首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To prevent the consumption of bivalves contaminated with paralytic shellfish poisoning (PSP), toxin levels in seafood products are estimated by using the official mouse bioassay. Because of the limitations of this bioassay other methods of monitoring toxins are clearly needed. We have developed a test to screen for PSP toxins based on its functional activity; the toxins bind to the voltage-gated Na+ channels and block their activity. The method is a fluorimetric assay that allows quantitation of the toxins by detecting changes in the membrane potential of human excitable cells. This assay gives an estimate of toxicity, since each toxin present in the sample binds to sodium channels with an affinity which is proportional to its intrinsic toxic potency. The detection limits for paralytic shellfish toxins were found to be 1 ng saxitoxin equivalents/ml compared to the regulatory limit threshold of 400 ng/ml (equivalent to 80 microg/100 g) used in most countries. Our results indicate that this fluorescent assay is a specific, very sensitive, rapid, and reliable method of monitoring PSP toxin levels in samples from seafood products and toxic algae.  相似文献   

2.
A study was conducted to aid the interpretation of data generated by parallel testing of the qualitative Jellett Rapid Test (JRT) and the mouse bioassay (MBA) for detection of paralytic shellfish poisoning (PSP) toxins within the UK statutory shellfish biotoxin monitoring programme. A selection of stored sample extracts subjected to testing by MBA and/or JRT were further analysed by liquid chromatography with fluorescence detection (LC–FLD) to provide additional information on the concentrations of PSP toxins and toxin profiles.Results, from this study, demonstrate the potential of the JRT to effectively screen out PSP toxin negative shellfish samples and samples containing low concentrations of toxins from UK monitoring programmes. Additionally, data generated using LC–FLD highlights the potential of introducing alternative analytical techniques to completely replace the requirement for the MBA.  相似文献   

3.
A new cytotoxicity assay for detection and quantitation of diarrhetic shellfish toxins (DSP) is presented. This assay is based upon fluorimetric determination of F-actin depolymerization induced by okadaic acid (OA)-class compounds in the BE(2)-M17 neuroblastoma cell line. No interferences were observed with other marine toxins such as saxitoxin, domoic acid, or yessotoxin, thus indicating a good specificity of the assay as expected by the direct relationship between protein phosphatase inhibition and cytoskeletal changes. The proposed method is rapid (<2h) and shows a linear response in the range of 50-300 nM OA. The detection limit of the assay for crude methanolic extracts of bivalves lies between 0.2 and 1.0 microg OA per gram of digestive glands, depending on the type of samples (fresh or canned), thus being similar to that of the mouse bioassay. The performance of this assay has been evaluated by comparative analysis of 32 toxic mussel samples by the F-actin assay, mouse bioassay, HPLC and PP2A inhibition assay. Results obtained by the F-actin method showed no differences with HPLC and significant correlation with PP2A inhibition assay (r(2)=0.71). No false negative results were obtained with this new cell assay, which also showed optimum reproducibility.  相似文献   

4.
In October of 1996, a Gymnodinium breve bloom occurred in shellfish harvesting waters of Alabama, Mississippi and Louisiana, Gulf of Mexico, USA. Bloom densities reached 5.6x10(5) cells liter(-1) and bloom residence at shellfish sampling stations ranged from 3 to 28 days. Brevetoxin-2 dominated G. breve toxin profiles in bloom seawater extracts. Shellfish toxicity, assessed by mouse bioassay, exceeded the guidance level for up to 75 days after the bloom had dissipated. Cytotoxicity assays and mouse bioassays showed similar temporal patterns of shellfish toxicity, but the two methods differed in estimations of brevetoxin-3 equivalent toxicity by a factor of 93 to 1. LC-ESI-MS showed the temporal patterns in shellfish toxicity reflected metabolism of G. breve toxins. The molecular ions m/z 1004, 1017 and 1033 dominated LC-ESI-MS spectra of toxic chromatographic fractions from the extracts and were identified as brevetoxin metabolites on the basis of LC-APCI-MS-MS. The discrepancy between cytotoxicity and mouse bioassay estimates of brevetoxin-3 equivalent toxicity resulted from the difference in extraction efficiency of solvents used in the respective methods and the relative sensitivity of the assays to toxin metabolite mixtures present in the extracts. The normalized cytotoxicity assay showed 75% agreement with mouse bioassay positive test samples and 64% agreement with mouse bioassay negative test samples. Published in 1999 by John Wiley & Sons, Ltd.  相似文献   

