首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most Enterococcus faecium isolates associated with hospital outbreaks and invasive infections belong to a distinct genetic subpopulation called clonal complex 17 (CC17). It has been postulated that the genetic evolution of CC17 involves the acquisition of various genes involved in antibiotic resistance, metabolic pathways, and virulence. To gain insight into additional genes that may have favored the rapid emergence of this nosocomial pathogen, we aimed to identify surface-exposed LPXTG cell wall-anchored proteins (CWAPs) specifically enriched in CC17 E. faecium. Using PCR and Southern and dot blot hybridizations, 131 E. faecium isolates (40 CC17 and 91 non-CC17) were screened for the presence of 22 putative CWAP genes identified from the E. faecium TX0016 genome. Five genes encoding LPXTG surface proteins were specifically enriched in E. faecium CC17 isolates. These five LPXTG surface protein genes were found in 28 to 40 (70 to 100%) of CC17 and in only 7 to 24 (8 to 26%) of non-CC17 isolates (P < 0.05). Three of these CWAP genes clustered together on the E. faecium TX0016 genome, which may comprise a novel enterococcal pathogenicity island covering E. faecium contig 609. Expression at the mRNA level was demonstrated, and immunotransmission electron microscopy revealed an association of the five LPXTG surface proteins with the cell wall. Minimal spanning tree analysis based on the presence and absence of 22 CWAP genes revealed grouping of all 40 CC17 strains together with 18 hospital-derived but evolutionary unrelated non-CC17 isolates in a distinct CWAP-enriched cluster, suggesting horizontal transfer of CWAP genes and a role of these CWAPs in hospital adaptation.  相似文献   

2.
Vancomycin-resistant enterococci (VRE) have been reported to be present in humans, chickens, and pigs in Malaysia. In the present study, representative samples of VRE isolated from these populations were examined for similarities and differences by using the multilocus sequence typing (MLST) method. Housekeeping genes of Enterococcus faecium (n = 14) and Enterococcus faecalis (n = 11) isolates were sequenced and analyzed using the MLST databases eBURST and goeBURST. We found five sequence types (STs) of E. faecium and six STs of E. faecalis existing in Malaysia. Enterococcus faecium isolates belonging to ST203, ST17, ST55, ST79, and ST29 were identified, and E. faecium ST203 was the most common among humans. The MLST profiles of E. faecium from humans in this study were similar to the globally reported nosocomial-related strain lineage belonging to clonal complex 17 (CC17). Isolates from chickens and pigs have few similarities to those from humans, except for one isolate from a chicken, which was identified as ST203. E. faecalis isolates were more diverse and were identified as ST4, ST6, ST87, ST108, ST274, and ST244, which were grouped as specific to the three hosts. E. faecalis, belonging to the high-risk CC2 and CC87, were detected among isolates from humans. In conclusion, even though one isolate from a chicken was found clonal to that of humans, the MLST analysis of E. faecium and E. faecalis supports the findings of others who suggest VRE to be predominantly host specific and that clinically important strains are found mainly among humans. The infrequent detection of a human VRE clone in a chicken may in fact suggest a reverse transmission of VRE from humans to animals.  相似文献   

3.
Certain strains of Enterococcus faecium and Enterococcus faecalis contribute beneficially to animal health and food production, while others are associated with nosocomial infections. To determine whether there are structural and functional genomic features that are distinct between nonclinical (NC) and clinical (CL) strains of those species, we analyzed the genomes of 31 E. faecium and 38 E. faecalis strains. Hierarchical clustering of 7,017 orthologs found in the E. faecium pangenome revealed that NC strains clustered into two clades and are distinct from CL strains. NC E. faecium genomes are significantly smaller than CL genomes, and this difference was partly explained by significantly fewer mobile genetic elements (ME), virulence factors (VF), and antibiotic resistance (AR) genes. E. faecium ortholog comparisons identified 68 and 153 genes that are enriched for NC and CL strains, respectively. Proximity analysis showed that CL-enriched loci, and not NC-enriched loci, are more frequently colocalized on the genome with ME. In CL genomes, AR genes are also colocalized with ME, and VF are more frequently associated with CL-enriched loci. Genes in 23 functional groups are also differentially enriched between NC and CL E. faecium genomes. In contrast, differences were not observed between NC and CL E. faecalis genomes despite their having larger genomes than E. faecium. Our findings show that unlike E. faecalis, NC and CL E. faecium strains are equipped with distinct structural and functional genomic features indicative of adaptation to different environments.  相似文献   

