首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of different temperatures 10, 15, 20, and 25°C on the food consumption, growth, moulting rate, and respiration of Palaemon pacificus (Stimpson) from Langebaan Lagoon, west coast of South Africa, was studied under laboratory conditions. At 10°C mortality was high so that food consumption and moulting rate could not be determined as these were very low. At higher temperatures, food consumption was found to be temperature dependent, the rate at 25°C being twice that at 15°C. Growth rate was most favourable at 25°C. At 28°C growth rate was lower than at 20°C but higher than at 15°C. The intermoult period was 17 days at 15°C, and 11 and 10 days at 20, and 25°C, respectively. It seems that from an energetic point of view, 25°C is the most favourable temperature for P. pacificus. Several indices of growth efficiency at different temperatures are presented. The appearance of this prawn in South African west coast localities such as Langebaan during the summer and its disappearance during winter, can be explained by its temperature preferences. The possibility that thermal pollution from a nuclear power station may be beneficial to this prawn, is discussed.  相似文献   

2.
Energy metabolism is studied in great ramshorn Planorbarius corneus during embryonic development. It is shown that the rate of oxygen consumption is constantly increasing in the process of embryogenesis. The respiration intensity (rate of the oxygen consumption per unit of the embryo volume) initially increases and then slowly decreases until eclosion. At the early stages of development until the early trochophore stage, the embryo is not growing, and, thus, the change in the rate of oxygen consumption during this period is not associated with the change of the embryo volume. Reduction in the intensity of respiration begins simultaneously with the beginning of the growth of the embryo at the stage of the middle trochophore. Starting from the middle trochophore and until eclosion, an association between oxygen consumption rate and volume of the embryo can be described with an allometric equation with exponential coefficient equal to approximately 0.23.  相似文献   

3.
The rate of oxygen consumption of stepwise acclimated Mytilus edulis L. increased linearly from 30 to 10‰ salinity (S) while that of Katherina tunicata (Wood) was not significantly different between 10 and 30‰ S. Heart rate was 21–22 and 17–18 beats m?1 in Mytilus edulis and Katherina tunicata, respectively, and no difference was found in the heart rate of either species acclimated stepwise to 10, 20 or 30‰ S. The average oxygen consumption rate of Mytilus edulis exposed to 12 h, 30-10-30 and 10-30-10‰ S cycles of fluctuating salinity was significantly lower than the respective control rate: there was a similar response during the 30-10-30‰ S cycle in Katherina tunicata. The respiration rate of Mytilus edulis and Katherina tunicata declined as salinity deviated from the control salinity and increased as salinity returned to the control salinity. The rate of oxygen consumption by K. tunicata varied directly with the ambient salinity during the 10-30-10‰ S cycle. The average heart rate of Mytilus edulis was significantly lower during cyclic changes in salinity than at the respective control salinities; a similar relationship existed for Katherina tunicata during the 10-30-10‰ S cycle. Heart rate of Mytilus edulis varied in a parallel manner with oxygen consumption during both cycles. Katherina tunicata heart rate was relatively constant and could not be fitted to a regression line during the 10-30-10‰ S cycle. The normalized heart rate increased to 113% of control at 10‰ S of the 30-10-30‰ S cycle and returned to the control rate by 12 h. The oxygen consumption and heart rate of these two species are not directly coupled to regulation of water volume because different responses are observed with respect to salinity although there is poor water volume regulation in both species.  相似文献   

4.
Activity and respiration in the anemone, Metridium senile (L.), were monitored under both constant and fluctuating salinity conditions. During constant exposure to 50% sea water it was found that the animals retracted the tentacles and that the rate of oxygen consumption decreased by ≈50%. The same response was elicited from animals in 100% sea water in a contracted state. Animals exposed to continually fluctuating salinities were found to retract the tentacles, contract the body wall, and produce amounts of mucus during periods of decreasing salinities. These reactions were reversed during exposure to increasing salinity. Oxygen consumption never ceased entirely in animals exposed to dilute sea water and it was found that during declining oxygen tension M. senile regulated its oxygen consumption until the environmental oxygen tension fell to ≈30% saturation.  相似文献   

