首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NN2211 is a long-acting, metabolically stable glucagon-like peptide-1 (GLP-1) derivative designed for once daily administration in humans. NN2211 dose dependently reduced the glycemic levels in ob/ob mice, with antihyperglycemic activity still evident 24 h postdose. Apart from an initial reduction in food intake, there were no significant differences between NN2211 and vehicle treatment, and body weight was not affected. Histological examination revealed that beta-cell proliferation and mass were not increased significantly in ob/ob mice with NN2211, although there was a strong tendency for increased proliferation. In db/db mice, exendin-4 and NN2211 decreased blood glucose compared with vehicle, but NN2211 had a longer duration of action. Food intake was lowered only on day 1 with both compounds, and body weight was unaffected. beta-Cell proliferation rate and mass were significantly increased with NN2211, but with exendin-4, only the beta-cell proliferation rate was significantly increased. In conclusion, NN2211 reduced blood glucose after acute and chronic treatment in ob/ob and db/db mice and was associated with increased beta-cell mass and proliferation in db/db mice. NN2211 is currently in phase 2 clinical development.  相似文献   

2.
Type 2 diabetes mellitus (T2DM) results from insulin resistance and β-cell dysfunction, in the setting of hyperglucagonemia. Glucagon is a 29 amino acid peptide hormone, which is secreted from pancreatic α cells: excessively high circulating levels of glucagon lead to excessive hepatic glucose output. We investigated if α-cell numbers increase in T2DM and what factor (s) regulate α-cell turnover. Lepr(db)/Lepr(db) (db/db) mice were used as a T2DM model and αTC1 cells were used to study potential α-cell trophic factors. Here, we demonstrate that in db/db mice α-cell number and plasma glucagon levels increased as diabetes progressed. Insulin treatment (EC50 = 2 nM) of α cells significantly increased α-cell proliferation in a concentration-dependent manner compared to non-insulin-treated α cells. Insulin up-regulated α-cell proliferation through the IR/IRS2/AKT/mTOR signaling pathway, and increased insulin-mediated proliferation was prevented by pretreatment with rapamycin, a specific mTOR inhibitor. GcgR antagonism resulted in reduced rates of cell proliferation in αTC1 cells. In addition, blockade of GcgRs in db/db mice improved glucose homeostasis, lessened α-cell proliferation, and increased intra-islet insulin content in β cells in db/db mice. These studies illustrate that pancreatic α-cell proliferation increases as diabetes develops, resulting in elevated plasma glucagon levels, and both insulin and glucagon are trophic factors to α-cells. Our current findings suggest that new therapeutic strategies for the treatment of T2DM may include targeting α cells and glucagon.  相似文献   

3.
Thiazolidinediones may slow the progression of type 2 diabetes by preserving pancreatic beta-cells. The effects of pioglitazone (PIO) on structure and function of beta-cells in KKA(y), C57BL/6J ob/ob, and C57BL/KsJ db/db mice (genetic models of type 2 diabetes) were examined. ob/ob (n = 7) and db/db (n = 9) mice were randomly assigned to 50-125 mg.kg body wt-1.day-1 of PIO in chow beginning at 6-10 wk of age. Control ob/ob (n = 7) and db/db mice (n = 9) were fed chow without PIO. KKA(y) mice (n = 15) were fed PIO daily at doses of 62-144 mg.kg body wt-1.day-1. Control KKA(y) mice (n = 10) received chow without PIO. Treatment continued until euthanasia at 14-26 wk of age. Blood was collected at baseline (before treatment) and just before euthanasia and was analyzed for glucose, glycosylated hemoglobin, and plasma insulin. Some of the splenic pancreas of each animal was resected and partially sectioned for light or electron microscopy. The remainder of the pancreas was assayed for insulin content. Compared with baseline and control groups, PIO treatment significantly reduced blood glucose and glycosylated hemoglobin levels. Plasma insulin levels decreased significantly in ob/ob mice treated with PIO. All groups treated with PIO exhibited significantly greater beta-cell granulation, evidence of reduced beta-cell stress, and 1.5- to 15-fold higher levels of pancreatic insulin. The data from these studies suggest that comparable effects would be expected to slow the progression of type 2 diabetes, either delaying or possibly preventing progression to an insulin-dependent state.  相似文献   

