首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Warburg showed in 1929 that the photochemical action spectrum for CO dissociation from cytochrome c oxidase is that of a heme protein. Keilin had shown that cytochrome a does not react with oxygen, so he did not accept Warburg's view until 1939, when he discovered cytochrome a 3. The dinuclear cytochrome a 3-CuB unit was found by EPR in 1967, whereas the dinuclear nature of the CuA site was not universally accepted until oxidase crystal structures were published in 1995. There are negative redox interactions between cytochrome a and the other redox sites in the oxidase, so that the reduction potential of a particular site depends on the redox states of the other sites. Calculated electron-tunneling pathways for internal electron transfer in the oxidase indicate that the coupling-limited rates are 9×105 (Cu A a) and 7×106 s–1 (a a 3); these calculations are in reasonable agreement with experimental rates, after corrections are made for driving force and reorganization energy. The best CuA-a pathway starts from the ligand His204 and not from the bridging sulfur of Cys196, and an efficient a-a 3 path involves the heme ligands His378 and His376 as well as the intervening Phe377 residue. All direct paths from CuA to a 3 are poor, indicating that direct CuA a 3 electron transfer is much slower than the CuA a reaction. The pathways model suggests a means for gating the electron flow in redox-linked proton pumps.  相似文献   

2.
In contrast to plant agglutinins, biological activities of animal/human lectins are not well defined yet. Testing a panel of seven mammalian carbohydrate-binding proteins we have found that the dimeric lectin from chicken liver (CL-16) was a stimulator of H2O2 release from human neutrophils as well as effector for induction of cytosolic Ca2+ and pH increase in rat thymocytes. Activity of this lectin was comparable to potent galactoside-specific plant lectins such as Viscum album L. agglutinin. The activities of the tested plant lectins depended significantly on their nominal carbohydrate specificity as well as on the source. The results indicate that endogenous lectins may be involved in the regulation of neutrophil and lymphocyte functions by elicitation of selective biosignaling reactions.  相似文献   

3.
Kinetics of dark decay of absorbance changes at 830 nm (830) was examined in thylakoids isolated from leaves of pea seedlings at various concentrations of exogenous NADPH or NADH. Absorbance changes were induced by far-red light to avoid electron donation from photosystem II. In the presence of either biological reductant, the kinetics of 830 decay reflecting dark reduction of 700+, the primary electron donor of photosystem I, was fitted by a single exponential term. The rate of 700+ reduction increased with the rise in the concentration of both NADPH and NADH. The values of K M and V max for 700+ reduction estimated from concentration dependences were 105 ± 21 M and 0.32/s for NADPH or 21 ± 8 M and 0.12/s for NADH. The rate of P700+ reduction by either NADPH or NADH significantly increased in the presence of rotenone, a specific inhibitor of chloroplast reductase. The value of V max was changed only in the presence of rotenone, whereas K m was practically unaffected. Unlike the chloroplasts of intact leaves, the only enzyme mediating the input of reducing equivalents from NADPH or NADH to the electron transport chain was concluded to be present in thylakoids.  相似文献   

