共查询到20条相似文献,搜索用时 0 毫秒
1.
For the ex vivo expansion of CD34+ cells, culture conditions were optimized using cytokine cocktails and media change methods. In addition, static, orbital-shake,
and stirred cultures were compared. After cultivation, total cell expansion, immunophenotypes, clonogenic ability, and metabolite
concentration in media were analyzed. Optimized media change methods enhanced the number of total nucleated cells (TNCs) by
600-fold (from 104 to 6 × 106 cells) in static cultures. Furthermore, intermittent orbital-shake cultures gave the highest fold increase of TNCs and CD34+/CD38− cells. These results imply that proliferation of CD34+ cells in intermittent shake cultures was more efficient than that in static cultures under optimized culture conditions. 相似文献
2.
Successful ex vivo expansion of hematopoietic stem cells (HSCs) would greatly benefit the treatment of disease and the understanding of crucial questions of stem cell biology. Here we show, using microarray studies, that the HSC-supportive mouse fetal liver CD3(+) cells specifically express the proteins angiopoietin-like 2 (Angptl2) and angiopoietin-like 3 (Angptl3). We observed a 24- or 30-fold net expansion of long-term HSCs by reconstitution analysis when we cultured highly enriched HSCs for 10 days in the presence of Angptl2 or Angptl3 together with saturating levels of other growth factors. The coiled-coil domain of Angptl2 was capable of stimulating expansion of HSCs. Furthermore, angiopoietin-like 5, angiopoietin-like 7 and microfibril-associated glycoprotein 4 also supported expansion of HSCs in culture. 相似文献
3.
da Silva CL Gonçalves R Lemos F Lemos MA Zanjani ED Almeida-Porada G Cabral JM 《Bioprocess and biosystems engineering》2003,25(6):365-369
In this study, we described the modelling of the expansion/maintenance of human hematopoietic stem/progenitor cells from adult human bone marrow. CD 34(+)-enriched cell populations from bone marrow were cultured in the presence and absence of human stroma in serum-free media containing bFGF, SCF, LIF and Flt-3 ligand for several days. The cells in the culture were analysed for expansion and phenotype by flow cytometry. Although significant expansion of bone marrow cultures occurred in the presence and absence of human stroma, the results of expansion were effectively better in the presence of a stromal layer. In both situations the phenotypic analysis demonstrated a great expansion of CD 34(+)38(-) cells. The differentiative potential of bone marrow CD 34(+) cells co-cultured with human stroma was primarily shifted towards the myeloid lineage with the presence of CD 15 and CD 33. 相似文献
4.
HOXB4-induced expansion of adult hematopoietic stem cells ex vivo 总被引:48,自引:0,他引:48
5.
Fong CY Gauthaman K Cheyyatraivendran S Lin HD Biswas A Bongso A 《Journal of cellular biochemistry》2012,113(2):658-668
Bone marrow mesenchymal stromal cells (BMMSCs) have been used as feeder support for the ex vivo expansion of hematopoietic stem cells (HSCs) but have the limitations of painful harvest, morbidity, and risk of infection to the patient. This prompted us to explore the use of human umbilical cord Wharton's jelly MSCs (hWJSCs) and its conditioned medium (hWJSC-CM) for ex vivo expansion of HSCs in allogeneic and autologous settings because hWJSCs can be harvested in abundance painlessly, are proliferative, hypoimmunogenic, and secrete a variety of unique proteins. In the presence of hWJSCs and hWJSC-CM, HSCs put out pseudopodia-like outgrowths and became highly motile. Time lapse imaging showed that the outgrowths helped them to migrate towards and attach to the upper surfaces of hWJSCs and undergo proliferation. After 9 days of culture in the presence of hWJSCs and hWJSC-CM, MTT, and Trypan blue assays showed significant increases in HSC numbers, and FACS analysis generated significantly greater numbers of CD34(+) cells compared to controls. hWJSC-CM produced the highest number of colonies (CFU assay) and all six classifications of colony morphology typical of hematopoiesis were observed. Proteomic analysis of hWJSC-CM showed significantly greater levels of interleukins (IL-1a, IL-6, IL-7, and IL-8), SCF, HGF, and ICAM-1 compared to controls suggesting that they may be involved in the HSC multiplication. We propose that cord blood banks freeze autologous hWJSCs and umbilical cord blood (UCB) from the same umbilical cord at the same time for the patient for future ex vivo HSC expansion and cell-based therapies. 相似文献
6.
