首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Localized mutagenesis was used to obtain rha-linked mutations in Salmonella typhimurium, resulting in defects in the nitrate reductase-linked formate dehydrogenase (FDHN). The fdn mutants obtained fell into two groups which differed in several respects. Group I isolates lacked FDHN activity under all conditions examined and exhibited wild-type levels of the hydrogenase-linked formate dehydrogenase (FDHH). Group II isolates appeared defective in FDHN only when freshly prepared extracts were assayed; restoration of both FDHN and formate-nitrate reduction activity occurred on incubation of extracts for 2 to 3 h. Protease inhibitors prevented restoration. Group II isolates were also characterized by a conditional FDHH activity; this activity was absent unless the growth medium designed to optimize wild-type FDHH was altered either by lowering glucose concentration or by adding thiosulfate. Cotransduction of fdn with rha ranged from 4 to 22% for the group I isolates and from 20 to 40% for the group II isolates. Temperature-sensitive isolates from both groups synthesized FDHN activity with altered thermostability. In vitro complementation occurred in mixed extracts of amber mutants of the two respective classes. The results are consistent with two distinct rha-linked fdn genes, for which we suggest using the designations fdnB (group I) and fdnC (group II).  相似文献   

2.
Thirty-eight mutants unable to reduce nitrate were isolated from Escherichia coli and characterized biochemically and genetically. All of the mutants exhibited reduced or insignificant levels of formate dehydrogenase, nitrate reductase, or various combinations of these activities and cytochrome b(1) under conditions which resulted in the production of high levels of these activities by the wild-type parental strains. Most of the mutants reverted readily to wild type, and all mapped within a restricted region on the chromosome linked to the tryptophan genes. It was proposed that nitrate reduction in E. coli was catalyzed exclusively by an organized complex containing formate dehydrogenase, cytochrome b(1), and nitrate reductase.  相似文献   

3.
Significant nitrate reductase activity was detected in mutants of Salmonella typhimurium which mapped at or near chlC and which were incapable of growth with nitrate as electron acceptor. The same mutants were sensitive to chlorate and performed sufficient nitrate reduction to permit anaerobic growth with nitrate as the sole nitrogen source in media containing glucose. The mutant nitrate-reducing protein did not migrate with the wild-type nitrate reductase in polyacrylamide electrophoretic gels. Studies of the electrophoretic mobility in gels of different polyacrylamide concentration revealed that the wild-type and mutant nitrate reductases differed significantly in both size and charge. The second enzyme also differed from the wild-type major enzyme in its response to repression by low pH and its lack of response to repression by glucose. The same mutants were found to be derepressed for nitrite reductase and for a cytochrome with a maximal reduced absorbance at 555 nm at 25°C. This cytochrome was not detected in preparations of the wild type grown under the same conditions. Extracts of these mutants contained normal amounts of the b-type cytochromes which, in the wild type, were associated with nitrate reductase and formate dehydrogenase, respectively, although they could not mediate the oxidation of these cytochromes with nitrate. They were capable of oxidizing the derepressed 555-nm peak cytochrome with nitrate. It is suggested that these mutants synthesize a nitrate-reducing enzyme which is distinct from the chlC gene product and which is repressed in the wild type during anaerobic growth with nitrate.  相似文献   

