共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Meixiao Zhan Ke He Jing Xiao Fei Liu Haihe Wang Zhenglin Xia Xiaopeng Duan Rui Huang Yong Li Xu He Hua Yin Guoan Xiang Ligong Lu 《Journal of cellular and molecular medicine》2018,22(8):3758-3767
Accumulating studies supported that lncRNAs played important roles in tumorigenesis. LncRNA HOXA11‐AS was a novel lncRNA that has been proved to involved in several tumours. However, the role of HOXA11‐AS in the development of hepatocellular carcinoma (HCC) remains to be explained. In our study, we showed that HOXA11‐AS expression was up‐regulated in the HCC tissues, and the higher expression of HOXA11‐AS was associated with the advanced stage in the HCC samples. In addition, we indicated that the expression of HOXA11‐AS was up‐regulated in HCC cell lines (Hep3B, SMMC‐7721, MHCC97‐H and BEL‐7402) compared with normal liver cell lines (HL‐7702). Overexpression of HOXA11‐AS promoted HCC proliferation and invasion and induced the epithelial‐mesenchymal transition (EMT) and knockdown of HOXA11‐AS suppressed the HCC cell proliferation and invasion. However, we showed that miR‐214‐3p expression was down‐regulated in the HCC tissues and cell lines. Ectopic expression of miR‐214‐3p suppressed HCC cell proliferation and invasion. Furthermore, we indicated that overexpression of HOXA11‐AS decreased the miR‐214‐3p expression and the expression of miR‐214‐3p was negatively related with the HOXA11‐AS expression in HCC samples. Ectopic expression of HOXA11‐AS increased HCC proliferation and invasion and induced EMT through inhibiting miR‐214‐3p expression. These data suggested that HOXA11‐AS/miR‐214‐3p axis was responsible for development of HCC. 相似文献
4.
5.
Natalie C. Schlegel Ossia M. Eichhoff Silvio Hemmi Sabine Werner Reinhard Dummer Keith S. Hoek 《Pigment cell & melanoma research》2009,22(4):445-453
Proliferative resistance to transforming growth factor β (TGF‐β) is regarded as a critical turning point in the malignant progression of many cancer types. In melanoma this resistance is associated with more aggressive metastatic behaviour. A recent study by our group identified proliferative and invasive subtypes of melanoma cultures and found that these are, respectively, susceptible and resistant to TGF‐β suppression of proliferation. Here, using previously characterised proliferative and invasive phenotype melanoma cultures, we explored molecular responses involved in modulating susceptibility to TGF‐β‐mediated inhibition of proliferation. The Id2 gene was identified as being expressed more strongly in invasive phenotype cells less susceptible to TGF‐β repression than in proliferative phenotype cells. We correlated TGF‐β repression of Id2 gene expression in proliferative phenotype cells with p15Ink4b induction and cell cycle arrest. Furthermore, ectopic Id2 expression in proliferative phenotype cells counteracted p15Ink4b induction and consequently protected them from TGF‐β‐mediated inhibition of proliferation. We conclude that transition to increased aggressiveness in melanoma cells requires Id2 upregulation to suppress TGF‐β induction of p15Ink4b and thus help to circumvent TGF‐β‐mediated inhibition of proliferation. 相似文献
6.
The effect of wnt/β‐catenin signalling in the response to acute myocardial infarction (AMI) remains controversial. The membrane receptor adaptor protein Disabled‐2 (Dab2) is a tumour suppressor protein and has a critical role in stem cell specification. We recently demonstrated that down‐regulation of Dab2 regulates cardiac protein expression and wnt/β‐catenin activity in mesenchymal stem cells (MSC) in response to transforming growth factor‐β1 (TGF‐β1). Although Dab2 expression has been shown to have effects in stem cells and tumour suppression, the molecular mechanisms regulating this expression are still undefined. We identified putative binding sites for miR‐145 in the 3′‐UTR of Dab2. In MSC in culture, we observed that TGF‐β1 treatment led to rapid and sustained up‐regulation of pri–miR‐145. Through gain and loss of function studies we demonstrate that miR‐145 up‐regulation was required for the down‐regulation of Dab2 and increased β‐catenin activity in response to TGF‐β1. To begin to define how Dab2 might regulate wnt/β‐catenin in the heart following AMI, we quantified myocardial Dab2 as a function of time after left anterior descending ligation. There was no significant Dab2 expression in sham‐operated myocardium. Following AMI, Dab2 levels were rapidly up‐regulated in cardiac myocytes in the infarct border zone. The increase in cardiac myocyte Dab2 expression correlated with the rapid and sustained down‐regulation of myocardial pri–miR‐145 expression following AMI. Our data demonstrate a novel and critical role for miR‐145 expression as a regulator of Dab2 expression and β‐catenin activity in response to TGF‐β1 and hypoxia. 相似文献
7.