Westerterp M Gourion-Arsiquaud S Murphy AJ Shih A Cremers S Levine RL Tall AR Yvan-Charvet L 《Cell Stem Cell》2012,11(2):195-206
Intact cholesterol homeostasis helps to maintain hematopoietic stem and multipotential progenitor cell (HSPC) quiescence. Mice with defects in cholesterol efflux pathways due to deficiencies of the ATP binding cassette transporters ABCA1 and ABCG1 displayed a dramatic increase in HSPC mobilization and extramedullary hematopoiesis. Increased extramedullary hematopoiesis was associated with elevated serum levels of G-CSF due to generation of IL-23 by splenic macrophages and dendritic cells. This favored hematopoietic lineage decisions toward granulocytes rather than macrophages in the bone marrow leading to impaired support for osteoblasts and decreased Cxcl12/SDF-1 production by mesenchymal progenitors. Greater HSPC mobilization and extramedullary hematopoiesis were reversed by raising HDL levels in Abca1(-/-)Abcg1(-/-) and Apoe(-/-) mice or in a mouse model of myeloproliferative neoplasm mediated by Flt3-ITD mutation. Our data identify a role of cholesterol efflux pathways in the control of HSPC mobilization. This may translate into therapeutic strategies for atherosclerosis and hematologic malignancies. 相似文献
7.
Ivanovic Z 《European cytokine network》2004,15(1):6-13
Although the utilization of IL-3 in the ex vivo expansion of hematopoietic stem cells has been considered as an attractive possibility, its mode of action remains unclear and controversial. Some reports show that IL-3 maintains or even enhances primitive stem cell activity, whereas others show the opposite. The presence of serum in culture media enhances the pro-differentiating effect of IL-3 on stem cells. Conversely, addition of IL-3 to serum-free cultures improves the capacity of TPO, SCF and Flt3-ligand to promote the self-renewal of primitive stem cells. The presence or absence of serum or of some serum substitutes (in serum-free cultures), as well as other culture parameters are probably responsible for these contrasting effects of IL-3 on stem cells. However, none of the data presently evaluated bring a clear, definitive explanation to this apparent paradox. Those data that appear to be the most informative are presented and discussed in this "technical review". 相似文献
8.
Lisa Nguyen Zheng Wang Adnan Y Chowdhury Elizabeth Chu Jiya Eerdeng Du Jiang Rong Lu 《EMBO reports》2018,19(8)
In most organ systems, regeneration is a coordinated effort that involves many stem cells, but little is known about whether and how individual stem cells compensate for the differentiation deficiencies of other stem cells. Functional compensation is critically important during disease progression and treatment. Here, we show how individual hematopoietic stem cell (HSC) clones heterogeneously compensate for the lymphopoietic deficiencies of other HSCs in a mouse. This compensation rescues the overall blood supply and influences blood cell types outside of the deficient lineages in distinct patterns. We find that highly differentiating HSC clones expand their cell numbers at specific differentiation stages to compensate for the deficiencies of other HSCs. Some of these clones continue to expand after transplantation into secondary recipients. In addition, lymphopoietic compensation involves gene expression changes in HSCs that are characterized by increased lymphoid priming, decreased myeloid priming, and HSC self‐renewal. Our data illustrate how HSC clones coordinate to maintain the overall blood supply. Exploiting the innate compensation capacity of stem cell networks may improve the prognosis and treatment of many diseases. 相似文献
9.
10.