4.
The participation of distinct formate dehydrogenases and cytochrome components in nitrate reduction by Escherichia coli was studied. The formate dehydrogenase activity present in extracts prepared from nitrate-induced cells of strain HfrH was active with various electron acceptors, including methylene blue, phenazine methosulfate, and benzyl viologen. Certain mutants which are unable to reduce nitrate had low or undetectable levels of formate dehydrogenase activity assayed with methylene blue or phenazine methosulfate as electron acceptor. Of nine such mutants, five produced gas when grown anaerobically without nitrate and possessed a benzyl viologen-linked formate dehydrogenase activity, suggesting that distinct formate dehydrogenases participate in the nitrate reductase and formic hydrogenlyase systems. The other four mutants formed little gas when grown anaerobically in the absence of nitrate and lacked the benzyl viologen-linked formate dehydrogenase as well as the methylene blue or phenazine methosulfate-linked activity. The cytochrome b(1) present in nitrate-induced cells was distinguished by its spectral properties and its genetic control from the major cytochrome b(1) components of aerobic cells and of cells grown anaerobically in the absence of nitrate. The nitrate-specific cytochrome b(1) was completely and rapidly reduced by 1 mm formate but was not reduced by 1 mm reduced nicotinamide adenine dinucleotide; ascorbate reduced only part of the cytochrome b(1) which was reduced by formate. When nitrate was added, the formate-reduced cytochrome b(1) was oxidized with biphasic kinetics, but the ascorbate-reduced cytochrome b(1) was oxidized with monophasic kinetics. The inhibitory effects of n-heptyl hydroxyquinoline-N-oxide on the oxidation of cytochrome b(1) by nitrate provided evidence that the nitrate-specific cytochrome is composed of two components which have different redox potentials but identical spectral properties. We conclude from these studies that nitrate reduction in E. coli is mediated by the sequential operation of a specific formate dehydrogenase, two specific cytochrome b(1) components, and nitrate reductase.  相似文献   

5.
Escherichia coli K12 mutants lacking phenazine-methosulphate-linked formate dehydrogenase (FDH-PMS) activity, but still capable of producing normal levels of benzyl-viologen-linked formate dehydrogenase (FDH-BV) and nitrate reductase activities, have been isolated following P1 localized mutagenesis. The relevant mutations mapped with the same cotransduction frequency close to the rhaD gene, at 88 min on the E. coli chromosome. They were further subdivided into two classes. Class I consisted of six fdhD mutants which synthesized an inactive FDH-PMS protein with the same subunit composition as the wild-type enzyme. In contrast, class II contained four fdhE mutants totally devoid of this antigen. Construction of merodiploid strains harbouring various combinations of the mutated alleles, fdhE on the episome and fdhD on the chromosome, led to the restoration of FDH-PMS activity by complementation of the products encoded by the respective wild-type alleles. Difference spectroscopy suggested that both fdhD and fdhE mutants contained normal amounts of the cytochrome b559 associated with FDH-PMS although the cytochrome had lost its capacity for formate-dependent reduction.  相似文献   

6.
Mutants of Escherichia coli were isolated which were affected in the formation of both formate dehydrogenase N (phenazine methosulfate reducing) (FDHN) and formate dehydrogenase H (benzylviologen reducing) (FDHH). They were analyzed, together with previously characterized pleiotropic fdh mutants (fdhA, fdhB, and fdhC), for their ability to incorporate selenium into the selenopolypeptide subunits of FDHN and FDHH. Eight of the isolated strains, along with the fdhA and fdhC mutants, maintained the ability to selenylate tRNA, but were unable to insert selenocysteine into the two selenopolypeptides. The fdhB mutant tested had lost the ability to incorporate selenium into both protein and tRNA. fdhF, which is the gene coding for the 80-kilodalton selenopolypeptide of FDHH, was expressed from the T7 promoter-polymerase system in the pleiotropic fdh mutants. A truncated polypeptide of 15 kilodaltons was formed; but no full-length (80-kilodalton) gene product was detected, indicating that translation terminates at the UGA codon directing the insertion of selenocysteine. A mutant fdhF gene in which the UGA was changed to UCA expressed the 80-kilodalton gene product exclusively. This strongly supports the notion that the pleiotropic fdh mutants analyzed possess a lesion in the gene(s) encoding the biosynthesis or the incorporation of selenocysteine. The gene complementing the defect in one of the isolated mutants was cloned from a cosmid library. Subclones were tested for complementation of other pleiotropic fdh mutants. The results revealed that the mutations in the eight isolates fell into two complementation groups, one of them containing the fdhA mutation. fdhB, fdhC, and two of the new fdh isolates do not belong to these complementation groups. A new nomenclature (sel) is proposed for pleiotropic fdh mutations affecting selenium metabolism. Four genes have been identified so far: selA and selB (at the fdhA locus), selC (previously fdhC), and selD (previously fdhB).  相似文献   