4.
Loss of insulin-producing β-cell mass is a hallmark of type 2 diabetes in humans and diabetic db/db mice. Pancreatic β-cells can modulate their mass in response to a variety of physiological and pathophysiological cues. There are currently few effective therapeutic approaches targeting β-cell regeneration although some anti-diabetic drugs may positively affect β-cell mass. Here we show that oral administration of FTY720, a sphingosine 1-phosphate (S1P) receptor modulator, to db/db mice normalizes fasting blood glucose by increasing β-cell mass and blood insulin levels without affecting insulin sensitivity. Fasting blood glucose remained normal in the mice even after the drug was withdrawn after 23 weeks of treatment. The islet area in the pancreases of the FTY720-treated db/db mice was more than 2-fold larger than that of the untreated mice after 6 weeks of treatment. Furthermore, BrdU incorporation assays and Ki67 staining demonstrated cell proliferation in the islets and pancreatic duct areas. Finally, islets from the treated mice exhibited a significant decrease in the level of cyclin-dependent kinase inhibitor p57(KIP2) and an increase in the level of cyclin D3 as compared with those of untreated mice, which could be reversed by the inhibition of phosphatidylinositol 3-kinase (PI3K). Our findings reveal a novel network that controls β-cell regeneration in the obesity-diabetes setting by regulating cyclin D3 and p57(KIP2) expression through the S1P signaling pathway. Therapeutic strategies targeting this network may promote in vivo regeneration of β-cells in patients and prevent and/or cure type 2 diabetes.  相似文献   

5.
Resveratrol (RSV) has anti-inflammatory and anti-oxidant actions which may contribute to its cardiovascular protective effects. We examined whether RSV has any beneficial effects on pancreatic islets in db/db mice, an animal model of type 2 diabetes. The db/db and db/dm mice (non-diabetic control) were treated with (db-RSV) or without RSV (db-control) (20 mg/kg daily) for 12 weeks. After performing an intraperitoneal glucose tolerance test and insulin tolerance test, mice were sacrificed, the pancreas was weighed, pancreatic β-cell mass was quantified by point count method, and the amount of islet fibrosis was determined. 8-Hydroxydeoxyguanosine (8-OHdG), an oxidative stress marker, was determined in 24 h urine and pancreatic islets. RSV treatment significantly improved glucose tolerance at 2 hrs in db/db mice (P = 0.036), but not in db/dm mice (P = 0.623). This was associated with a significant increase in both pancreas weight (P = 0.011) and β-cell mass (P = 0.016). Islet fibrosis was much less in RSV-treated mice (P = 0.048). RSV treatment also decreased urinary 8-OHdG levels (P = 0.03) and the percentage of islet nuclei that were positive for 8-OHdG immunostaining (P = 0.019). We conclude that RSV treatment improves glucose tolerance, attenuates β-cell loss, and reduces oxidative stress in type 2 diabetes. These findings suggest that RSV may have a therapeutic implication in the prevention and management of diabetes.  相似文献   

6.
The present study was designed to determine the antihyperglycemic function of ginsenoside Rh2 (GS-Rh2) by the regeneration of β-cells in mice that underwent 70% partial pancreatectomy (PPx), and to explore the mechanisms of GS-Rh2-induced β-cell proliferation. Adult C57BL/6J mice were subjected to PPx or a sham operation. Within 14 days post-PPx, mice that underwent PPx received GS-Rh2 (1?mg/kg body weight) or saline injection. GS-Rh2-treated mice exhibited an improved glycemia and glucose tolerance, an increased serum insulin levels, and β-cell hyperplasia. Meanwhile, increased β-cell proliferation percentages and decreased β-cell apoptosis percentages were also observed in GS-Rh2-treated mice. Further studies on the Akt/Foxo1/PDX-1 signaling pathway revealed that GS-Rh2 probably induced β-cell proliferation via activation of Akt and PDX-1 and inactivation of Foxo1. Studies on the abundance and activity of cell cycle proteins suggested that GS-Rh2-induced β-cell proliferation may ultimately be achieved through the regulation of cell cycle proteins. These findings demonstrate that GS-Rh2 administration could inhibit the tendency of apoptosis, and reverse the impaired β-cell growth potential by modulating Akt/Foxo1/PDX-1 signaling pathway and regulating cell cycle proteins. Induction of islet β-cell proliferation by GS-Rh2 suggests its therapeutic potential in the treatment of diabetes.  相似文献   

7.

Aim

To characterise changes in pancreatic beta cell mass during the development of diabetes in untreated male C57BLKS/J db/db mice.

Methods

Blood samples were collected from a total of 72 untreated male db/db mice aged 5, 6, 8, 10, 12, 14, 18, 24 and 34 weeks, for measurement of terminal blood glucose, HbA1c, plasma insulin, and C-peptide. Pancreata were removed for quantification of beta cell mass, islet numbers as well as proliferation and apoptosis by immunohistochemistry and stereology.