5.
Rates of respiration and growth were measured for larvae of the spider crab Hyas araneus L., reared in the laboratory from hatching to metamorphosis. The moulting cycle was simultaneously monitored. In both zoeal instars individual respiration rate (R) increased as a linear function of time (t) of development, whereas growth, measured as dry weight (W), carbon (C), nitrogen (N), hydrogen (H), and energy content (E, calculated from C) followed a power function of t. Weight-specific respiration rate (QO2) was in all instars maximum in early postmoult, and minimum in intermoult and early premoult. Zoea II and megalopa instars showed another conspicuous QO2 increase during late premoult. Respiration (both R and QO2)and growth of the megalopa could be described by non-linear (quadratic) functions of t. R and QO2 during this larval stage were not correlated with W, but were controlled by events of the moulting cycle: R followed a similar pattern to QO2 (minimum values in intermoult), whereas biomass of the megalopa changed conversely, with a maximum in intermoult and early premoult. The respiratory coefficient (i.e. the ratio of metabolic energy loss: energy gain by body growth) was far lower (<0.8) in the zoeal instars than in the megalopa (>5), suggesting a strongly reduced capability of energy conversion in the final larval stage of H. araneus.  相似文献   

6.
When the detached first leaves of green or etiolated oat (Avena sativa cv. Victory) seedlings senesce in the dark, their oxygen consumption shows a large increase, beginning after 24 hours and reaching a peak of up to 2.5 times the initial rate by the 3rd day. This effect takes place while the chlorophyll of green leaves, or the carotenoid of etiolated leaves, is steadily decreasing. Kinetin, at a concentration which inhibits the decrease in pigment, completely prevents the respiratory rise; instead, the oxygen consumption drifts downwards. Lower kinetin concentrations have a proportional effect, 50% reduction of respiration being given by about 0.1 mg/l. About one-fifth of the respiratory rise may be attributed to the free amino acids which are liberated during senescence; several amino acids are shown to cause increases of almost 50% in the oxygen consumption when supplied at the concentrations of total amino acid present during senescence. A smaller part of the rise may also be due to soluble sugars liberated during senescence, largely coming from the hydrolysis of a presumptive fructosan. The remainder, and the largest part, of the increase is ascribed to a natural uncoupling of respiration from phosphorylation. This is deduced from the fact that dinitrophenol causes a similar large rise in the oxygen consumption of the fresh leaves or of leaf segments kept green with kinetin, but causes only a very small rise when the oxygen consumption is near its peak in senescent controls. The respiration of these leaves is resistant to cyanide, and 10 mm KCN even increases it by some 30%; in contrast, etiolated leaves of the same age, which undergo a similar rise in oxygen consumption over the same time period, show normal sensitivity to cyanide. The respiratory quotient during senescence goes down as low as 0.7, both with and without kinetin, though it is somewhat increased by supplying sugars or amino acids; glucose or alanine at 0.3 m bring it up to 1.0 and 0.87, respectively.  相似文献   

7.
The rate of loss of water and the rate of uptake of oxygen were measured continuously throughout the development of Lucilia cuprina within the puparium. Changes in these parameters were correlated with changes observed in morphology of cuticles and respiratory structures during development.In development at 26°C, there is, at 20–22 hr after puparium formation a major loss of water by mechanical expulsion of moulting fluid chiefly through the posterior larval spiracles after the severing of the posterior larval tracheae. This loss of water is essential to survival and is followed by an extremely low rate of water loss attributed to slow diffusion of water through the resulting air gap between the pupal cuticle and the puparium. There is an increase in oxygen consumption during the pupal movements associated with the casting of the larval tracheae followed by a sharp reduction in oxygen consumption until the pupal horns are everted a short time later. This combination of physiological events enables development to proceed over a wide range of conditions in the puparial environment.  相似文献   