7.
Summary The levels of several redox enzymes in a chlorate-resistant mutant of Proteus mirabilis, which is partially affected in the formation of formate hydrogenlyase, thiosulfate reductase and tetrathionate reductase, were compared with those of the wild type. The composition of the electron transport system of both strains was almost the same in cells grown aerobically, but very different in cells grown anaerobically. In the mutant, the cytochrome content increased twofold, whereas the level of the anaerobic enzymes is strongly diminished. The anaerobic formation of electron transport components in the mutant was, in contrast to that of the wild type, not influenced significantly by azide. During anaerobic growth with nitrate low levels of a functional nitrate reductase system were formed in the mutant. Under these conditions the formation of formate dehydrogenase, formate hydrogenlyase, formate oxidase, thiosulfate reductase, tetrathionate reductase, cytochrome b563,5 and partly that of cytochrome a2, was repressed. The repressive effect of nitrate, however, was completely abolished by azide. Therefore, it seems likely that a functional nitrate reductase system, rather than nitrate, controls the formation of the enzymes repressible by nitrate.  相似文献   

8.
Summary Thirty-nine chlorate resistant cell lines were isolated after plating ethylmethane sulphonate treated allodihaploid cells of Nicotiana tabacum cv. Xanthi on agar medium containing 20 mM chlorate. Thirty-two of these cell lines grew as well on nitrate medium as on amino acid medium and three other cell lines grew well on amino acid medium but poorly on nitrate medium. Four other cell lines, 042, P12, P31 and P47 which could grow on amino acid medium, but not on nitrate medium, were examined further. They lacked in vitro nitrate reductase activity but were able to accumulate nitrate. All lines possessed nitrite reductase activity. Lines 042, P12, and P31 had a cytochrome c reductase species which was the same size as the wild type nitrate reductase associated cytochrome c reductase species, whilst the cytochrome c reductase species in line P47 was slightly smaller. All four lines lacked xanthine dehydrogenase activity and neither nitrate reductase nor xanthine dehydrogenase activity was restored by subculture of the four lines into either nitrate medium or glutamine medium supplemented with 1 mM sodium molybdate. These four lines are different from other molybdenum cofactor defective cell lines so far described in N. tabacum and possess similar properties to certain other cnx mutants described in Aspergillus nidulans.  相似文献   

9.
Chlorate-resistant mutants corresponding to each known genetic locus (chlA, chlB, chlC, chlD, chlE) were isolated from Escherichia coli K-12. All these mutants showed decreased amounts of membrane-bound nitrate reductase, cytochrome b, and formic dehydrogenase, but all had normal succinic dehydrogenase activity. Proteins from the cytoplasmic membranes of these mutants were compared to those of the wild type-on polyacrylamide gels. The addition of nitrate to wild-type anaerobic cultures caused increased formation of three membrane proteins. These same proteins, along with one other, were missing in varying patterns in mutants altered at the different genetic loci. One of the missing proteins was found to be the enzyme nitrate reductase, although this protein was present in some mutants lacking nitrate reductase activity. None of the others has been identified.  相似文献   

10.
Abstract A pleiotropic mutant of Escherichia coli affected in cytochrome biosynthesis was detected by anaerobic screening on a solid medium containing triphenyltetrazolium. When grown anaerobically on glycerol, nitrate and Casamino acids, this mutant exhibited a level of soluble cytochrome c 552 which was ten times higher than that found in wild-type cells. The level of membrane-bound cytochrome b and the activity of nitrate reductase were about half the normal level. The mutant grew aerobically on succinate or d,l -lactate at a greatly reduced rate. The mutation impairing the growth ability at the locus sox (succinate oxidation) is also responsible for the deficiency of cytochrome b , nitrate reductase and formate dehydrogenase. Mapping by transduction placed sox at 86.7 min on the chromosome, very close to the glnA locus. Genetic analysis also indicated that the elevated level of cytochrome c 552 was the result of a separate mutation, the location of which is yet to be determined.  相似文献   