5.
中国东海和南海有害赤潮高发区麻痹性贝毒素研究   总被引:19,自引:0,他引:19  
用小白鼠生物检测法和高效液相色谱法对采自浙江舟山和广东深圳海域贝类的麻痹性贝毒素进行了调查和分析,结果表明,舟山海域近岸的贝类毒素检出率为14%,染毒的贝类毒素含量不高,低于小白鼠生物检测法的测定范围;深圳近岸贝类毒素检出率为30%以上,华贵栉孔扇贝是主要的染毒贝类,有1个样品毒素含量达5.1Mu·g-1,超出安全食用标准.从深圳大亚湾华贵栉孔扇贝检测出10种麻痹性贝毒素成分,消化腺的主要毒素成分为GTXl+2和GTX5,Cl+2和GTX2+3,而剔除消化腺后其余贝组织的主要成分为neoSTX和GTX5.贝毒素主要积累在扇贝的消化腺内,消化腺含有的毒素是贝肉组织的8倍.  相似文献   

6.
Bacteria associated with toxic dinoflagellates have been implicated in the production of paralytic shellfish poisoning (PSP) toxins, but it has not been substantiated that bacteria are truly capable of autonomous PSP toxin synthesis or what role bacteria may play in shellfish toxification. In this study, different putatively PSP toxin producing bacteria originally isolated from toxic Alexandrium spp. were exposed to the blue mussel Mytilus edulis. To document that these bacteria accumulated in the digestive tract of the mussels, hybridization techniques that use rRNA targeted oligonuceotides for in situ identification of these bacteria were applied. The mussel hepatopancreas was dissected and paraffin and frozen sections were made. The dissected glands were hybridized with digoxigenin-labelled 16S rRNA oligonucleotide probes. Results demonstrate that mussels will readily uptake and accumulate these bacteria in the hepatopancreas. However, the mussels were not rendered toxic by the ingestion of the bacteria as determined by HPLC with UV detection for PSP toxins and determination of sodium channel blocking activity using the mouse neuroblastoma assay. Thus, although the role that bacteria play in mussel toxification remains unclear, methods are now available which will aid in further investigation of this relatively unexplored area.  相似文献   

7.
Mussels (Mytilus galloprovincialis) were experimentally contaminated with paralytic shellfish poisoning (PSP) toxins by being fed with the toxic dinoflagellate Alexandrium tamarense, and changes in toxin content and specific composition during the decontamination period were analyzed by high-performance liquid chromatography (HPLC). Toxins excreted by the mussels into the seawater were also recovered using an activated charcoal column and analyzed by HPLC. The predominant toxins in A. tamarense, mussels, and seawater were the N-sulfocarbamoyl-11-hydrosulfate toxins (C1,2) and carbamate gonyautoxins-1,4 (GTX1,4). There were no remarkable differences in the relative proportions of the predominant toxins within A. tamarense, mussels and seawater. Because the relative proportion of the various toxin analogues excreted by the mussels was similar to that within their tissues during detoxification, it appeared that the selective release of particular toxins by the mussels was unlikely. The total amount of toxin lost from mussels was nearly equal to that which was found dissolved in the seawater, suggesting that, at least the early stages of mussel detoxification, most losses can be accounted for by excretion.  相似文献   

8.
The optimal conditions were established for extraction of paralytic shellfish toxins from a Danish clone of Alexandrium tamarense using extraction with acetic acid and HCl in the concentration range 0.01–1.0 N. Physical destruction of the cells was investigated microscopically to select the most efficient extraction procedure.The toxin content was quantitated by an automized isocratic reversed-phase high-performance liquid chromatography (HPLC) method. The best results as judged from the total amount of toxins and the toxin profile were obtained using 0.05–1.0 N acetic acid and 0.01–0.02 N HCl. Hydrochloric acid in the concentration range 0.03–1.0 N caused the amount of C1 and C2 toxins to decrease sharply and concomitant increase of gonyautoxins 2 and 3.The phytoplankton extracts with 0.1 to 0.5 N acetic acid or 0.01 N HCl were stable during 6 months at –20 °C, but the extracts with HCl 0.02 N underwent a change in toxin profile, although the total amount of toxins was constant.  相似文献   