Koichiro Saka Masahiro Kawahara Jinying Teng Makoto Otsu Hiromitsu Nakauchi Teruyuki Nagamune 《Journal of biotechnology》2013
The technique to expand hematopoietic stem cells (HSCs) ex vivo is eagerly anticipated to secure an enough amount of HSCs for clinical applications. Previously we developed a scFv-thrombopoietin receptor (c-Mpl) chimera, named S-Mpl, which can transduce a proliferation signal in HSCs in response to a cognate antigen. However, a remaining concern of the S-Mpl chimera may be the magnitude of the cellular expansion level driven by this molecule, which was significantly less than that mediated by endogenous wild-type c-Mpl. In this study, we engineered a tyrosine motif located in the intracellular domain of S-Mpl based on a top-down approach in order to change the signaling properties of the chimera. The truncated mutant (trunc.) and an amino-acid substitution mutant (Q to L) of S-Mpl were constructed to investigate the ability of these mutants to expand HSCs. The result showed that the truncated and Q to L mutants gave higher and considerably lower number of the cells than unmodified S-Mpl, respectively. The proliferation level through the truncated mutant was even higher than that of non-transduced HSCs with the stimulation of a native cytokine, thrombopoietin. Moreover, we analyzed the signaling properties of the S-Mpl mutants in detail using a pro-B cell line Ba/F3. The data indicated that the STAT3 and STAT5 activation levels through the truncated mutant increased, whereas activation of the Q to L mutant was inhibited by a negative regulator of intracellular signaling, SHP-1. This is the first demonstration that a non-natural artificial mutant of a cytokine receptor is effective for ex vivo expansion of hematopoietic cells compared with a native cytokine receptor. 相似文献
11.
C J Eaves H J Sutherland C Udomsakdi P M Lansdorp S J Szilvassy C C Fraser R K Humphries M J Barnett G L Phillips A C Eaves 《Blood cells》1992,18(2):301-307
A quantitative assay for a primitive human hematopoietic cell has been developed. The cell identified has been assigned the operational designation of long-term culture (LTC)-initiating cell based on its ability when cultured on supportive fibroblast monolayers to give rise to daughter cell(s) detectable by standard in vitro colony assays. Three lines of evidence support the view that the LTC-initiating cell assay may allow the relatively specific enumeration of totipotent cells with in vivo reconstituting potential. These involve the demonstration: (1) that conditions in analogous murine long-term cultures stimulate the extensive amplification (self-renewal) of some totipotent long-term repopulating cells, (2) that most of the LTC-initiating cells in normal human bone marrow are phenotypically different from most of the colony-forming cells present in the same cell suspensions in their possession of a number of characteristics specifically associated with transplantable stem cells; and (3) that cultured marrow cells from patients with chronic myeloid leukemia which, after maintenance under LTC conditions for 10 days contain some normal LTC-initiating cells but no detectable leukemic LTC-initiating cells, can after autografting reconstitute the hematopoietic system with normal cells. 相似文献
12.
Autologous stem cell transplantation (ASCT) is the gold standard therapy for suitable multiple myeloma (MM) patients after induction with high dose therapy. To date, the evidence of a reliable marker of prognosis in these cases remains scarce. Our aim was to evaluate appearance of unrelated atypical serum immunofixation patterns (ASIPs) as a marker of prognosis in MM patients submitted to ASCT. We retrospectively analysed data from 65 patients. Interestingly, we observed that presence of ASIPs was associated with longer progression-free survival and longer overall survival. Our results suggested that presence of ASIPs could be a novel marker of good prognosis in MM patients submitted to ASCT. 相似文献
13.