11.
Molybdenum is required for induction of nitrate reductase and of NAD-linked formate dehydrogenase activities in suspensions of wild type Paracoccus denitrificans; tungsten prevents the development of these enzyme activities. The wild type forms a membrane protein M r150,000 when incubated with tungsten and inducers of nitrate reductase and this is presumed to represent an inactive form of the enzyme. Suspensions of mutant M-1 did not develop nitrate reductase or formate dehydrogenase activities but the membrane protein M r150,000 was formed under all conditions tested, including without inducers and without molybdenum. Analysis of membranes, solubilized with deoxycholate, by polyacrylamide gel electrophoresis under nondenaturing conditions showed that the mutant protein had similar electrophoretic mobility to the active nitrate reductase formed by the wilde type. Autoradiography of preparations from cells incubated with 55Fe showed that the mutant and wild type proteins contained iron. However, in similar experiments with 99Mo, incorporation of molybdenum into the mutant protein was not detectable.We conclude that mutant M-1 is defective in one or more steps required to process molybdenum for incorporation into molybdoenzymes. This failure affects the normal regulation of nitrate reductase protein with respect to the role of inducers.Non-Standard Abbreviations DOC deoxycholate - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

12.
Cytochromes b of anaerobically nitrate-grown Escherichia coli cells are analysed. Ascorbate phenazine methosulfate distinguishes low and high potential cytochromes b. Reduction kinetics performed at 559 nm presents a very complex pattern which can be analysed assuming that at least four b-type cytochromes are present. The electron transport chain from formate to oxygen would contain a low potential cytochrome b-556, a cytochrome b-558 associated to the oxidase, and a cytochrome d as the principle oxidase. Cytochrome o is also present, but seems to be functional only at low oxygen concentrations. A cytochrome b-556 associated to nitrate reductase is shown to belong to a branch of the formate-oxidase chain. 2-N-Heptyl-4-hydroxyquinoline-N-oxide affects the reduction kinetics in a very complex way. One inhibition site is in evidence between cytochrome b-558 and cytochrome d; another between the cytochrome associated to nitrate reductase and the nitrate reductase. A third inhibition site is located in the common part of the formate-nitrate and the formate-oxidase systems. Ascorbate phenazine methosulfate is shown to donate electrons near cytochrome b-558.  相似文献   

13.
When Escherichia coli was grown on medium containing 10 mM tungstate the formation of active formate dehydrogenase, nitrate reductase, and the complete formate-nitrate electron transport pathway was inhibited. Incubation of the tungstate-grown cells with 1 mM molybdate in the presence of chloramphenicol led to the rapid activation of both formate dehydrogenase and nitrate reductase, and, after a considerable lag, the complete electron transport pathway. Protein bands which corresponded to formate dehydrogenase and nitrate reductase were identified on polyacrylamide gels containing Triton X-100 after the activities were released from the membrane fraction and partially purified Cytochrome b1 was associated with the protein band corresponding to formate dehydrogenase but was not found elsewhere on the gels. When a similar fraction was prepared from cells grown on 10 mM tungstate, an inactive band corresponding to formate dehydrogenase was not observed on polyacrylamide gels; rather, a new faster migrating band was present. Cytochrome b1 was not associated with this band nor was it found anywhere else on the gels. This new band disappeared when the tungstate-grown cells were incubated with molybdate in the presence of chloramphenicol. The formate dehydrogenase activity which was formed, as well as a corresponding protein band, appeared at the original position on the gels. Cytochrome b1 was again associated with this band. The protein band which corresponded to nitrate reductase also was severely depressed in the tungstate-grown cells and a new faster migrating band appeared on the polyacrylamide gels. Upon activation of the nitrate reductase by incubation of the cells with molybdate, the new band diminished and protein reappeared at the original position. Most of the nitrate reductase activity which was formed appeared at the original position of nitrate reductase on gels although some was present at the position of the inactive band formed by tungstate-grown cells. Apparently, inactive forms of both formate dehydrogenase and nitrate reductase accumulate during growth on tungstate which are electrophoretically distinct from the active enzymes. Activation by molybdate results in molecular changes which include the reassociation of cytochrome b1 with formate dehydrogenase and restoration of both enzymes to their original electrophoretic mobilities.  相似文献   