Shikonin is a natural naphthoquinone component with antioxidant and anti‐tumor function and has been used for hepatocellular carcinoma (HCC) treatment. According to the previous study, many herbs can regulate cancer cell progression by targeting specific microRNA (miRNA) (Liu, 2016). However, the underlying pathological mechanism of shikonin in HCC therapy is still unclear. The detection of cell growth and death rate were performed by hemacytometry and trypan blue staining, respectively. The expression of miR‐106b and SMAD7 messenger RNA (mRNA) in HCC cells was evaluated by quantitative real‐time polymerase chain reaction. Cell proliferation, apoptosis, and migration ability were measured by cell counting kit‐8 (CCK‐8), flow cytometry, and transwell assay. The expression of proteins E‐cadherin, N‐cadherin, vimentin, SMAD7, TGF‐β1, p‐SMAD3, SMAD3, and GAPDH was examined by western blot. The interaction between SMAD7 and miR‐106b was assessed by luciferase reporter system. Shikonin inhibited Huh7 and HepG2 cell growth in a dose‐dependent manner while induced cell death in a time‐dependent manner. In addition, the expression of miR‐106b was reduced after shikonin treatment. Moreover, miR‐106b attenuated the suppressive effects of shikonin on HCC cell migration and epithelial–mesenchymal transition (EMT). SMAD7 was predicted as a target of miR‐106b and the prediction was confirmed by luciferase reporter system. Additionally, we observed that SMAD7 reversed the promotive effects of miR‐106b on HCC cell progression and EMT. The subsequent western blot assay revealed that shikonin could modulate SMAD7/TGF‐β signaling pathway by targeting miR‐106b. In conclusion, Shikonin suppresses cell progression and EMT and accelerates cell death of HCC cells via modulating miR‐106b/SMAD7/TGF‐β signaling pathway, suggesting shikonin could be an effective agent for HCC treatment. 相似文献
8.
9.
Disulfiram combined with copper inhibits metastasis and epithelial–mesenchymal transition in hepatocellular carcinoma through the NF‐κB and TGF‐β pathways 下载免费PDF全文
Hao‐Tian Zhang Ya‐Ting Wang Shuai Liu Wen‐Long Zhou Xiang‐Zhong Yuan Tian‐Yang Li Chun‐Fu Wu Jing‐Yu Yang 《Journal of cellular and molecular medicine》2018,22(1):439-451
Late‐stage hepatocellular carcinoma (HCC) usually has a low survival rate because of the high risk of metastases and the lack of an effective cure. Disulfiram (DSF) has copper (Cu)‐dependent anticancer properties in vitro and in vivo. The present work aims to explore the anti‐metastasis effects and molecular mechanisms of DSF/Cu on HCC cells both in vitro and in vivo. The results showed that DSF inhibited the proliferation, migration and invasion of HCC cells. Cu improved the anti‐metastatic activity of DSF, while Cu alone had no effect. Furthermore, DSF/Cu inhibited both NF‐κB and TGF‐β signalling, including the nuclear translocation of NF‐κB subunits and the expression of Smad4, leading to down‐regulation of Snail and Slug, which contributed to phenotype epithelial–mesenchymal transition (EMT). Finally, DSF/Cu inhibited the lung metastasis of Hep3B cells not only in a subcutaneous tumour model but also in an orthotopic liver metastasis assay. These results indicated that DSF/Cu suppressed the metastasis and EMT of hepatic carcinoma through NF‐κB and TGF‐β signalling. Our study indicates the potential of DSF/Cu for therapeutic use. 相似文献
10.
Viqar Syed 《Journal of cellular biochemistry》2016,117(6):1279-1287
11.
12.
HIF‐2α activated lncRNA NEAT1 promotes hepatocellular carcinoma cell invasion and metastasis by affecting the epithelial‐mesenchymal transition 下载免费PDF全文
Xiaowei Zheng Yiwen Zhang Yujia Liu Luo Fang Li Li Jiao Sun Zongfu Pan Wenxiu Xin Ping Huang 《Journal of cellular biochemistry》2018,119(4):3247-3256
13.
Chong‐hui Li Xian‐qiang Wang Ke Pan Cheng Zhou Jia‐hong Dong 《Cell biochemistry and function》2016,34(4):274-285
We aimed to elucidate the effects of hepatoma‐derived growth factor (HDGF) on growth and metastasis of hepatocellular carcinoma (HCC) cells. Tissue microarrays with 236 HCC specimens and 18 extrahepatic metastases were utilized to detect the HDGF expression by immunohistochemistry. Meanwhile, HDGF expressions in HCC cell lines with different metastatic potentials were examined using immunofluorescence staining, real‐time PCR and western blotting. After HDGF silencing, the growth and metastatic potentials of HCC cells were evaluated by soft agar assay, invasion assay, together with tumorigenicity assay in nude mice. The gelatin zymography was performed by detecting MMP‐2 and MMP‐9 levels. Additionally, western blotting was conducted to determine the levels of total and phosphorylated ERK1/2, JNK, p38 and Akt. The results showed that HDGF was overexpressed in HCC metastasis tumour, and the expression increased with the differentiation degree of tumours (Grade I 44.0%, Grade II 48.4% and Grade III 65.6%). Consistently, HDGF levels were positively associated with the metastatic capability of HCC cells (MHCC97L < MHCC97H < HCCLM3). The growth and metastasis were suppressed by HDGF‐siRNA. Gelatinolytic activities were enhanced in the three metastatic HCC cell lines, but had no significant difference among them. The tumourigenicity and metastatic capability of HCCLM3 cells in nude mice were inhibited after silencing HDGF. Meanwhile, HDGF‐siRNA specifically suppressed the total and phosphorylated protein levels of ERK1/2, while not JNK, p38 and Akt. In conclusion, HDGF was overexpressed in HCC patients and cells, and HDGF might be closely correlated with HCC metastasis via regulating ERK signalling pathway. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
14.