4.
Enterococci have emerged as important nosocomial pathogens with resistance to multiple antibiotics. Adhesion to abiotic materials and biofilm formation on medical devices are considered important virulence properties. A single clonal lineage of Enterococcus faecium, complex 17 (CC17), appears to be a successful nosocomial pathogen, and most CC17 isolates harbor the enterococcal surface protein gene, esp. In this study, we constructed an esp insertion-deletion mutant in a clinical E. faecium CC17 isolate. In addition, initial adherence and biofilm assays were performed. Compared to the wild-type strain, the esp insertion-deletion mutant no longer produced Esp on the cell surface and had significantly lower initial adherence to polystyrene and significantly less biofilm formation, resulting in levels of biofilm comparable to those of an esp-negative isolate. Capacities for initial adherence and biofilm formation were restored in the insertion-deletion mutant by in trans complementation with esp. These results identify Esp as the first documented determinant in E. faecium CC17 with an important role in biofilm formation, which is an essential factor in infection pathogenesis.  相似文献   

5.
Enterococci are used as starter and probiotic cultures in foods, and they occur as natural food contaminants. The genus Enterococcus is of increased significance as a cause of nosocomial infections, and this trend is exacerbated by the development of antibiotic resistance. In this study, we investigated the incidence of known virulence determinants in starter, food, and medical strains of Enterococcus faecalis, E. faecium, and E. durans. PCR and gene probe strategies were used to screen enterococcal isolates from both food and medical sources. Different and distinct patterns of incidence of virulence determinants were found for the E. faecalis and E. faecium strains. Medical E. faecalis strains had more virulence determinants than did food strains, which, in turn, had more than did starter strains. All of the E. faecalis strains tested possessed multiple determinants (between 6 and 11). E. faecium strains were generally free of virulence determinants, with notable exceptions. Significantly, esp and gelE determinants were identified in E. faecium medical strains. These virulence determinants have not previously been identified in E. faecium strains and may result from regional differences or the evolution of pathogenic E. faecium. Phenotypic testing revealed the existence of apparently silent gelE and cyl genes. In E. faecalis, the trend in these silent genes mirrors that of the expressed determinants. The potential for starter strains to acquire virulence determinants by natural conjugation mechanisms was investigated. Transconjugation in which starter strains acquired additional virulence determinants from medical strains was demonstrated. In addition, multiple pheromone-encoding genes were identified in both food and starter strains, indicating their potential to acquire other sex pheromone plasmids. These results suggest that the use of Enterococcus spp. in foods requires careful safety evaluation.  相似文献   

6.

Background

Enterococci are among the leading causes of hospital-acquired infections in the United States and Europe, with Enterococcus faecalis and Enterococcus faecium being the two most common species isolated from enterococcal infections. In the last decade, the proportion of enterococcal infections caused by E. faecium has steadily increased compared to other Enterococcus species. Although the underlying mechanism for the gradual replacement of E. faecalis by E. faecium in the hospital environment is not yet understood, many studies using genotyping and phylogenetic analysis have shown the emergence of a globally dispersed polyclonal subcluster of E. faecium strains in clinical environments. Systematic study of the molecular epidemiology and pathogenesis of E. faecium has been hindered by the lack of closed, complete E. faecium genomes that can be used as references.

Results

In this study, we report the complete genome sequence of the E. faecium strain TX16, also known as DO, which belongs to multilocus sequence type (ST) 18, and was the first E. faecium strain ever sequenced. Whole genome comparison of the TX16 genome with 21 E. faecium draft genomes confirmed that most clinical, outbreak, and hospital-associated (HA) strains (including STs 16, 17, 18, and 78), in addition to strains of non-hospital origin, group in the same clade (referred to as the HA clade) and are evolutionally considerably more closely related to each other by phylogenetic and gene content similarity analyses than to isolates in the community-associated (CA) clade with approximately a 3?C4% average nucleotide sequence difference between the two clades at the core genome level. Our study also revealed that many genomic loci in the TX16 genome are unique to the HA clade. 380 ORFs in TX16 are HA-clade specific and antibiotic resistance genes are enriched in HA-clade strains. Mobile elements such as IS16 and transposons were also found almost exclusively in HA strains, as previously reported.

