首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 46 毫秒
1.
With the development of high-resolution and high-throughput mass spectrometry(MS)technology, a large quantum of proteomic data is continually being generated. Collecting and sharing these data are a challenge that requires immense and sustained human effort. In this report, we provide a classification of important web resources for MS-based proteomics and present rating of these web resources, based on whether raw data are stored, whether data submission is supported,and whether data analysis pipelines are provided. These web resources are important for biologists involved in proteomics research.  相似文献   

2.
The development of next-generation sequencing(NGS) platforms spawned an enormous volume of data. This explosion in data has unearthed new scalability challenges for existing bioinformatics tools. The analysis of metagenomic sequences using bioinformatics pipelines is complicated by the substantial complexity of these data. In this article, we review several commonly-used online tools for metagenomics data analysis with respect to their quality and detail of analysis using simulated metagenomics data. There are at least a dozen such software tools presently available in the public domain. Among them, MGRAST, IMG/M, and METAVIR are the most well-known tools according to the number of citations by peer-reviewed scientific media up to mid-2015. Here, we describe 12 online tools with respect to their web link, annotation pipelines, clustering methods, online user support, and availability of data storage. We have also done the rating for each tool to screen more potential and preferential tools and evaluated five best tools using synthetic metagenome. The article comprehensively deals with the contemporary problems and the prospects of metagenomics from a bioinformatics viewpoint.  相似文献   

3.
The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs) to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web.  相似文献   

4.
Modern biological and chemical studies rely on life science databases as well as sophisticated software tools (e.g., homology search tools, modeling and visualization tools). These tools often have to be combined and integrated in order to support a given study. SIBIOS (System for the Integration of Bioinformatics Services) serves this purpose. The services are both life science database search services and software tools. The task engine is the core component of SIBIOS. It supports the execution of dynamic workflows that incorporate multiple bioinformatics services. The architecture of SIBIOS, the approaches to addressing the heterogeneity as well as interoperability of bioinformatics services, including data integration are presented in this paper.  相似文献   

5.
Based on the genomic sequence data of Escherichia coli K-12strain, we have constructed a complete set of cloned individualgenes encoding Histidine-tagged proteins with or without GFPfused for functional genomic analysis. Each clone encodes aprotein of predicted ORF attached by Histidines and seven spaceramino acids at the N-terminal end, and five spacer amino acidsand GFP at the C-terminal end. SfiI restriction sites are generatedat both the N- and C-terminal boundaries of ORF upon cloning,which enables easy transfer of ORF to other vector systems bycutting with SfiI. Expression of cloned ORF is under the controlof an IPTG-inducible promoter, which is strictly repressed bylacIq repressor gene product. The set of cloned ORFs describedhere should provide unique resources for systematic functionalgenomic approaches including (i) construction of DNA microarray,(ii) production and purification of proteins, (iii) analysisof protein localization by monitoring GFP fluorescence and (iv)analysis of protein–protein interaction.  相似文献   

6.
Entomological Review - The routes of the biological subunit of the Yakut complex expedition of the USSR Academy of Sciences for the study of the productive resources of the Yakut ASSR, working on...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号