Taubert I Saffrich R Zepeda-Moreno A Hellwig I Eckstein V Bruckner T Ho AD Wuchter P 《Cytotherapy》2011,13(4):459-466
Background aimsPrevious studies have demonstrated that the combination of granulocyte–colony-stimulating factor (G-CSF) + plerixafor is more efficient in mobilizing CD34+ hematopoietic stem cells (HSC) into the peripheral blood than G-CSF alone. In this study we analyzed the impact of adding plerixafor to G-CSF upon the mobilization of different HSC subsets.MethodsWe characterized the immunophenotype of HSC subsets isolated from the peripheral blood of eight patients with multiple myeloma (MM) before and after treatment with plerixafor. All patients were supposed to collect stem cells prior to high-dose chemotherapy and consecutive autologous stem cell transplantation, and therefore received front-line mobilization with 4 days of G-CSF followed by a single dose of plerixafor. Samples of peripheral blood were analyzed comparatively by flow cytometry directly before and 12 h after administration of plerixafor.ResultsThe number of aldehyde dehydrogenase (ALDH)bright and CD34+ cells was significantly higher after plerixafor treatment (1.2–5.0 and 1.5–6.0 times; both P < 0.01) and an enrichment of the very primitive CD34+ CD38? and ALDHbright CD34+ CD38? HSC subsets was detectable. Additionally, two distinct ALDH+ subsets could be clearly distinguished. The small ALDHhigh subset showed a higher number of CD34+ CD38? cells in contrast to the total ALDHbright subpopulation and probably represented a very primitive subpopulation of HSC.ConclusionsA combined staining of ALDH, CD34 and CD38 might represent a powerful tool for the identification of a very rare and primitive hematopoietic stem cell subset. The addition of plerixafor mobilized not only more CD34+ cells but was also able to increase the proportion of more primitive stem cell subsets. 相似文献
15.
《Matrix biology》2015
Hematopoietic stem cells (HSCs) have the capability to migrate back and forth between their preferred microenvironment in bone marrow niches and the peripheral blood, but under steady-state conditions only a marginal number of stem cells can be found in the circulation. Different mobilizing agents, however, which create a highly proteolytic milieu in the bone marrow, can drastically increase the number of circulating HSCs. Among other proteases secreted and membrane-bound matrix metalloproteinases (MMPs) are known to be involved in the induced mobilization process and can digest niche-specific extracellular matrix components and cytokines responsible for stem cell retention to the niches. Iatrogenic stem cell mobilization and stem cell homing to their niches are clinically employed on a routine basis, although the exact mechanisms of both processes are still not fully understood. In this review we provide an overview on the various roles of MMPs in the induced release of HSCs from the bone marrow. 相似文献
16.
《遗传学报》2016,(10)
正Establishment of a hematopoietic stem cell(HSC)pool depends on the appropriate formation,maturation and mobilization of HSCs in vertebrates.In mice,the aorta-gonad-mesonephros(AGM)is a prominent site for the formation of definitive HSCs from endothelial cells,although the placenta and yolk sac also give rise to HSCs(Mikkola and Orkin,2006;Chen et al.,2009).After formation,AGM-derived HSCs migrate to the fetal liver(FL),and ultimately 相似文献
17.
Shu-Ching Hsu Li-Cheng Lu Kuang-Yu Chan Chien-Hsun Huang Shih-Lung Cheng Yung-Shiang Chan Yu-Shao Yang Yi-Ting Lai Chao-Ling Yao 《Cytotherapy》2019,21(7):755-768
BackgroundDendritic cells (DCs) that are derived from hematopoietic stem cells (HSCs) are the most potent antigen-presenting cells and play a pivotal role in initiating the immune response. Hence, large-scale production and direct induction of functional DCs ex vivo from HSCs are crucial to HSC research and clinical potential, such as vaccines for cancer and immune therapy.MethodsIn a previous study, we developed a serum-free HSC expansion system (SF-HSC medium) to expand large numbers of primitive HSCs ex vivo. Herein, a DC induction and expansion medium (DC medium) was proposed to further generate large numbers of functional DCs from serum-free expanded HSCs, which were developed and optimized by factorial design and the steepest ascent method.ResultsThe DC medium is composed of effective basal medium (Iscove's modified Dulbecco's medium [IMDM]) and cytokines (2.9 ng/mL stem cell factor [SCF], 2.1 ng/mL Flt-3 ligand, 3.6 ng/mL interleukin [IL]-1β, 19.3 ng/mL granulocyte-macrophage colony-stimulating factor [GM-CSF] and 20.0 ng/mL tumor necrosis factor-α [TNF-α]). After 10-day culture in DC medium, the maximum fold expansion for accumulated CD1a+CD11c+ DCs was more than 4000-fold, and the induced DCs were characterized and confirmed by analysis of growth kinetics, surface antigen expression, endocytosis ability, mixed lymphocyte reaction, specific cytokine secretion and lipopolysaccharide stimulation.DiscussionIn conclusion, the combination of DC medium and SF-HSC medium can efficiently induce and expand a large amount of functional DCs from a small scale of HSCs and might be a promising source of DCs for vaccine and immune therapy in the near future. 相似文献
18.