4.
Paracoccus denitrificans is able to grow on the C1 compounds methanol and methylamine. These compounds are oxidized to formaldehyde which is subsequently oxidized via formate to carbon dioxide. Biomass is produced by carbon dioxide fixation via the ribulose biphosphate pathway. The first oxidation reaction is catalyzed by the enzymes methanol dehydrogenase and methylamine dehydrogenase, respectively. Both enzymes contain two different subunits in an 22 configuration. The genes encoding the subunits of methanol dehydrogenase (moxF andmoxI) have been isolated and sequenced. They are located in one operon together with two other genes (moxJ andmoxG) in the gene ordermoxFJGI. The function of themoxJ gene product is not yet known.MoxG codes for a cytochromec 551i , which functions as the electron acceptor of methanol dehydrogenase. Both methanol dehydrogenase and methylamine dehydrogenase contain PQQ as a cofactor. These so-called quinoproteins are able to catalyze redox reactions by one-electron steps. The reaction mechanism of this oxidation will be described. Electrons from the oxidation reaction are donated to the electron transport chain at the level of cytochromec. P. denitrificans is able to synthesize at least 10 differentc-type cytochromes. Five could be detected in the periplasm and five have been found in the cytoplasmic membrane. The membrane-bound cytochromec 1 and cytochromec 552 and the periplasmic-located cytochromec 550 are present under all tested growth conditions. The cytochromesc 551i andc 553i , present in the periplasm, are only induced in cells grown on methanol, methylamine, or choline. The otherc-type cytochromes are mainly detected either under oxygen limited conditions or under anaerobic conditions with nitrate as electron acceptor or under both conditions. An overview including the induction pattern of allP. denitrificans c-type cytochromes will be given. The genes encoding cytochromec 1, cytochromec 550, cytochromec 551i , and cytochromec 553i have been isolated and sequenced. By using site-directed mutagenesis these genes were mutated in the genome. The mutants thus obtained were used to study electron transport during growth on C1 compounds. This electron transport has also been studied by determining electron transfer rates inin vitro experiments. The exact pathways, however, are not yet fully understood. Electrons from methanol dehydrogenase are donated to cytochromec 551i . Further electron transport is either via cytochromec 550 or cytochromec 553i to cytochromeaa 3. However, direct electron transport from cytochromec 551i to the terminal oxidase might be possible as well. Electrons from methylamine dehydrogenase are donated to amicyanin and then via cytochromec 550 to cytochromeaa 3, but other routes are used also.P. denitrificans is studied by several groups by using a genetic approach. Several genes have already been cloned and sequenced and a lot of mutants have been isolated. The development of a host/vector system and several techniques for mutation induction that are used inP. denitrificans genetics will be described.  相似文献   

5.
It is shown that an electron transport reaction which is rate-limited by electron conduction 4 across a solid biological particle or membrane in accord with Ohm's law should have a first order rate constant approximately proportional to exp (E a/KT ), whereT is absolute temperature,k is the Boltzmann constant andE a is the activation energy for semiconduction in the solid particle, where resistance in the semiconductor is proportional to exp (E a /KT). For two different preparations of cytochrome oxidase, this method yields an average value ofE a =0.27 ev, which agrees well with direct conductivity measurements on dry solid enzyme, which provide an average value ofE a =0.26 ev. Electron mobility in dry cytochrome oxidase is estimated to be approximately \gm=10\t-5 cm2 volt\t-1 sec\t-1. Elovich decay of current in dry cytochrome oxidase was observed, which parallels the Elovich kinetics of cytochrome oxidase activity in yeast observed previously by M\:uhlig (1966). Finally, the solid state kinetic theory is used to deduce that conduction of polarons may be involved in cytochrome oxidase activity (1 polaron=1 electron + 1 phonon), which provides a link with the solid state phonon phosphorylation theory of Straub.  相似文献   

6.
Nitric oxide (NO) has recently been recognized as an important biological mediator that inhibits respiration at cytochrome c oxidase (CcO). This inhibition is reversible and shows competition with oxygen, the K i being lower at low oxygen concentrations. Although the species that binds NO in turnover has been suggested to contain a partially reduced binuclear center, the exact mechanism of the inhibition is not clear. Recently, rapid (ms) redox reactions of NO with the binuclear center have been reported, e.g., the ejection of an electron to cytochrome a and the depletion of the intermediates P and F. These observations have been rationalized within a scheme in which NO reacts with oxidized CuB leading to the reduction of this metal center and formation of nitrite in a very fast reaction. Electron migration from CuB to other redox sites within the enzyme is proposed to explain the optical transitions observed. The relevance of these reactions to the inhibition of CcO and metabolism of NO are discussed.  相似文献   

7.
Photosynthetic bacteria offer excellent experimental opportunities to explore both the structure and function of the ubiquinol-cytochromec oxidoreductase (bc 1 complex). In bothRhodobacter sphaeroides andRhodobacter capsulatus, thebc 1 complex functions in both the aerobic respiratory chain and as an essential component of the photosynthetic electron transport chain. Because thebc 1 complex in these organisms can be functionally coupled to the photosynthetic reaction center, flash photolysis can be used to study electron flow through the enzyme and to examine the effects of various amino acid substitutions. During the past several years, numerous mutations have been generated in the cytochromeb subunit, in the Rieske iron-sulfur subunit, and in the cytochromec 1 subunit. Both site-directed and random mutagenesis procedures have been utilized. Studies of these mutations have identified amino acid residues that are metal ligands, as well as those residues that are at or near either the quinol oxidase (Qo) site or the quinol reductase (Qi) site. The postulate that these two Q-sites are located on opposite sides of the membrane is supported by these studies. Current research is directed at exploring the details of the catalytic mechanism, the nature of the subunit interactions, and the assembly of this enzyme.  相似文献   