9.
The toxic dinoflagellate Gymnodinium catenatum Graham produces a newly discovered sub-class of paralytic shellfish toxins (PSTs, saxitoxins) that contain a hydroxybenzoate moiety in place of the carbamoyl group (GC toxins: GC1–GC3). GC toxins bind strongly to sodium channels and their lipophilic nature may increase their potential to bioaccumulate in marine organisms. Cultures Australian G. catenatum strains were found to contain 12–63 mol% GC toxins. The GC toxins were also detected in strains from China (38 mol%), Japan (1–2 mol%), Portugal (58 mol%), Spain (36–54 mol%), and Uruguay (10–16 mol%). A cluster analysis of molar proportions of saxitoxin derivatives produced by strains showed clear clustering by country/region of origin, indicating that GC toxins may be very useful markers to identify the source of G. catenatum in the case of new outbreaks. The GC toxins dominate the toxin profiles of many G. catenatum strains, and can contribute significantly to sample toxicity, yet these toxins may easily escape detection using conventional chromatography, resulting in significant underestimates of sample toxicity. This has significant implications for shellfish monitoring and safety.  相似文献   

10.
This study reports the data recorded from four patients intoxicated with shellfish during the summer 2002, after consuming ribbed mussels (Aulacomya ater) with paralytic shellfish toxin contents of 8,066 +/- 61.37 microg/100 gr of tissue. Data associated with clinical variables and paralytic shellfish toxins analysis in plasma and urine of the intoxicated patients are shown. For this purpose, the evolution of respiratory frequency, arterial blood pressure and heart rate of the poisoned patients were followed and recorded. The clinical treatment to reach a clinically stable condition and return to normal physiological parameters was a combination of hydration with saline solution supplemented with Dobutamine (vasoactive drug), Furosemide (diuretic) and Ranitidine (inhibitor of acid secretion). The physiological condition of patients began to improve after four hours of clinical treatment, and a stable condition was reached between 12 to 24 hours. The HPLC-FLD analysis showed only the GTX3/GTX2 epimers in the blood and urine samples. Also, these epimers were the only paralytic shellfish toxins found in the shellfish extract sample.  相似文献   

11.
Octopus (Octopus vulgaris, Cuvier) plays a central role in the marine food web, being an important consumer with high metabolic rates and at the same time an important food item for higher predators. After harmful algal blooms, octopus can accumulate high levels of marine toxins trough trophic interrelationships. The aim of this study is to characterize the distribution of paralytic shellfish toxins (PSTs) in selected tissues of the O. vulgaris, in order to assess the translocation of toxins among organs with different physiological functions. Different retention times and selective elimination of particular toxin analogues were also investigated. Twenty three specimens of O. vulgaris were captured in Peniche (NW coast of Portugal) after PSTs have been detected in molluscan bivalves. Tissue matrices were dissected from organs with digestive function (digestive gland, stomach and salivary glands) and excretory function (kidneys and branchial hearts) and analyzed for toxin determination. Toxin analysis was carried out by high performance liquid chromatography with fluorescence detection (LC-FLD). PSTs were found in all tissues analyzed. The highest toxin concentrations were found in the digestive gland, reaching a maximum of 2980 μg STX equiv. kg−1. The toxin profile was constituted by dcSTX, B1, C1 + 2, dcGTX2 + 3, dcNEO, STX and GTX2 + 3. A lower number of toxins were identified in the remaining organs, with B1 and dcSTX compromising more than 90% in molar fraction. Decarbamoyl saxitoxin was the most abundant toxin detected in digestive gland, stomach and salivary glands, while B1 was dominant in organs with excretory function. A positive correlation of concentrations of B1 and dcSTX were found in the organs analyzed. Results indicate that B1 and dcSTX are assimilated into the digestive gland in a similar proportion. Selective elimination of toxins with higher elimination of B1 and retention of dcSTX is suggested. This study contributes to better understanding of the dynamics of PSTs in O. vulgaris and the fate of PSTs in the food web.  相似文献   