8.
1. The respiration of luminous bacteria has been studied by colorimetric and manometric methods. 2. Limulus oxyhaemocyanin has been used as a colorimetric indicator of oxygen consumption and indicator dyes were used for colorimetric determination of carbon dioxide production. 3. The Thunberg-Winterstein microrespirometer has been used for the measurement of the rate of oxygen consumption by luminous bacteria at different partial pressures of oxygen. 4. The effect of oxygen concentration upon oxygen consumption has been followed from equilibrium with air to low pressures of oxygen. 5. Luminous bacteria consume oxygen and produce carbon dioxide independent of oxygen pressures from equilibrium with air (152 mm.) to approximately 22.80 mm. oxygen or 0.03 atmosphere. 6. Dimming of a suspension of luminous bacteria occurs when oxygen tension is lowered to approximately 2 mm. Hg (0.0026 atmosphere) and when the rate of respiration becomes diminished one-half. 7. Pure nitrogen stops respiratory activity and pure oxygen irreversibly inhibits oxygen consumption. 8. The curve for rate of oxygen consumption with oxygen concentration is similar to curves for adsorption of gasses at catalytic surfaces, and agrees with the Langmuir equation for the expression of the amount of gas adsorbed in unimolecular layer at catalytic surfaces with gas pressure. 9. A constant and maximum rate of oxygen consumption occurs in small cells when oxygen concentration becomes sufficient to entirely saturate the surface of the oxidative catalyst of the cell.  相似文献   

9.
The oxygen consumption of individuals of Petrobius brevistylis has been measured before, during, and after the uptake of fluid by the insects eversible abdominal vesicles. There was no difference in consumption between fresh animals and those that had been dehydrated or those that had been allowed to rehydrate after an exposure to a NaCl solution. However, during the process of taking up fluid there was over a 200% increase in the respiration rate. While the increase in the rate of oxygen consumption was related to the concentration of the fluid from which the animals were taking up water, the increase in the amount of oxygen consumed was related to the concentration of the substrate solution and the amount of uptake. Part of the oxygen increase is ascribed to the posture adopted by the animals during the uptake of fluid and the remainder to the active transport processes that may be occurring.  相似文献   

10.
Rates of oxygen consumption were measured in oocytes of the starfish Patiria miniata prior to and after the initiation of meiotic maturation in response to 1-methyladenine. No significant change in the rate of respiration was noted until after the completion of meiosis, at which point a two-fold increase in the rate of respiration was observed. The rate of oxygen consumption was also measured in response to fertilization and artificial activation with pronase. A transitory “burst” of oxygen consumption was noted in response to both stimuli. This “burst” is larger and of briefer duration in pronase-treated eggs. Possible interpretations of these phenomena are discussed.  相似文献   

11.
The oxygen consumption of single cysts (90–110 /tg dry wt) was measured with an oxygen electrode microrespirometer. The mean oxygen consumption of nine cysts after 7 days in tap-water, was 0–48 + 0–05 mm3 02 mg dry wt-1 h-1. After transfer to potato root diffusate for 1 day the mean oxygen consumption of the same cysts showed a significant increase to 159±7% of the rate recorded before they were removed from water. After 3 and 7 days in diffusate the corresponding means were 131±9% and 127±12% respectively. Cysts that remained in water throughout the experiments did not show any significant change in their oxygen consumption from the rate recorded after 7 days. The initial increase in oxygen uptake after the addition of diffusate was shown not to be due to the presence of microorganisms. Comparison of hatching data with the changes in oxygen consumption of similar cysts after 24 h in diffusate suggests that the increased oxygen uptake cannot be attributed solely to locomotor activity of the juveniles during the hatching process. The increased rate of respiration may precede other known changes that follow after the juveniles within a cyst are stimulated to hatch.  相似文献   

12.
The data of this paper indicate that: 1. The "energy of activation" (µ) of sulfur oxidation by the autotrophic bacterium, Thiobacillus thiooxidans, is similar to that of other respirations. 2. The pH of the menstruum does not influence the respiration on sulfur between the limits of pH 2 to 4.8 once contact between the bacterial cell and the sulfur particle has been established but it does influence the rate at which such contact occurs. 3. The pO2 has little effect upon the respiration of this organism. 4. Most organic materials have no detectable effect upon the respiration of Thiobacillus thiooxidans, but the organic acids of terminal respiration seem to stimulate the respiration in the absence of oxidizable sulfur and certain of them inhibit sulfur oxidation. 5. In so far as inhibitor studies on intact cells are trustworthy, sulfur oxidation goes through iron-containing systems similar to cytochrome. It is possible that the oxygen contained in the sulfuric acid formed during sulfur oxidation is derived from the oxygen of the water.  相似文献   