15.
16.
17.
Angiotensin receptor I stimulates osteoprogenitor proliferation through TGFβ‐mediated signaling 下载免费PDF全文
Francesca Querques Bruno Cantilena Carmine Cozzolino Maria Teresa Esposito Fabiana Passaro Silvia Parisi Barbara Lombardo Tommaso Russo Lucio Pastore 《Journal of cellular physiology》2015,230(7):1466-1474
18.
Ras is activated by transforming growth factor beta (TGFβ) in several cell types, but the biological consequences of this activation are largely unknown. We now show that ras mediates two stages in integrin β1-chain maturation: 1) glycosylation of the 86-kD core peptide, which is a TGFβ1-independent process, and 2) TGFβ1-mediated conversion of the 115-kD β1 integrin precursor into the mature 130-kD form. HD3 colon epithelial cells maintain elevated levels of integrin α2β1 heterodimers, strong binding to collagen I, and autocrine regulation by TGFβ1, which converts β1 integrin into the mature cell surface form. Each of three HD3 cell clones that stably express dominant negative ras (N17ras) exhibited abnormal glycosylation of the integrin β1-chain, decreased cell surface expression of the mature integrin β1, and impaired binding to collagen and laminin. Autocrine levels of TGFβ were not altered by expression of N17ras. The aberrant glycosylation of the integrin β1-chain was reversed by antisense oligonucleotides specific to the DNA sequence encoding the rasS17N mutation. Glycosylation of the 86-kD core peptide was delayed in the N17ras transfectants, but was not altered by either the addition of TGFβ1 or inhibition of autocrine TGFβ1. In contrast, conversion of the partially glycosylated β1 integrin precursor into the mature 130-kD isoform was accelerated by exogenous TGFβ1 and blocked by neutralizing antibody to autocrine TGFβ1 in control cell lines. Neither effect was seen in the N17ras transfectants, indicating that TGFβ1 modulates integrin β1-chain maturation by activating ras proteins. Cell fractionation studies demonstrated that this conversion takes place within the Golgi. J. Cell. Physiol. 181:33–44, 1999. © 1999 Wiley-Liss, Inc. 相似文献
19.
20.
Pei Liu Shuofan Chen Yangyue Huang Shuai Xu Hongcheng Song Weiping Zhang Ning Sun 《Cell biology international》2020,44(6):1382-1393
Wilms' tumor, also known as nephroblastoma, is a kind of pediatric renal cancer. Previous studies have indicated that microRNAs (miRNAs) regulate various cancers progression. However, whether miR‐200 family regulated Wilms' tumor progression remains to be elucidated. In our study, miR‐200b/c/429 expression was downregulated in Wilms' tumor tissue samples from 25 patients. And data from three independent analyses of quantitative real‐time polymerase chain reaction revealed that the expression of miR‐200b/c/429 was downregulated in Wilms' tumor cell lines. Functionally, Cell counting kit‐8 assay revealed that cell viability was reduced by overexpressing miR‐200b/c/429. Transwell assay manifested that cell migration and invasion was hindered by miR‐200b/c/429 overexpression. Sphere‐forming and western blot assays demonstrated that miR‐200b/c/429 overexpression suppressed the sphere formation ability. Mechanically, nuclear factor‐κB (NF‐κB) pathway was confirmed to be associated with Wilms' tumor progression; miR‐200b/c/429 overexpression inactivated NF‐κB pathway as miR‐200b/c/429 was identified to target IκB kinase β (IKK‐β), an NF‐κB pathway‐related gene. Moreover, miR‐200b/c/429 was sponged by LINC00667 in Wilms' tumor cells. LINC00667 competitively bound with miR‐200b/c/429 to regulate IKK‐β expression and then activated NF‐κB pathway in Wilms' tumor. Subsequently, rescue assays illustrated that silencing of IKK‐β could reverse the effect of miR‐200b/c/429 inhibition on the progression of sh‐LINC00667‐transfected Wilms' tumor cells. In summary, LINC00667 promoted Wilms' tumor progression by sponging miR‐200b/c/429 family to regulate IKK‐β. 相似文献