12.
The activity of paralytic shellfish poisoning (PSP) toxins biosynthetic enzymes was assayed in the cyanobacterium Cylindrospermopsis raciborskii T3 after inhibiting protein synthesis with chloramphenicol (CAM). The production of C1+2 and saxitoxin (STX) was sensitive to CAM with STX levels decreasing by 70% after 24-h exposure to the antibiotic. PSP toxin production was strongly promoted by arginine supplementation, with a maximum 476% increase in intracellular STX concentrations after 24-h exposure to 10 mM of the amino acid. However, arginine had no stimulating effect on PSP toxin levels if supplemented in combination with CAM at 10 microg l(-1). Addition of agmatine and proline to C. raciborskii T3 cultures in the presence of 10 microg l(-1) CAM increased C1+2 toxins levels, while having a negative or no effect on STX accumulation. In vitro, PSP toxin levels increased naturally in cyanobacterial extracts, with CAM and arginine having no influence on either C1+2 or STX synthesis. The evidence presented in this study suggests a possible difference between the metabolism of STX and the C1+2 toxins and indicated a high turnover rate of STX biosynthetic enzymes in C. raciborskii T3.  相似文献   

13.
Species of Alexandrium produce potent neurotoxins termed paralytic shellfish toxins and are expanding their ranges worldwide, concurrent with increases in sea surface temperature. The metabolism of molluscs is temperature dependent, and increases in ocean temperature may influence both the abundance and distribution of Alexandrium and the dynamics of toxin uptake and depuration in shellfish. Here, we conducted a large‐scale study of the effect of temperature on the uptake and depuration of paralytic shellfish toxins in three commercial oysters (Saccostrea glomerata and diploid and triploid Crassostrea gigas, n = 252 per species/ploidy level). Oysters were acclimated to two constant temperatures, reflecting current and predicted climate scenarios (22 and 27 °C), and fed a diet including the paralytic shellfish toxin‐producing species Alexandrium minutum. While the oysters fed on A. minutum in similar quantities, concentrations of the toxin analogue GTX1,4 were significantly lower in warm‐acclimated S. glomerata and diploid C. gigas after 12 days. Following exposure to A. minutum, toxicity of triploid C. gigas was not affected by temperature. Generally, detoxification rates were reduced in warm‐acclimated oysters. The routine metabolism of the oysters was not affected by the toxins, but a significant effect was found at a cellular level in diploid C. gigas. The increasing incidences of Alexandrium blooms worldwide are a challenge for shellfish food safety regulation. Our findings indicate that rising ocean temperatures may reduce paralytic shellfish toxin accumulation in two of the three oyster types; however, they may persist for longer periods in oyster tissue.  相似文献   

14.
We recently described a high throughput receptor binding assay for paralytic shellfish poisoning (PSP) toxins, the use of the assay for detecting toxic activity in shellfish and algal extracts, and the validation of 11-[3H]-tetrodotoxin as an alternative radioligand to the [3H]-saxitoxin conventionally employed in the assay. Here, we report a dramatic increase in assay efficiency through application of microplate scintillation technology, resulting in an assay turn around time of 4 h. Efforts are now focused on demonstrating the range of applications for which this receptor assay can provide data comparable to the more time consuming, technically demanding HPLC analysis of PSP toxins, currently the method of choice for researchers. To date, we have compared the results of both methods for a variety of sample types, including different genera of PSP toxin producing dinoflagellates (e.g. Alexandrium lusitanicum, r2 = 0.9834, n = 12), size-fractioned field samples of Alexandrium spp. (20-64 microm; r2 = 0.9997, n = 10) as well as its associated zooplankton grazer community (200-500 microm: r2 = 0.6169, n = 10; >500 microm: r2 = 0.5063, n = 10), and contaminated human fluids (r2 = 0.9661, n = 7) from a PSP outbreak. Receptor-based STX equivalent values for all but the zooplankton samples were highly correlated and exhibited close quantitative agreement with those produced by HPLC. While the PSP receptor binding assay does not provide information on toxin composition obtainable by HPLC, it does represent a robust and reliable means of rapidly assessing PSP-like toxicity in laboratory and field samples. Moreover, this assay should be effective as a screening tool for use by public health officials in responding to suspected cases of PSP intoxication.  相似文献   