13.
The oxygen consumption (routine rate) of Branchinella kugenumaensis, inhabiting tropical astatic ponds is measured at 28°C. Two distinct trends are observed in the oxygen consumption by this fairy shrimp; young, immature animals have a higher rate than the older, sexually mature animals. Branchinella kugenumaensis falls under the intermediate group of Bertalanffy, where respiration falls between the respiration surface proportional and the respiration weight proportional metabolism.  相似文献   

14.
The effects of ingested or injected 20-hydroxyecdysone on silkworm larvae (Bombyx mori) including death without moulting, death following completion of promoted moulting, death during promoted moulting (ecdysis inhibition) and inhibition in growth with and without effects on moulting, are dependent upon the concentration of exogenous hormone, the precise developmental stage of the treated larvae, and the duration of exposure to the exogenous ecdysteroid. Comparisons of 20-hydroxyecdysone with other phytoecdysteroids in the silkworm and pink bollworm, Pectinophora gossypiella, show a similar but more potent effect induced by ponasterone A, while cyasterone causes an ‘antiecdysone’ effect.  相似文献   

15.
Oxygen consumption in sea water increased with size and tissue weight of Natica maculosa Lamarck at ambient temperatures (28–29.5 dgC) and salinities (31–32‰) in a fashion comparable with other naticids. When measured in submerged shore sand, oxygen consumption resembled that in sea water among smaller and some larger Natica but was much lower in several larger snails. Even using the higher measurements, respiration accounted for a remarkably low proportion of the energy consumed in Umbonium prey, and this also matches previous findings with Polinices. Limited observations indicate that production of egg collars may account for > 30‰ of the consumption in adult females. Estimation of faeces and mucus were, however, unsuccessful. It is suggested that respiration in nature might be higher than recorded hitherto because of high metabolic costs and very long duration of drilling the shelled prey.  相似文献   

16.
H. Hirata  S Yamasaki 《Hydrobiologia》1987,147(1):283-288
The effect of feeding on the respiration rate of Brachionus plicatilis was studied. Oxygen consumption was determined under two feeding regimes, duplicate feeding and constant feeding. Oxygen consumption rate increased during feeding. The oxygen consumption profile is discussed in relation to the following processes:
  1. filtration, mastication, and locomotion during feeding
  2. specific dynamic action (SDA)
  3. egg formation and routine metabolism.
  相似文献   

17.
We studied the rate of oxygen consumption by the Lymnaea stagnalis embryos. The rate of oxygen consumption increased consistently during embryogenesis. The volume specific rate of oxygen consumption increased initially from the early cleavage stages until the gastrula stage and then decreased gradually to the eclosion of snails. There are three periods in embryogenesis of L. stagnalis, which differ in the coefficients of allometric dependence between the rate of oxygen consumption and volume of embryos: (1) early embryogenesis, when the increase in the rate of oxygen consumption is not accompanied by the growth of volume of the embryos; (2) larval period (trochophore and veliger stages; exponential coefficient k = 0.514), and (3) postlarval period (exponential coefficient k = 0.206).  相似文献   

18.
Oxygen consumption of Amphibola crenata (Gmelin) was measured in various salinity-temperature combinations (< 0.1‰ to 41‰ salinity and 5 to 30°C) in air, and following exposure to declining oxygen tensions. In all experimental conditions, respiration varied with the 0.44 power of the body weight (sd = 0.14). The aquatic rate was consistently higher than the aerial rate of oxygen consumption, although at 30 °C the two rates were similar. Oxygen consumption increased with temperature up to 25 °C in all salinities; the lowest values were recorded at temperatures below 10 °C and at 30 °C in the most dilute medium. At all exposure temperatures, the oxygen consumption of Amphibola decreased regularly with salinity down to 0.1 ‰, and following exposure to concentrated sea water (41‰). Salinity had the least effect at 15 °C which was the acclimation temperature. In general, all of the temperature coefficients (Q10 values) were low, < 1.65. However, Q10 values above 2.8 were recorded at a salinity of 17.8‰ between 10 and 15 °C. Oxygen consumption of all size classes of Amphibola was more temperature dependent in air than in water and small individuals show a greater difference between their aerial and aquatic rates than larger snails. The rates of oxygen consumption in declining oxygen tensions were expressed as fractions of the rates in air saturated sea water at each experimental salinity-temperature combination. The quadratic coefficient B2 becomes increasingly more negative with both decreasing salinity and temperatures up to 20 °C. At higher temperatures (25 and 30 °C) the response is reversed such that O2 uptake in snails becomes increasingly independent of declining oxygen tensions at higher salinities. On exposure to a salinity of 4‰, Amphibola showed no systematic response to declining oxygen tension with respect to temperature. The ability of Amphibola to maintain its rate of oxygen consumption in a wide range of environmental conditions is discussed in relation to its potential for invading terrestrial habitats and its widespread distribution on New Zealand's intertidal mudflats.  相似文献   