Conclusions

Our findings along with other studies show that HA clonal lineages harbor specific genetic elements as well as sequence differences in the core genome which may confer selection advantages over the more heterogeneous CA E. faecium isolates. Which of these differences are important for the success of specific E. faecium lineages in the hospital environment remain(s) to be determined.  相似文献   

7.
Ampicillin resistance is a marker for hospital-associated Enterococcus faecium. Feces from 208 dogs were selectively screened for the occurrence of ampicillin-resistant E. faecium (AREF). AREF was detected in 42 (23%) of 183 dogs screened in a cross-sectional study in the United Kingdom and in 19 (76%) of 25 dogs studied longitudinally in Denmark. AREF carriage was intermittent in all dogs studied longitudinally. Multilocus sequence typing of 63 canine AREF isolates revealed the presence of 13 distinct sequence types. Approximately 76% of the isolates belonged to hospital-adapted clonal complex 17 (CC17), including those of sequence types ST-78 and ST-192, which are widespread in European and Asian hospitals. Longitudinal screening of 18 healthy humans living in contact with 13 of the dogs under study resulted in the identification of a single, intermittent CC17 carrier. This person carried one of the sequence types (ST-78) recovered from his dog. Based on PCR and Southern hybridization analyses, the putative virulence gene cluster from orf903 to orf907 was widespread in canine AREF isolates (present in 97%), whereas orf2351 (present in 26% of isolates) and orf2430 (present in 31%) were strongly associated with CC17-related sequence types (P < 0.05). Surprisingly, esp and hyl were not detected in any of the isolates. The antimicrobial resistance profiles of canine AREF isolates generally differed from those previously described for clinical human isolates. The results indicate that dogs are frequent carriers of CC17-related lineages and may play a role in the spread of this nosocomial pathogen. The distinctive virulence and antimicrobial resistance profiles observed among canine AREF isolates raise interesting questions about the origin and evolution of the strains causing human infections.Enterococci are opportunistic pathogens and form part of the normal gastrointestinal flora in humans and animals. Over the last two decades, nosocomial infections caused by enterococci have emerged and their incidence has increased rapidly, first in the United States and recently in Europe (25, 26, 29). Although Enterococcus faecalis is the causative agent in most enterococcal infections, a shift toward infections caused by multidrug-resistant E. faecium has been noted in the last years, and presently, up to one-third of enterococcal infections in some countries are attributed to this species (17). This shift may be explained by changes in the patterns of antimicrobial usage, which may have resulted in the emergence of a distinct genogroup of hospital-associated ampicillin-resistant E. faecium (AREF) strains, currently labeled clonal complex 17 (CC17) (33). CC17 isolates are characterized by resistance to ampicillin and fluoroquinolones, as well as by the presence in most isolates of putative virulence genes encoding the enterococcal surface protein (esp) and hyaluronidase (hyl) and five recently described open reading frames (ORFs; orf903, orf904.5, orf906.7, orf2351, and orf2430) encoding LPXTG surface proteins, which are found less frequently among other E. faecium lineages (15, 20, 27).Based on the results of multilocus sequence typing (MLST) (28) and amplified fragment length polymorphism analysis (34), E. faecium isolates of animal origin seem to be host specific and generally unrelated to human lineages of clinical importance. Prior to this study, AREF CC17 strains have been isolated only sporadically from animals, including pigs (2, 10) and more recently dogs (8). Following these unexpected findings, the present study was designed to investigate the prevalence and shedding patterns of AREF in dogs. A cross-sectional study and two longitudinal studies involving a total of 208 dogs and 479 canine fecal samples were conducted in the United Kingdom and in Denmark, respectively. Canine isolates were characterized by MLST, antimicrobial susceptibility testing, and putative virulence gene profiling to assess the genetic relationship between human and canine AREF strains.  相似文献   

8.
Among the strains used as starters for making sour milk products on the territory of the CIS, the bacteria Enterococcus faecium and Enterococcus durans are frequently found. In this work, we studied a new collection of lactic acid enterococci and also obtained more complete data on the nucleotide sequences of 16S rRNA genes in some strains studied earlier and found that most strains had certain distinctions in their 16S rRNA genes as compared with the E. durans and E. faecium genes available in the NCBI database. Based on these data, it is suggested that the strains of lactic acid enterococci represent new, earlier unknown taxa of enterococci that use milk as an ecological niche.  相似文献   