Results

Total pancreatic beta cell mass increased significantly from 2.1 ± 0.3 mg in mice aged 5 weeks to a peak value of 4.84 ± 0.26 mg (P < 0.05) in 12-week-old mice, then gradually decreased to 3.27 ± 0.44 mg in mice aged 34 weeks. Analysis of islets in the 5-, 10-, and 24-week age groups showed increased beta cell proliferation in the 10-week-old animals whereas a low proliferation is seen in older animals. The expansion in beta cell mass was driven by an increase in mean islet mass as the total number of islets was unchanged in the three groups.

Conclusions/Interpretation

The age-dependent beta cell dynamics in male db/db mice has been described from 5-34 weeks of age and at the same time alterations in insulin/glucose homeostasis were assessed. High beta cell proliferation and increased beta cell mass occur in young animals followed by a gradual decline characterised by a low beta cell proliferation in older animals. The expansion of beta cell mass was caused by an increase in mean islet mass and not islet number.  相似文献   

8.
Dipeptidyl peptidase-4 (DPP-4) inhibitors enhance incretin actions and beta-cell function. Concurrently, sodium-glucose co-transporter 2 (SGLT2) inhibitors block renal glucose reabsorption promoting excretion. In this study, we investigated the effects of linagliptin (a DPP-4 inhibitor) and BI-38335 (an SGLT2 inhibitor), individually and in combination, on glucose homeostasis, islet function, and pancreatic islet morphology in db/db mice. Diabetic and non-diabetic mice received linagliptin (3 mg/kg), BI-38335 (1 mg/kg), the two drugs in combination or control once daily for 8 weeks. Blood glucose homeostasis and insulin sensitivity were assessed. Pancreatic islet function and morphology as well as inflammatory factors and toll like receptor 2 (TLR2) pathways involved in islet inflammation were investigated. Active treatments markedly reduced blood glucose and glycated hemoglobin A1c (HbA1c) levels, with the combined treatment showing the greater effects. Insulin resistance was improved in the BI-38335 and combination groups with the enhancement of insulin sensitivity and significant increase of serum adiponectin levels. The combined treatment exhibited greater effects on enhanced islet glucose-stimulated insulin secretion and improved glucose tolerance. Moreover, the combination restored the islet beta-/alpha-cell ratio, reduced beta-cell apoptosis, decreased expression of islet immune cell markers, and suppressed factors related to the TLR2 pathway. In addition, all active treatments reduced serum lipid profiles, though the combination produced more robust effects. Collectively, our data show that combined treatment with BI-38335 and linagliptin work, at least in part, synergistically to benefit islet cell function/architecture and insulin resistance, thus improving glycemic control.  相似文献   

9.
Diabetes is characterized by an absolute or relative deficiency of pancreatic β-cells. New strategies to accelerate β-cell neogenesis or maintain existing β-cells are desired for future therapies against diabetes. We previously reported that forkhead box O1 (FoxO1) inhibits β-cell growth through a Pdx1-mediated mechanism. However, we also reported that FoxO1 protects against β-cell failure via the induction of NeuroD and MafA. Here, we investigate the physiological roles of FoxO1 in the pancreas by generating the mice with deletion of FoxO1 in the domains of the Pdx1 promoter (P-FoxO1-KO) or the insulin 2 promoter (β-FoxO1-KO) and analyzing the metabolic parameters and pancreatic morphology under two different conditions of increased metabolic demand: high-fat high-sucrose diet (HFHSD) and db/db background. P-FoxO1-KO, but not β-FoxO1-KO, showed improved glucose tolerance with HFHSD. Immunohistochemical analysis revealed that P-FoxO1-KO had increased β-cell mass due to increased islet number rather than islet size, indicating accelerated β-cell neogenesis. Furthermore, insulin-positive pancreatic duct cells were increased in P-FoxO1-KO but not β-FoxO1-KO. In contrast, db/db mice crossed with P-FoxO1-KO or β-FoxO1-KO showed more severe glucose intolerance than control db/db mice due to decreased glucose-responsive insulin secretion. Electron microscope analysis revealed fewer insulin granules in FoxO1 knockout db/db mice. We conclude that FoxO1 functions as a double-edged sword in the pancreas; FoxO1 essentially inhibits β-cell neogenesis from pancreatic duct cells but is required for the maintenance of insulin secretion under metabolic stress.  相似文献   