14.
Five temperature-sensitive chlC mutants were isolated from Escherichia coli by the technique of localized mutagenesis. All of the mutants produced severely reduced levels of both nitrate reductase and formate dehydrogenase when grown at 43 degrees C. In three of the mutants, the nitrate reductase activity produced at the permissive temperature was shown to be thermolabile compared with the activity produced by the parent wild-type strain, both in membrane preparations and in preparations released from the membrane by deoxycholate. In each case, formate dehydrogenase activity was similar to the wild-type activity in its stability to heat. It is concluded that the chlC gene codes for at least one of the polypeptide chains of nitrate reductase and that the chlC mutations affect indirectly the formation of formate dehydrogenase.  相似文献   

15.
Crossed immunoelectrophoresis was used to analyze the components of membrane vesicles of anaerobically grown Escherichia coli. The number of precipitation lines in the crossed immunoelectrophoresis patterns of membrane vesicles isolated from E. coli grown anaerobically on glucose plus nitrate and on glycerol plus fumarate were 83 and 70, respectively. Zymogram staining techniques were used to identify immunoprecipitates corresponding to nitrate reductase, formate dehydrogenase, fumarate reductase, and glycerol-3-phosphate dehydrogenase in crossed immunoelectrophoresis reference patterns. The identification of fumarate reductase by its succinate oxidizing activity was confirmed with purified enzyme and with mutants lacking or overproducing this enzyme. In addition, precipitation lines were found for hydrogenase, cytochrome oxidase, the membrane-bound ATPase, and the dehydrogenases for succinate, malate, dihydroorotate, D-lactate, 6-phosphogluconate, and NADH. Adsorption experiments with intact and solubilized membrane vesicles showed that fumarate reductase, hydrogenase, glycerol-3-phosphate dehydrogenase, nitrate reductase, and ATPase are located at the inner surface of the cytoplasmic membrane; on the other hand, the results suggest that formate dehydrogenase is a transmembrane protein.  相似文献   

16.
Summary We have designed a new medium for the differentiation of mutants of Salmonella typhirmurium defective in the ability to reduce nitrate with formate, and have characterized 24 formate dehydrogenase (FDH) mutants isolated on this medium. The mutants were assayed for the ability to use formate to reduce benzyl viologen and phenazine methosulfate, and were mapped by means of conjugation and P22-mediated transduction. Mutants lacking the ability to reduce either dye were found to map at three distinct sites: at a site co-transducible with xyl (presumably fdhA), at a site or sites between 13U and 33U, but not co-transducible with aroA, bio, purB, pyrC, or pyrD (near, but not identical with fdhB), and at a site 10–20% co-transducible with pyrE, for which we suggest the designation fdhC. Six mutant isolates reduced benzyl viologen, but not phenazine methosulfate. They retained the ability to produce nitrite during growth with nitrate. They mapped between 83U and 89U, but no co-transduction was found with metE, glnA, metB, or argH. The combined biochemical and genetic data suggest the existence of a gene in this area which is essential for the reduction of nitrate with formate, but not for formate hydrogenlyase activity or for nitrate reductase activity.  相似文献   

17.
We have analyzed four Nicotiana plumbaginifolia null mutants presumably affected in the heme domain of nitrate reductase. The DNA sequence of this domain has been determined for each mutant and for the wild type. Two mutations were identified as single base changes leading to, respectively, the substitution of a histidine residue by an asparagine (mutant E56) and to the appearance of an ochre stop codon (mutant E64). Based on the amino acid sequence homology between the nitrate reductase heme domain and mammalian cytochrome b5, we have predicted the three-dimensional structure of this domain. This showed that the nitrate reductase heme domain is structurally very similar to cytochrome b5 and it also confirmed that the residue involved in E56 mutation is one of the two heme-binding histidines. The two other mutations (mutants A1 and K21) were found to be, respectively, -1 and +1 frameshift mutations resulting in the appearance of an opal stop codon. These sequence data confirmed previous genetic and biochemical hypotheses on nitrate reductase-deficient mutants. Northern blot analysis of these mutants indicated that mutant E56 overexpressed the nitrate reductase mRNA, whereas the nonsense mutations present in the other mutants led to reduced levels of nitrate reductase mRNA.  相似文献   