8.
Hydrogen sulfide is an endogenously generated molecule with many reported physiological functions. Although several biological targets have been proposed, the biochemical mechanisms by which it elicits activity are not established. Thus, in an effort to begin to delineate the fundamental biological chemistry of H2S, we have examined the reaction of H2S with oxidized thiols and thiol proteins in order to determine whether persulfide formation occurs, is stable and how this may affect protein function. We have found that persulfides are easily generated, relatively stable and can alter enzyme activity. Moreover, we have begun to develop methodology for in situ generation of persulfides to facilitate further study of this potentially important species.  相似文献   

9.
Cytochromes P450 from the white-rot basidiomycete Phanerochaete chrysosporium, CYP5136A1 and CYP5136A3, are capable of catalyzing oxygenation reactions of a wide variety of exogenous compounds, implying their significant roles in the metabolism of xenobiotics by the fungus. It is therefore interesting to explore their biochemistry to better understand fungal biology and to enable the use of fungal enzymes in the biotechnology sector. In the present study, we developed heterologous expression systems for CYP5136A1 and CYP5136A3 using the T7 RNA polymerase/promoter system in Escherichia coli. Expression levels of recombinant P450s were dramatically improved by modifications and optimization of their N-terminal amino acid sequences. A CYP5136A1 reaction system was reconstructed in E. coli whole cells by coexpression of CYP5136A1 and a redox partner, NADPH-dependent P450 reductase (CPR). The catalytic activity of CYP5136A1 was significantly increased when cytochrome b5 (Cyt-b5) was further coexpressed with CPR, indicating that Cyt-b5 supports electron transfer reactions from NAD(P)H to CYP5136A1. Notably, P450 reaction occurred in E. coli cells that harbored CYP5136A1 and Cyt-b5 but not CPR, implying that the reducing equivalents required for the P450 catalytic cycle were transferred via a CPR-independent pathway. Such an “alternative” electron transfer system in CYP5136A1 reaction was also demonstrated using purified enzymes in vitro. The fungal P450 reaction system may be associated with sophisticated electron transfer pathways.  相似文献   

10.
Plastocyanin and cytochrome c 6 are two soluble metalloproteins that act as alternative electron carriers between the membrane-embedded complexes cytochromes b 6 f and Photosystem I. Despite plastocyanin and cytochrome c 6 differing in the nature of their redox center (one is a copper protein, the other is a heme protein) and folding pattern (one is a β-barrel, the other consists of α-helices), they are exchangeable in green algae and cyanobacteria. In fact, the two proteins share a number of structural similarities that allow them to interact with the same membrane complexes in a similar way. The kinetic and thermodynamic analysis of Photosystem I reduction by plastocyanin and cytochrome c 6 reveals that the same factors govern the reaction mechanism within the same organism, but differ from one another. In cyanobacteria, in particular, the electrostatic and hydrophobic interactions between Photosystem I and its electron donors have been analyzed using the wild-type protein species and site-directed mutants. A number of residues similarly conserved in the two proteins have been shown to be critical for the electron transfer reaction. Cytochrome c 6 does contain two functional areas that are equivalent to those previously described in plastocyanin: one is a hydrophobic patch for electron transfer (site 1), and the other is an electrically charged area for complex formation (site 2). Each cyanobacterial protein contains just one arginyl residue, similarly located between sites 1 and 2, that is essential for the redox interaction with Photosystem I. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Photosystem II from thylakoid membranes of the thermophilic cyanobacterium Thermosynechococcus elongatus was solubilized with n-β-dodecylmaltoside and purified using anion exchange chromatography. Molecular weight, pigment stoichiometry and subunit composition were assayed using various techniques. The holocomplex is dimeric with a molecular mass of 756 ± 18 kDa and functionally fully active. Crystals obtained from these samples showed significantly improved quality leading to a 3D structure at 3.2 Å resolution. Several loop regions of the principal protein subunits are now defined that were not interpretable at lower (3.8 Å) resolution, thus resulting in a more complete model. The head groups of the cofactors of the electron transfer chain and of the antennae have been modeled, coordinating and hydrogen bonding amino acids identified and the nature of the binding pockets derived. The orientations of these cofactors resemble those of the reaction centre from anoxygenic purple bacteria. For the two plastoquinones, electron density was only found for the head group of QA and none for QB indicating low or even no occupancy of this site in the crystal structure. Both binding pockets and problems related to the QB site are discussed here and compared to the situation in the purple bacterial reaction centre.  相似文献   