15.
Lyngbya wollei (Farlow ex Gomont) comb. nov., a perennial mat-forming filamentous cyanobacterium prevalent in lakes and reservoirs of the southeastern United States, was found to produce a potent, acutely lethal neurotoxin when tested in the mouse bioassay. Signs of poisoning were similar to those of paralytic shellfish poisoning. As part of the Tennessee Valley Authority master plan for Guntersville Reservoir, the mat-forming filamentous cyanobacterium L. wollei, a species that had recently invaded from other areas of the southern United States, was studied to determine if it could produce any of the known cyanotoxins. Of the 91 field samples collected at 10 locations at Guntersville Reservoir, Ala., on the Tennessee River, over a 3-year period, 72.5% were toxic. The minimum 100% lethal doses of the toxic samples ranged from 150 to 1,500 mg kg of lyophilized L. wollei cells-1, with the majority of samples being toxic at 500 mg kg-1. Samples bioassayed for paralytic shellfish toxins by the Association of Official Analytical Chemists method exhibited saxitoxin equivalents ranging from 0 to 58 micrograms g (dry weight)-1. Characteristics of the neurotoxic compound(s), such as the lack of adsorption by C18 solid-phase extraction columns, the short retention times on C18 high-performance liquid chromatography (HPLC) columns, the interaction of the neurotoxins with saxiphilin (a soluble saxitoxin-binding protein), and external blockage of voltage-sensitive sodium channels, led to our discovery that this neurotoxin(s) is related to the saxitoxins, the compounds responsible for paralytic shellfish poisonings. The major saxitoxin compounds thus far identified by comparison of HPLC fluorescence retention times are decarbamoyl gonyautoxins 2 and 3. There was no evidence of paralytic shellfish poison C toxins being produced by L. wollei. Fifty field samples were placed in unialgal culture and grown under defined culture conditions. Toxicity and signs of poisoning for these laboratory-grown strains of L. wollei were similar to those of the field collection samples.  相似文献   

16.
Ecological Stoichiometry theory predicts that the production, elemental structure and cellular content of biomolecules should depend on the relative availability of resources and the elemental composition of their producer organism. We review the extent to which carbon‐ and nitrogen‐rich phytoplankton toxins are regulated by nutrient limitation and cellular stoichiometry. Consistent with theory, we show that nitrogen limitation causes a reduction in the cellular quota of nitrogen‐rich toxins, while phosphorus limitation causes an increase in the most nitrogen‐rich paralytic shellfish poisoning toxin. In addition, we show that the cellular content of nitrogen‐rich toxins increases with increasing cellular N : P ratios. Also consistent with theory, limitation by either nitrogen or phosphorus promotes the C‐rich toxin cell quota or toxicity of phytoplankton cells. These observed relationships may assist in predicting and managing toxin‐producing phytoplankton blooms. Such a stoichiometric regulation of toxins is likely not restricted to phytoplankton, and may well apply to carbon‐ and nitrogen‐rich secondary metabolites produced by bacteria, fungi and plants.  相似文献   

17.
Saprophytic bacteria in cultures of the marine dinoflagellate Alexandrium catenella were removed to assess their effect on growth and paralytic shellfish poisoning toxin production of this dinoflagellate. The actual axenic status was demonstrated by the lack of observable bacteria both immediately after treatment and following extended incubation in the absence of antibiotics. Bacteria were measured by counting CFU and also by epifluorescence microscopy and PCR amplification of bacterial 16S-23S spacer ribosomal DNA to detect noncultivable bacteria. Removal of bacteria did not have any effect on the growth of the dinoflagellate except for the inhibition of A. catenella disintegration after reaching the stationary phase. Toxicity was determined in dinoflagellate cell extracts by different methods: high-performance liquid chromatography (HPLC); an electrophysiological test called the Electrotest, which measures the inhibition of saxitoxin-sensitive Na(+) channels expressed in a cell line; and a mouse bioassay, which measures the toxic effect on the whole mammal neuromuscular system. A lower toxicity of the dinoflagellates in axenic culture was observed by these three methods, though the difference was significant only by the mouse bioassay and HPLC methods. Altogether the results indicate that axenic cultures of A. catenella are able to produce toxin, though the total toxicity is probably diminished to about one-fifth of that in nonaxenic cultures.  相似文献   