9.
The purpose of the present study was to determine the relatedness of Enterococcus faecium isolates from fresh produce to E. faecium strains from other sources by using multi-locus sequence typing (MLST) and to determine the antimicrobial resistance of the isolates. MLST analysis of 22 E. faecium isolates from fresh produce revealed 7 different sequence types (ST 22, ST 26, ST 43, ST 46, ST 55, ST 94 and ST 296). Most isolates belonged to ST 296 (40.9 %), followed by ST 94 (27.3 %). All isolates were sensitive to vancomycin and to imipenem, and only one was resistant to ampicillin (MIC 32 mg/l). However, all were resistant to cefotaxime and ceftazidine. E. faecium isolates from fresh produce were inhibited by quaternary compounds (benzalkonium chloride, cetrimide, hexadecylpyridinium chloride, didecyldimethylammonium bromide), biguanides (chlorhexidine), polyguanides [poly-(hexamethylene guanidinium) hydrochloride], bisphenols (triclosan, hexachlorophene) and biocidal solutions of P3 oxonia and P3 topax 66. Didecyldimethylammonium bromide and triclosan were the least effective biocides in growth inhibition, while hexadecylpyridinium chloride was the most effective. Results from MLST typing and antibiotic resistance suggest that the studied E. faecium isolates from fresh produce are not related to the clinically-relevant clonal complex CC17.  相似文献   

10.
Enterococcus faecium NRRL B-2354 is a surrogate microorganism used in place of pathogens for validation of thermal processing technologies and systems. We evaluated the safety of strain NRRL B-2354 based on its genomic and functional characteristics. The genome of E. faecium NRRL B-2354 was sequenced and found to comprise a 2,635,572-bp chromosome and a 214,319-bp megaplasmid. A total of 2,639 coding sequences were identified, including 45 genes unique to this strain. Hierarchical clustering of the NRRL B-2354 genome with 126 other E. faecium genomes as well as pbp5 locus comparisons and multilocus sequence typing (MLST) showed that the genotype of this strain is most similar to commensal, or community-associated, strains of this species. E. faecium NRRL B-2354 lacks antibiotic resistance genes, and both NRRL B-2354 and its clonal relative ATCC 8459 are sensitive to clinically relevant antibiotics. This organism also lacks, or contains nonfunctional copies of, enterococcal virulence genes including acm, cyl, the ebp operon, esp, gelE, hyl, IS16, and associated phenotypes. It does contain scm, sagA, efaA, and pilA, although either these genes were not expressed or their roles in enterococcal virulence are not well understood. Compared with the clinical strains TX0082 and 1,231,502, E. faecium NRRL B-2354 was more resistant to acidic conditions (pH 2.4) and high temperatures (60°C) and was able to grow in 8% ethanol. These findings support the continued use of E. faecium NRRL B-2354 in thermal process validation of food products.  相似文献   

11.
Enterococcus faecium is an important nosocomial pathogen causing biofilm-mediated infections. Elucidation of E. faecium biofilm pathogenesis is pivotal for the development of new strategies to treat these infections. In several bacteria, extracellular DNA (eDNA) and proteins act as matrix components contributing to biofilm development. In this study, we investigated biofilm formation capacity and the roles of eDNA and secreted proteins for 83 E. faecium strains with different phylogenetic origins that clustered in clade A1 and clade B. Although there was no significant difference in biofilm formation between E. faecium strains from these two clades, the addition of DNase I or proteinase K to biofilms demonstrated that eDNA is essential for biofilm formation in most E. faecium strains, whereas proteolysis impacted primarily biofilms of E. faecium clade A1 strains. Secreted antigen A (SagA) was the most abundant protein in biofilms from E. faecium clade A1 and B strains, although its localization differed between the two groups. sagA was present in all sequenced E. faecium strains, with a consistent difference in the repeat region between the clades, which correlated with the susceptibility of biofilms to proteinase K. This indicates an association between the SagA variable repeat profile and the localization and contribution of SagA in E. faecium biofilms.  相似文献   

12.
Aims: To screen for the globally spread cluster of Enterococcus faecium, clonal complex 17 (CC17) and characterize the genetic profile of Swedish clinical Ent. faecium isolates. Methods: A total of 203 consecutive isolates collected from 2004 to 2007 from patients with bacteraemia in Sweden. All isolates were genotyped using multiple‐locus variable‐number tandem repeat analysis (MLVA) and 20 isolates representing different MLVA types (MT) were chosen for multilocus sequence typing (MLST). Minimal inhibitory concentrations against clinically relevant antibiotics were determined with agar dilution. Presence of the virulence genes esp and hyl was investigated using PCR. Results: A total of 65% (n = 109) of all isolates belonged to MT‐1, and the second most common MLVA type was MT‐159 (13%, n = 21). MLST analysis confirmed the presence of CC17 during the entire study period. The number of isolates resistant to gentamicin and vancomycin, as well as the presence of hyl, increased significantly during the investigation period. Conclusions: The present study demonstrates that nosocomial infections caused by Ent. faecium CC17 are commonly occurring in Sweden. Significance and Impact of the Study: This is the first report of CC17 Ent. faecium in Sweden. The increase of antibiotic resistance and virulence indicates that these strains are further adapting to the hospital environment.  相似文献   