12.
It is well known that two photosystems, I and II, are needed to transfer electrons from H2O to NADP+ in oxygenic photosynthesis. Each photosystem consists of several components: (a) the light-harvesting antenna (L-HA) system, (b) the reaction center (RC) complex, and (c) the polypeptides and other co-factors involved in electron and proton transport. First, we present a mini review on the heterogeneity which has been identified with the electron acceptor side of Photosystem II (PS II) including (a) L-HA system: the PS II and PS II units, (b) RC complex containing electron acceptor Q1 or Q2; and (c) electron acceptor complex: QA (having two different redox potentials QL and QH) and QB (QB-type; Q'B type; and non-QB type); additional components such as iron (Q-400), U (Em,7=–450 mV) and Q-318 (or Aq) are also mentioned. Furthermore, we summarize the current ideas on the so-called inactive (those that transfer electrons to the plastoquinone pool rather slowly) and active reaction centers. Second, we discuss the bearing of the first section on the ratio of the PS II reaction center (RC-II) and the PS I reaction center (RC-I). Third, we review recent results that relate the inactive and active RC-II, obtained by the use of quinones DMQ and DCBQ, with the fluorescence transient at room temperature and in heated spinach and soybean thylakoids. These data show that inactive RC-II can be easily monitored by the OID phase of fluorescence transient and that heating converts active into inactive centers.Abbreviations DCBQ 2,5 or 2,6 dichloro-p-benzoquinone - DMQ dimethylquinone - QA primary plastoquinone electron acceptor of photosystem II - QB secondary plastoquinone electron acceptor of photosystem II - IODP successive fluorescence levels during time course of chlorophyll a fluorescence: O for origin, I for inflection, D for dip or plateau, and P for peak  相似文献   

13.
Polysulfide dissolution into the electrolyte and poor electric conductivity of elemental sulfur are well‐known origins for capacity fading in lithium–sulfur batteries. Various smart electrode designs have lately been introduced to avoid these fading mechanisms, most of which demonstrate significantly improved cycle life. Nevertheless, an in‐depth understanding on the effect of sulfur microstructure and nanoscale electron transport near sulfur is currently lacking. In this study, the authors report an organized nanocomposite comprising linear sulfur chains and oleylamine‐functionalized reduced graphene oxide (O‐rGO) to achieve robust cycling performance (81.7% retention after 500 cycles) as well as to investigate the reaction mechanism in different regimes, i.e., S8 dissolution, polysulfide conversion, and Li2S formation. In the nanocomposite, linear sulfur chains terminate with 1,3‐diisopropylbenzene are covalently linked to O‐rGO. The comparison with control samples that do not contain either the capping of sulfur chains or O‐rGO reveals the synergistic interplay between both treatments, simultaneously unveiling the distinct roles of confined sulfur nanodomains and their adjoining electron pathways in different reaction regimes.  相似文献   

14.
Kinetic studies of the electron transfer processes performed by cytochrome oxidase have assigned rates of electron transfer between the metal centers involved in the oxidation of ferrocytochromec by molecular oxygen. Transient-state studies of the reaction with oxygen have led to the proposal of a sequence of carriers from cytochromec, to CuA, to cytochromea, and then to the binuclear (i.e., cytochromea 3-CuB) center. Electron exchange rates between these centers agree with relative center-to-center distances as follows; cytochromec to CuA 5–7 Å, cytochromec to cytochromea 20–25 Å, CuA to cytochromea 14–16 Å and cytochromea to cytochrome a3-CuB 8–10 Å. It is proposed that the step from cytochromea to the binuclear center is the key control point in the reaction and that this step is one of the major points of energy transduction in the reaction cycle.  相似文献   