18.
The accumulation of paralytic shellfish poisoning (PSP) toxins by bivalves is a serious threat to public health all over the world. However, very little is known about the uptake kinetics of these toxins and the environmental factors that may modify this process. We have studied the effect of mussel size, temperature, seston volume, food quality, and volume-specific toxin concentration (VOSTOC), on the uptake rate of paralytic shellfish poisoning (PSP) toxins by mussels (Mytilus galloprovincialis), by means of a second order factorial experiment. Over a 3-day period, the mussels were fed artificial diets containing Alexandrium minutum AL1V (a PSP toxin producer), Tetraselmis suecica, Ensiculifera sp1 and silt, to the levels required by each treatment. Mussel size, seston volume and VOSTOC were found to be statistically significant when the total toxin accumulated per weight of wet tissue was considered. Mussel size affected the uptake negatively and latter two positively. The interactions, mussel size-VOSTOC and mussel size-food quality were also significant. The response was not linear as shown by the significance of the quadratic term of mussel size. Notwithstanding, when the PSP toxins accumulation per mussel was analysed, only one factor, the VOSTOC and the interactions, food quality-mussel size and food quality-seston volume, were found to be significant. VOSTOC was the most important factor in the accumulation of toxins, in our opinion, probably due to toxin assimilation being mainly regulated by the probability of contact between the toxins and the cellular walls of the digestive system. The size of the bivalve is also especially important because toxin concentration is usually calculated per weight of bivalve tissue and because the weight-specific ingestion increases with mussel size. The food quality, which was directly related to the assimilation of organic matter, had an inverse effect on toxin assimilation. In our opinion, this is probably due to the effect of inorganic particles in enhancing the disruption of Alexandrium cells. Temperature had no effect on the uptake rate except for the accumulation of the gonyautoxin GTX1.  相似文献   

19.
Atlantic mackerel Scomber scombrus are known to be lethal vectors of paralytic shellfish poisoning (PSP) toxins to predators. To elucidate dynamics of PSP toxin accumulation in this species, mackerel were sampled in the Gulf of St Lawrence from May to October 1993. Mackerel appear to retain toxins (saxitoxin, gonyautoxins 2 and 3) year-round. The toxin content of the liver, as determined by high performance liquid chromatography, increased significantly with fish age ( r2 =0.40) and length ( r2 =0.52), suggesting that mackerel progressively accumulate PSP toxins throughout their life. The toxin content of the liver also increased significantly during the summer feeding sojourn in the Gulf of St Lawrence. Comparison of profiles of saxitoxin derivatives indicated that zooplankton were the likely source of PSP toxins found in mackerel. The mean ± S.D toxin content was 17.4 ± 10.6 nmol liver−1 and the mean ± S.D. PSP toxicity was 112.4 ± 67.0 μg saxitoxin equivalents 100 g−1 liver wet weight ( n =247).  相似文献   

20.
In vitro transformation of PSP toxins by different shellfish tissues   总被引:1,自引:0,他引:1  
Many in vivo shellfish feeding experiments have been carried out in order to investigate the fate of PSP toxins in the marine food chain. A focal point of these studies concerns the species- and tissue-specific differences in toxin metabolism. However, tissue specific effects are often overlapped by selective toxin retention as well as transfer between individual compartiments. In in vitro experiments presented here digestive tissue and adductor homogenates of 10 shellfish species (bivalvia: Mytilus edulis, Crassostrea gigas, Cardium edule, Arctica islandica, Ensis ensis, Modiolus modiolus, Mactra stultorum, Pecten maximus as well as two snails: Littorina littorea and Buccinum undatum) were incubated with an extract of the toxic strain Alexandrium fundyense CCMP 1719. After incubation, changes in the toxin pattern could be observed in all samples with significant differences occuring between both the species and tissues. The greatest metabolic activity was found in digestive tissue samples. Among the organisms, the species with a non-filtering lifestyle, L. littorea and B. undatum, showed the highest conversion rates. Interestingly, the high metabolic transformation rate of the PSP toxins was accompanied with a fast reduction (up to 73%) of toxicity in the homogenates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号