13.
Certain strains of Enterococcus faecium contribute beneficially to human health and food fermentation. However, other E. faecium strains are opportunistic pathogens due to the acquisition of virulence factors and antibiotic resistance determinants. To characterize E. faecium from soybean fermentation, we sequenced the genomes of 10 E. faecium strains from Korean soybean-fermented foods and analyzed their genomes by comparing them with 51 clinical and 52 non-clinical strains of different origins. Hierarchical clustering based on 13,820 orthologous genes from all E. faecium genomes showed that the 10 strains are distinguished from most of the clinical strains. Like non-clinical strains, their genomes are significantly smaller than clinical strains due to fewer accessory genes associated with antibiotic resistance, virulence, and mobile genetic elements. Moreover, we identified niche-associated gene gain and loss from the soybean strains. Thus, we conclude that soybean E. faecium strains might have evolved to have distinctive genomic features that may contribute to its ability to thrive during soybean fermentation.  相似文献   

14.

Background  

Enterococcus faecium has globally emerged as a cause of hospital-acquired infections with high colonization rates in hospitalized patients. The enterococcal surface protein Esp, identified as a potential virulence factor, is specifically linked to nosocomial clonal lineages that are genetically distinct from indigenous E. faecium strains. To investigate whether Esp facilitates bacterial adherence and intestinal colonization of E. faecium, we used human colorectal adenocarcinoma cells (Caco-2 cells) and an experimental colonization model in mice.  相似文献   

15.
Fifty-nine erm(B)-positive Enterococcus faecium strains isolated from pigs, broilers, and humans were typed using multilocus sequence typing (MLST), and the coding sequence of the erm(B) gene was determined. Identical erm(B) gene sequences were detected in genetically unrelated isolates. Furthermore, genetically indistinguishable strains were found to contain different erm(B) alleles. This may suggest that horizontal exchange of the erm(B) gene between animal and human E. faecium strains or the existence of a common reservoir of erm(B) genes might be more important than direct transmission of resistant strains.  相似文献   

16.
VanA-type human (n = 69), animal (n = 49), and food (n = 36) glycopeptide-resistant enterococci (GRE) from different geographic areas were investigated to study their possible reservoirs and transmission routes. Pulsed-field gel electrophoresis (PFGE) revealed two small genetically related clusters, M39 (n = 4) and M49 (n = 13), representing Enterococcus faecium isolates from animal and human feces and from clinical and fecal human samples. Multilocus sequence typing showed that both belonged to the epidemic lineage of CC17. purK allele analysis of 28 selected isolates revealed that type 1 was prevalent in human strains (8/11) and types 6 and 3 (14/15) were prevalent in poultry (animals and meat). One hundred and five of the 154 VanA GRE isolates, encompassing different species, origins, and PFGE types, were examined for Tn1546 type and location (plasmid or chromosome) and the incidence of virulence determinants. Hybridization of S1- and I-CeuI-digested total DNA revealed a plasmid location in 98% of the isolates. Human intestinal and animal E. faecium isolates bore large (>150 kb) vanA plasmids. Results of PCR-restriction fragment length polymorphism and sequencing showed the presence of prototype Tn1546 in 80% of strains and the G-to-T mutation at position 8234 in three human intestinal and two pork E. faecium isolates. There were no significant associations (P > 0.5) between Tn1546 type and GRE source or enterococcal species. Virulence determinants were detected in all reservoirs but were significantly more frequent (P < 0.02) among clinical strains. Multiple determinants were found in clinical and meat Enterococcus faecalis isolates. The presence of indistinguishable vanA elements (mostly plasmid borne) and virulence determinants in different species and PFGE-diverse populations in the presence of host-specific purK housekeeping genes suggested that all GRE might be potential reservoirs of resistance determinants and virulence traits transferable to human-adapted clusters.  相似文献   