19.
Polarographical determination of oxygen concentration has shown that in rats with experimental hepatitis induced by combined ethanol and CCl4 administration for 4 weeks, the functioning of the hepatocyte mitochondrial respiratory chain is impaired. Development of liver pathology was accompanied by adipose dystrophy, fibrosis, and an increase of triglycerides and lipid peroxidation products in the liver tissue. The endogenous respiration rate in hepatocytes isolated from the pathologically altered liver was 34% higher than in the control. Cell respiration was not stimulated by the addition of the substrates malate and pyruvate with digitonine. An uncoupler of oxidation and phosphorylation, 2,4-dinitrophenol, increased the hepatocyte oxygen consumption rate by 37%, while addition of the inhibitor of the I complex, rotenone, decreased cell respiration in pathologically altered hepatocytes by 27%. The states 3 (V3) and 4 (V4) of mitochondrial respiration with malate + glutamate as substrates were found to be higher by 70% and 56%, respectively, as compared with the control level. When using malate + glutamate or succinate as substrates, V3 and Vd (dinitrophenol respiration) in the toxic hepatitis hepatocyte mitochondria did not differ from the control, which indicates no uncoupling occurred of the oxidation and phosphorylation processes. Cytochrome c oxidase activity was elevated (+80%) as compared with the control. Administration of the hypolipidemic agent symvastatin simultaneously with ethanol and CCl4 resulted in a reduction of the degree of liver adipose dystrophy, prevented activation of lipid peroxidation, and decreased the hepatocyte endogenous respiration rate. Addition of malate + pyruvate, dinitrophenol or rotenone produced oxygen consumption changes similar to those in the control. However, in mitochondria isolated from the pathologically altered liver, symvastatin induced an uncoupling effect on the respiratory chain in the presence of the substrates malate + glutamate, but did not change the cytochrome c oxidase activity. We suggest that functioning of the NCCR complex in the hepatocyte mitochondria of animals with experimental toxic hepatitis is impaired, which leads to an intensive superoxide anion production at the level of this complex. Under these conditions, the defect of the NADH-coenzyme Q-oxidoreductase is compensated by functioning of other complexes of the respiratory chain (SCCR, coenzyme Q-cytochrome c-reductase, cytochrome c oxidase, and ATP-synthase activities).  相似文献   

20.
The final moult in cicadas marks a major transition in lifestyle and is a behaviour that makes the cicada vulnerable to predation. Consequently, emergence times are short and, we predict, therefore the rate of energy consumption would be high. Hence, we measured the energetic cost of emergence in Cyclochila australasiae (green grocer) and Abricta curvicosta (floury baker) cicadas during the final moult from nymph to adult cicada. Maximum energy expended whilst emerging was compared between the sexes and species. Even though C. australasiae take longer to emerge than A. curvicosta, the mass-specific cost of emergence is not different between the two species (C. australasiae: 11.34+/-2.55 J g(-1); A. curvicosta: 12.91+/-1.90 J g(-1)). The mass-specific metabolic rates of fully emerged adults of both species are approximately twice those of the nymphs and the maximum metabolic rate during emergence is about 1.5 times higher than the resting metabolic rate of emerged adults. Emergence times, as indicated by rates of oxygen consumption, are longer than expected and probably reflect limitations in the oxygen capacity of the cicadas during moulting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号