18.
Experiments were performed to determine whether defects in molybdenum cofactor metabolism were responsible for the pleiotropic loss of the molybdoenzymes nitrate reductase and formate dehydrogenase in chl mutants of Escherichia coli. In wild-type E. coli, molybdenum cofactor activity was present in both the soluble and membrane-associated fractions when the cells were grown either aerobically or anaerobically, with and without nitrate. Molybdenum cofactor in the soluble fraction decreased when the membrane-bound nitrate reductase and formate dehydrogenase were induced. In the chl mutants, molybdenum cofactor activity was found in the soluble fraction of chlA, chlB, chlC, chlD, chlE, and chlG, but only chlB, chlC, chlD, and chlG expressed cofactor activity in the membrane fraction. The defect in the chlA mutants which prevented incorporation of the soluble cofactor into the membrane also caused the soluble cofactor to be defective in its ability to bind molybdenum. This cofactor was not active in the absence of molybdate, and it required at least threefold more molybdate than did the wild type in the Neurospora crassa nit-1 complementation assay. However, the cofactor from the chlA strain mediated the dimerization of the nit-1 subunits in the presence and absence of molybdate to yield the 7.9S dimer. Growth of chlA mutants in medium with increased molybdate did not repair the defect in the chlA cofactor nor restore the molybdoenzyme activities. Thus, molybdenum cofactor was synthesized in all the chl mutants, but additional processing steps may be missing in chlA and chlE mutants for proper insertion of cofactor in the membrane.  相似文献   

19.
Incorporation of the electron-transport enzymes of Vibrio succinogenes into liposomes was used to investigate the question of whether, in this organism, a cytochrome b is involved in electron transport from formate to fumarate on the formate side of menaquinone. (1) Formate dehydrogenase lacking cytochrome b was prepared by splitting the cytochrome from the formate dehydrogenase complex. The enzyme consisted of two different subunits (Mr 110 000 and 20 000), catalyzed the reduction of 2,3-dimethyl-1,4-naphthoquinone by formate, and could be incorporated into liposomes. (2) The modified enzyme did not restore electron transport from formate to fumarate when incorporated into liposomes together with vitamin K-1 (instead of menaquinone) and fumarate reductase complex. In contrast, restoration was observed in liposomes that contained formate dehydrogenase with cytochrome b (Em = -224 mV), in addition to the subunits mentioned above (formate dehydrogenase complex). (3) In the liposomes containing formate dehydrogenase complex and fumarate reductase complex, the response of the cytochrome b of the formate dehydrogenase complex was consistent with its interaction on the formate side of menaquinone in a linear sequence of the components. The low-potential cytochrome b associated with fumarate reductase complex was not reducible by formate under any condition. It is concluded that the low-potential cytochrome b of the formate dehydrogenase complex is an essential component in the electron transport from formate to menaquinone. The low-potential cytochrome b of the fumarate reductase complex could not replace the former cytochrome in restoring electron-transport activity.  相似文献   

20.
Redox titration has been coupled to spectroscopic techniques, enzyme fractionation, and the use of mutants to examine the cytochrome composition of the membranes from cells grown aerobically and anaerobically with nitrate. A combination of techniques was found to be necessary to resolve the cytochromes. At least six b-type cytochromes were present. Besides cytochromes bfdh and bnr, components of the formate dehydrogenase-nitrate reductase pathway, cytochromes b556, b555, b562, and o, characteristic of aerobic respiratory pathways, were present. The midpoint oxidation-reduction potentials of the aerobic b-type cytochromes suggested that the sequence of electron transfer is: cytochrome b556 leads to b555 leads to b562 leads to O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号