-induced antitumor immunity and the mouse mortality, while hepatic injury was unexpectedly found to be independent of IFN-gamma.  相似文献   

16.
Hypersensitivity pneumonitis (HP) is mediated by Th1 immune response. NKT cells regulate immune responses by modulating the Th1/Th2 balance. Therefore, we postulated that NKT cells play a critical role in the development of the HP by modulating the Th1/Th2 response. To address this issue, we explored the functional roles of NKT cells in Saccharopolyspora rectivirgula (SR)-induced HP. In CD1d(-/-) mice, the HP was worse in terms of histological changes, hydroxyproline levels, the CD4:CD8 ratio in bronchoalveolar lavage fluid, and SR-specific immune responses than in control mice. CD1d(-/-) mice showed elevated IFN-gamma production in the lung during the HP, and this was produced mainly by Gr-1+ neutrophils. The blockade of IFN-gamma in CD1d(-/-) mice attenuated the HP, whereas the injection of rIFN-gamma aggravated it. Moreover, the depletion of Gr-1+ neutrophils reduced CD8+ T cell numbers in bronchoalveolar lavage fluid during the HP. The adoptive transfer of IL-4(-/-) mouse NKT cells did not attenuate the HP, whereas wild-type or IFN-gamma(-/-) mouse NKT cells suppressed the HP. In conclusion, NKT cells producing IL-4 play a protective role in SR-induced HP by suppressing IFN-gamma-producing neutrophils, which induce the activation and proliferation of CD8+ T cells in the lung.  相似文献   

17.
Dendritic cells (DC) are key regulators of T cell immunity and tolerance. NKT cells are well-known enhancers of Th differentiation and regulatory T cell function. However, the nature of the DC directing T and NKT cell activation and polarization as well as the role of the respective CD1d Ags presented is still unclear. In this study, we show that peptide-specific CD4(+)IL-10(+) T cell-mediated full experimental autoimmune encephalomyelitis (EAE) protection by TNF-treated semimatured DCs was dependent on NKT cells recognizing an endogenous CD1d ligand. NKT cell activation by TNF-matured DCs induced high serum levels of IL-4 and IL-13 which are absent in NKT cell-deficient mice, whereas LPS plus anti-CD40-treated fully mature DCs induce serum IFN-gamma. In the absence of IL-4Ralpha chain signaling or NKT cells, no complete EAE protection was achieved by TNF-DCs, whereas transfer of NKT cells into Jalpha281(-/-) mice restored it. However, activation of NKT cells alone was not sufficient for EAE protection and early serum Th2 deviation. Simultaneous activation of NKT cells and CD4(+) T cells by the same DC was required for EAE protection. Blocking experiments demonstrated that NKT cells recognize an endogenous glycolipid presented on CD1d on the injected DC. Together, this indicates that concomitant and interdependent presentation of MHC II/self-peptide and CD1d/self-isoglobotrihexosylceramide to T and NKT cells by the same partially or fully matured DC determines protective and nonprotective immune responses in EAE.  相似文献   

18.
SHPS-1 is a transmembrane protein that binds the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region and is abundantly expressed on dendritic cells and macrophages. Here we show that mice expressing a mutant form of SHPS-1 fail to develop type-II collagen (CII)-induced arthritis (CIA), a model for rheumatoid arthritis in humans. Histological examinations of the arthritic paws from immunized wild-type mice revealed that cartilage was destroyed in association with marked mononuclear cell infiltration, while only mild cell infiltration was observed in immunized SHPS-1 mutant mice. Consistently, the serum levels of both IgG and IgG2a specific to CII and of IL-1β in immunized SHPS-1 mutant mice were markedly reduced compared with those apparent for wild-type mice. The CII-induced proliferation of, and production of cytokines by, T cells from immunized SHPS-1 mutant mice were reduced compared to wild-type cells. These results suggest that SHPS-1 is essential for development of CIA.  相似文献   

19.
CD1d-restricted NKT cells and CD4+CD25+ regulatory T (Treg) cells are thymus-derived subsets of regulatory T cells that have an important role in the maintenance of self-tolerance. Whether NKT cells and Treg cells cooperate functionally in the regulation of autoimmunity is not known. We have explored this possibility in experimental autoimmune myasthenia gravis (EAMG), an animal model of human myasthenia gravis, induced by immunization of C57BL/6 mice with the autoantigen acetylcholine receptor. We have demonstrated that activation of NKT cells by a synthetic glycolipid agonist of NKT cells, alpha-galactosylceramide (alpha-GalCer), inhibits the development of EAMG. alpha-GalCer administration in EAMG mice increased the size of the Treg cell compartment, and augmented the expression of foxp3 and the potency of CD4+CD25+ cells to inhibit proliferation of autoreactive T cells. Furthermore, alpha-GalCer promoted NKT cells to transcribe the IL-2 gene and produce IL-2 protein. Depletion of CD25+ cells or neutralization of IL-2 reduced the therapeutic effect of alpha-GalCer in this model. Thus, alpha-GalCer-activated NKT cells can induce expansion of CD4+CD25+ Treg cells, which in turn mediate the therapeutic effects of alpha-GalCer in EAMG. Induced cooperation of NKT cells and Treg cells may serve as a superior strategy to treat autoimmune disease.  相似文献   

20.
The regulatory roles of Th1 and Th2 cells in immune protection against Helicobacter infection are not clearly understood. In this study, we report that a primary H. pylori infection can be established in the absence of IL-12 or IFN-gamma. However, IFN-gamma, but not IL-12, was involved in the development of gastritis because IFN-gamma(-/-) (GKO) mice exhibited significantly less inflammation as compared with IL-12(-/-) or wild-type (WT) mice. Both IL-12(-/-) and GKO mice failed to develop protection following oral immunization with H. pylori lysate and cholera toxin adjuvant. By contrast, Th2-deficient, IL-4(-/-), and WT mice were equally well protected. Mucosal immunization in the presence of coadministered rIL-12 in WT mice increased Ag-specific IFN-gamma-producing T cells by 5-fold and gave an additional 4-fold reduction in colonizing bacteria, confirming a key role of Th1 cells in protection. Importantly, only protected IL-4(-/-) and WT mice demonstrated substantial influx of CD4(+) T cells in the gastric mucosa. The extent of inflammation in challenged IL-12(-/-) and GKO mice was much reduced compared with that in WT mice, indicating that IFN-gamma/Th1 cells also play a major role in postimmunization gastritis. Of note, postimmunization gastritis in IL-4(-/-) mice was significantly milder than WT mice, despite a similar level of protection, indicating that immune protection is not directly linked to the degree of gastric inflammation. Only protected mice had T cells that produced high levels of IFN-gamma to recall Ag, whereas both protected and unprotected mice produced high levels of IL-13. We conclude that IL-12 and Th1 responses are crucial for H. pylori-specific protective immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号