17.
Plasmid pMG1 (65.1 kb) was isolated from a gentamicin-resistant Enterococcus faecium clinical isolate and was found to encode gentamicin resistance. EcoRI restriction of pMG1 produced five fragments, A through E, with molecular sizes of 50.2, 11.5, 2.0, 0.7, and 0.7 kb, respectively. The clockwise order of the fragments was ACDEB. pMG1 transferred at high frequency to Enterococcus strains in broth mating. pMG1 transferred between Enterococcus faecalis strains, between E. faecium strains, and between E. faecium and E. faecalis strains at a frequency of approximately 10−4 per donor cell after 3 h of mating. The pMG1 transfers were not induced by the exposure of the donor cell to culture filtrates of plasmid-free E. faecalis FA2-2 or an E. faecium strain. Mating aggregates were not observed by the naked eye during broth mating. Small mating aggregates of several cells in the broth matings were observed by microscopy, while no aggregates of donor cells which had been exposed to a culture filtrate of E. faecalis FA2-2 or an E. faecium strain were observed, even by microscopy. pMG1 DNA did not show any homology in Southern hybridization with that of the pheromone-responsive plasmids and broad-host-range plasmids pAMβ1 and pIP501. These results indicate that there is another efficient transfer system in the conjugative plasmids of Enterococcus and that this system is different from the pheromone-induced transfer system of E. faecalis plasmids.  相似文献   

18.
Nine lactic acid bacteria strains showing bacteriocin-like activity were isolated from various fresh fish viscera. The following species were identified based on 16S rDNA sequences: Enterococcus durans (7 isolates), Lactococcus lactis (1) and Enterococcus faecium (1). These strains were active against Listeria innocua and other LAB. Random amplified polymorphic DNA analyses showed four major patterns for the E. durans species. PCR analyses revealed a nisin gene in the genome of the Lc. lactis strain. Genes coding enterocins A, B and P were found in the genome of the E. faecium isolate. Enterocins A and B genes were also present in the genome of E. durans GM19. Hence, this is the first report describing E. durans strains producing enterocins A and B. Electrospray ionization mass spectrometry revealed that the purified bacteriocin produced by the E. durans GMT18 strain had an exact molecular mass of 6,316.89 Da. This bacteriocin was designated as durancin GMT18. Edman sequencing failed to proceed; suggesting that durancin GTM18 may contain terminal lanthionine residues. Overall, the results obtained revealed the presence of a variety of enterococci in Mediterranean fish viscera, as evidenced by their genetic profiles and abilities to produce different bacteriocins. These strains could be useful for food biopreservation or as probiotics.  相似文献   

19.
Sequencing of the 16S rRNA genes from enterococcal strains used as starters suggested the existence of specialized taxa of lactic acid enterococci within the species Enterococcus durans and E. faecium and a new species, E. lactis. Comparisons showed that the 16S rRNA genes of closely related species have the same sets of variable positions with different combinations of nucleotides. The presence of identical combinations of nucleotide substitutions in different species was assumed to result from a transfer of genetic information via gene conversion between different rRNA operons. Such events were presumably associated with speciation in bacteria.  相似文献   

20.
Mechanisms for the intercellular transfer of VanB-type vancomycin resistance determinants and for the almost universal association of these determinants with those for high-level ampicillin resistance remain poorly defined. We report the discovery of Tn5382, a ca. 27-kb putative transposon encoding VanB-type glycopeptide resistance in Enterococcus faecium. Open reading frames internal to the right end of Tn5382 and downstream of the vanXB dipeptidase gene exhibit significant homology to genes encoding the excisase and integrase of conjugative transposon Tn916. The ends of Tn5382 are also homologous to the ends of Tn916, especially in regions bound by the integrase enzyme. PCR amplification experiments indicate that Tn5382 excises to form a circular intermediate in E. faecium. Integration of Tn5382 in the chromosome of E. faecium C68 has occurred 113 bp downstream of the stop codon for the pbp5 gene, which encodes high-level ampicillin resistance in this clinical isolate. Transfer of vancomycin, ampicillin, and tetracycline resistance from C68 to an E. faecium recipient strain occurs at low frequency in vitro and is associated with acquisition of a 130- to 160-kb segment of DNA that contains Tn5382, the pbp5 gene, and its putative repressor gene, psr. The interenterococcal transfer of this large chromosomal element appears to be the primary mechanism for vanB operon spread in northeast Ohio. These results expand the known family of Tn916-related transposons, suggest a mechanism for vanB operon entry into and dissemination among enterococci, and provide an explanation for the nearly universal association of vancomycin and high-level ampicillin resistance in clinical E. faecium strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号