15.
Research on photosynthetic electron transfer closely parallels that of other electron transfer pathways and in many cases they overlap. Thus, the first bacterial cytochrome to be characterized, called cytochrome c 2, is commonly found in non-sulfur purple photosynthetic bacteria and is a close homolog of mitochondrial cytochrome c. The cytochrome bc 1 complex is an integral part of photosynthetic electron transfer yet, like cytochrome c 2, was first recognized as a respiratory component. Cytochromes c 2 mediate electron transfer between the cytochrome bc 1 complex and photosynthetic reaction centers and cytochrome a-type oxidases. Not all photosynthetic bacteria contain cytochrome c 2; instead it is thought that HiPIP, auracyanin, Halorhodospira cytochrome c551, Chlorobium cytochrome c555, and cytochrome c 8 may function in a similar manner as photosynthetic electron carriers between the cytochrome bc 1 complex and reaction centers. More often than not, the soluble or periplasmic mediators do not interact directly with the reaction center bacteriochlorophyll, but require the presence of membrane-bound intermediates: a tetraheme cytochrome c in purple bacteria and a monoheme cytochrome c in green bacteria. Cyclic electron transfer in photosynthesis requires that the redox potential of the system be delicately poised for optimum efficiency. In fact, lack of redox poise may be one of the defects in the aerobic phototrophic bacteria. Thus, large concentrations of cytochromes c 2 and c′ may additionally poise the redox potential of the cyclic photosystem of purple bacteria. Other cytochromes, such as flavocytochrome c (FCSD or SoxEF) and cytochrome c551 (SoxA), may feed electrons from sulfide, sulfur, and thiosulfate into the photosynthetic pathways via the same soluble carriers as are part of the cyclic system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Inhibition of electron transport and damage to the protein subunits by ultraviolet-B (UV-B, 280–320 nm) radiation have been studied in isolated reaction centers of the non-sulfur purple bacterium Rhodobacter sphaeroides R26. UV-B irradiation results in the inhibition of charge separation as detected by the loss of the initial amplitude of absorbance change at 430 nm reflecting the formation of the P+(QAQB) state. In addition to this effect, the charge recombination accelerates and the damping of the semiquinone oscillation increases in the UV-B irradiated reaction centers. A further effect of UV-B is a 2 fold increase in the half- inhibitory concentration of o-phenanthroline. Some damage to the protein subunits of the RC is also observed as a consequence of UV-B irradiation. This effect is manifested as loss of the L, M and H subunits on Coomassie stained gels, but not accompanied with specific degradation products. The damaging effects of UV-B radiation enhanced in reaction centers where the quinone was semireduced (QB ) during UV-B irradiation, but decreased in reaction centers which lacked quinone at the QB binding site. In comparison with Photosystem II of green plant photosynthesis, the bacterial reaction center shows about 40 times lower sensitivity to UV-B radiation concerning the activity loss and 10 times lower sensitivity concerning the extent of reaction center protein damage. It is concluded that the main effect of UV-B radiation in the purple bacterial reaction center occurs at the QAQB quinone acceptor complex by decreasing the binding affinity of QB and shifting the electron equilibration from QAQB to QA QB. The inhibitory effect is likely to be caused by modification of the protein environment around the QB binding pocket and mediated by the semiquinone form of QB. The UV-resistance of the bacterial reaction center compared to Photosystem II indicates that either the QAQB acceptor complex, which is present in both types of reaction centers with similar structure and function, is much less susceptible to UV damage in purple bacteria, or, more likely, that Photosystem II contains UV-B targets which are more sensitive than its quinone complex.Abbreviations Bchl bacteriochlorophyll - P Bchl dimer - QA primary quinone electron acceptor - QB secondary quinone electron acceptor - RC reaction center - UV-B ultraviolet-B  相似文献   