19.
Ex vivo production of hematopoietic progenitor cells has potential applications for cell therapy to alleviate cytopenias associated with chemotherapy and for gene therapy. In both therapies, progenitor and stem cells are considered crucial factors for therapeutic success. Assays for progenitor cells, however, take 2 weeks to complete, which is similar to the length of a typical culture. Therefore, a real-time estimation of the percentage or number of progenitor cells, based on rapid measurements, would be useful for optimization of feeding and harvest decisions. In this study, metabolic activity assays and flow cytometric analysis were used to estimate the content of progenitor cells. The measured metabolic activities are a collective contribution from all types of cells. Cells in granulomonocytic cultures have been lumped into six cell types and metabolic rates have been modeled as a linear function of cell composition and growth rate and as a nonlinear function of cell density. Data from 24 experiments were utilized to determine the model parameters in a calibration step. These data include flow cytometric analysis of more mature hematopoietic cells, progenitor cell colony assays, total cell content, and metabolite concentrations, and cover a wide range of cell composition, cell density, and growth rate. After calibration, the model is able to deliver good predictions of progenitor cell content for cultures with higher percentages of progenitor cells, as well as the peak progenitor cell content, based only on parameters that can be rapidly measured. With the aid of those predictions a harvest strategy was developed that will allow optimizing the harvest time based on the culture kinetics of each patient or donor inoculum, rather than using retrospective analysis to determine a uniform harvest time. 相似文献
20.
Reversible integration of the dominant negative retinoid receptor gene for ex vivo expansion of hematopoietic stem/progenitor cells 总被引:2,自引:0,他引:2
Muramatsu M Hanazono Y Ogasawara Y Okada T Mizukami H Kume A Mizoguchi H Ozawa K 《Biochemical and biophysical research communications》2001,281(4):891-896
Proliferation of vascular smooth muscle cells (VSMC) contributes to the pathogenesis of atherosclerosis, and glycated serum albumin (GSA, Amadori adduct of albumin) might be a mitogen for VSMC proliferation, which may further be associated with diabetic vascular complications. In this study, we investigated the involvement of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), and protein kinase C (PKC), in GSA-stimulated mitogenesis, as well as the functional relationship between these factors. VSMC stimulation with GSA resulted in a marked activation of ERK. The MAPK kinase (MEK) inhibitor, PD98059, blocked GSA-stimulated MAPK activation and resulted in an inhibition of GSA-stimulated VSMC proliferation. GSA also increased PKC activity in VSMC in a dose-dependent manner. The inhibition of PKC by the PKC inhibitors, GF109203X and Rottlerin (PKCdelta specific inhibitor), as well as PKC downregulation by phorbol 12-myristate 13-acetate (PMA), inhibited GSA-induced cell proliferation and blocked ERK activation. This indicates that phorbol ester-sensitive PKC isoforms including PKCdelta are involved in MAPK activation. Thus, we show that the MAPK cascade is required for GSA-induced proliferation, and that phorbol ester-sensitive PKC isoforms contribute to cell activation and proliferation in GSA-stimulated VSMC. 相似文献