17.
Enzyme activity is typically assayed by quantitatively measuring the initial and final concentrations of the substrates and/or products over a defined time period. For enzymatic reactions involving gaseous substrates, the substrate concentrations can be estimated either directly by gas chromatography or mass spectrometry, or indirectly by absorption spectroscopy, if the catalytic reactions involve electron transfer with electron mediators that exhibit redox‐dependent spectral changes. We have developed a new assay system for measuring the time course of enzymatic reactions involving gaseous substrates based on Raman spectroscopy. This system permits continuous monitoring of the gas composition in the reaction cuvette in a non‐invasive manner over a prolonged time period. We have applied this system to the kinetic study of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. This enzyme physiologically catalyzes the reversible oxidation of H2 and also possesses the nonphysiological functions of H/D exchange and nuclear spin isomer conversion reactions. The proposed system has the additional advantage of enabling us to measure all of the hydrogenase‐mediated reactions simultaneously. Using the proposed system, we confirmed that H2 (the fully exchanged product) is concomitantly produced alongside HD by the H/D exchange reaction in the D2/H2O system. Based on a kinetic model, the ratio of the rate constants of the H/D exchange reaction (k) at the active site and product release rate (kout) was estimated to be 1.9 ± 0.2. The proposed assay method based on Raman spectroscopy can be applied to the investigation of other enzymes involving gaseous substrates.  相似文献   

18.
An assay for determining the rate of methemoglobin reduction in hemolysates of human erythrocytes has been developed. The rates obtained by this assay, when corrected for dilution, are comparable to those obtained with intact cells. Increased ionic strength inhibits the reaction, whereas EDTA increases the rate of reduction. The rate with NADPH as electron donor is 65–70% of the rate with NADH. Added cytochrome b5 stimulates the reaction. The assay has been used to examine erythrocytes from two methemoglobinemic sisters and their asymptomatic mother. Hemolysates of the two patients have both decreased dichlorophenolindophenol reductase activity and decreased ability to reduce methemoglobin. Hemolysates from the heterozygous mother have intermediate dichlorophenolindophenol reductase activity and intermediate methemoglobin reduction ability. The data presented in this paper indicate that the concentrations of cytochrome b5 and cytochrome b5 reductase determine the rate of methemoglobin reduction in hemolysates.  相似文献   

19.
Fluorotelomer alcohols [FTOHs, F(CF2)nCH2CH2OH, n = 4, 6, and 8] are emerging environmental contaminants. Biotransformation of FTOHs by mixed bacterial cultures has been reported; however, little is known about the microorganisms responsible for the biotransformation. Here we reported biotransformation of FTOHs by two well‐studied Pseudomonas strains: Pseudomonas butanovora (butane oxidizer) and Pseudomonas oleovorans (octane oxidizer). Both strains could defluorinate 4:2, 6:2, and 8:2 FTOHs, with a higher degree of defluorination for 4:2 FTOH. According to the identified metabolites, P. oleovorans transformed FTOHs via two pathways I and II. The pathway I led to the production of x:2 ketone [dominant metabolite, F(CF2)xC(O)CH3; x = n ? 1, n = 6 or 8], x:2 sFTOH [F(CF2)xCH(OH)CH3], and perfluorinated carboxylic acids (PFCAs, perfluorohexanoic, or perfluorooctanoic acid). The pathway II resulted in the formation of x:3 polyfluorinated acid [F(CF2)xCH2CH2COOH] and relatively minor shorter‐chain PFCAs (perfluorobutyric or perfluorohexanoic acid). Conversely, P. butanovora transformed FTOHs by using the pathway I, leading to the production of x:2 ketone, x:2 sFTOH, and PFCAs. This is the first study to show that individual bacterium can bio‐transform FTOHs via different or preferred transformation pathways to remove multiple ? CF2? groups from FTOHs to form shorter‐chain PFCAs. Biotechnol. Bioeng. 2012; 109: 3041–3048. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
【目的】探究化能自养硫氧化细菌Halothiobacillus sp. LS2介导的以乙炔为电子受体的厌氧硫氧化反应。【方法】稀释涂布法测定细胞生长情况,离子色谱仪测试硫氧化动力学中SO_4~(2–)和S_2O_3~(2–)以及基于相对荧光定量法的基因表达分析。【结果】尽管菌株LS2在以氧气为电子受体时的最大反应速率V_(max)更高,但在厌氧条件下且以乙炔为电子受体时,菌株LS2的生长量是氧气为电子受体时的2倍,且硫氧化酶基因soxB的表达量显著高于氧气作为电子受体时。【结论】菌株LS2不仅可以以乙炔为电子受体完成厌氧硫氧化反应,且这一代谢过程的产能效率较有氧硫氧化过程更高。本研究首次发现了微生物介导的以乙炔为电子受体的厌氧硫氧化反应,对丰富硫的生物地球化学循环理论有积极意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号