10.
11.
12.
13.
Islet transplantation is a promising potential therapy for patients with type 1 diabetes. The outcome of islet transplantation depends on the transplantation of a sufficient amount of β-cell mass. However, the initial loss of islets after transplantation is problematic. We hypothesized the hyperglycemic status of the recipient may negatively affect graft survival. Therefore, in the present study, we evaluated the effect of insulin treatment on islet transplantation involving a suboptimal amount of islets in Akita mice, which is a diabetes model mouse with an Insulin 2 gene missense mutation. Fifty islets were transplanted under the left kidney capsule of the recipient mouse with or without insulin treatment. For insulin treatment, sustained-release insulin implants were implanted subcutaneously into recipient mice 2 weeks before transplantation and maintained for 4 weeks. Islet transplantation without insulin treatment did not reverse hyperglycemia. In contrast, the group that received transplants in combination with insulin treatment exhibited improved fasting blood glucose levels until 18 weeks after transplantation, even after insulin treatment was discontinued. The group that underwent islet transplantation in combination with insulin treatment had better glucose tolerance than the group that did not undergo insulin treatment. Insulin treatment improved graft survival from the acute phase (i.e., 1 day after transplantation) to the chronic phase (i.e., 18 weeks after transplantation). Islet apoptosis increased with increasing glucose concentration in the medium or blood in both the in vitro culture and in vivo transplantation experiments. Expression profile analysis of grafts indicated that genes related to immune response, chemotaxis, and inflammatory response were specifically upregulated when islets were transplanted into mice with hyperglycemia compared to those with normoglycemia. Thus, the results demonstrate that insulin treatment protects islets from the initial rapid loss that is usually observed after transplantation and positively affects the outcome of islet transplantation in Akita mice.  相似文献   

14.
Background aimsThe authors aimed to observe β-cell dedifferentiation in type 2 diabetes mellitus (T2DM) and investigate the reversal effect of umbilical cord-derived mesenchymal stem cells (UC-MSCs) on early- and late-stage β-cell dedifferentiation.MethodsIn high-fat diet (HFD)/streptozotocin (STZ)-induced T2DM mice, the authors examined the predominant role of β-cell dedifferentiation over apoptosis in the development of T2DM and observed the reversion of β-cell dedifferentiation by UC-MSCs. Next, the authors used db/db mice to observe the progress of β-cell dedifferentiation from early to late stage, after which UC-MSC infusions of the same amount were performed in the early and late stages of dedifferentiation. Improvement in metabolic indices and restoration of β-cell dedifferentiation markers were examined.ResultsIn HFD/STZ-induced T2DM mice, the proportion of β-cell dedifferentiation was much greater than that of apoptosis, demonstrating that β-cell dedifferentiation was the predominant contributor to T2DM. UC-MSC infusions significantly improved glucose homeostasis and reversed β-cell dedifferentiation. In db/db mice, UC-MSC infusions in the early stage significantly improved glucose homeostasis and reversed β-cell dedifferentiation. In the late stage, UC-MSC infusions mildly improved glucose homeostasis and partially reversed β-cell dedifferentiation. Combining with other studies, the authors found that the reversal effect of UC-MSCs on β-cell dedifferentiation relied on the simultaneous relief of glucose and lipid metabolic disorders.ConclusionsUC-MSC therapy is a promising strategy for reversing β-cell dedifferentiation in T2DM, and the reversal effect is greater in the early stage than in the late stage of β-cell dedifferentiation.  相似文献   

15.
We demonstrated previously that the activation of ALK7 (activin receptor-like kinase-7), a member of the type I receptor serine/threonine kinases of the TGF-β superfamily, resulted in increased apoptosis and reduced proliferation through suppression of Akt signaling and the activation of Smad2-dependent signaling pathway in pancreatic β-cells. Here, we show that Nodal activates ALK7 signaling and regulates β-cell apoptosis. We detected Nodal expression in the clonal β-cell lines and rodent islet β-cells. Induction of β-cell apoptosis by treatment with high glucose, palmitate, or cytokines significantly increased Nodal expression in clonal INS-1 β-cells and isolated rat islets. The stimuli induced upregulation of Nodal expression levels were associated with elevation of ALK7 protein and enhanced phosphorylated Smad3 protein. Nodal treatment or overexpression of Nodal dose- or time-dependently increased active caspase-3 levels in INS-1 cells. Nodal-induced apoptosis was associated with decreased Akt phosphorylation and reduced expression level of X-linked inhibitor of apoptosis (XIAP). Remarkably, overexpression of XIAP or constitutively active Akt, or ablation of Smad2/3 activity partially blocked Nodal-induced apoptosis. Furthermore, siRNA-mediated ALK7 knockdown significantly attenuated Nodal-induced apoptosis of INS-1 cells. We suggest that Nodal-induced apoptosis in β-cells is mediated through ALK7 signaling involving the activation of Smad2/3-caspase-3 and the suppression of Akt and XIAP pathways and that Nodal may exert its biological effects on the modulation of β-cell survival and β-cell mass in an autocrine fashion.  相似文献   

16.
目的探讨吡格列酮对db/db小鼠骨骼肌蛋白酪氨酸磷酸酶1B(protein tyrosine phosphatase 1B,PTP1B)表达水平的影响。方法将20只4周龄db/db小鼠随机分为两组(吡格列酮组和db/db对照组),每组10只,分别给予吡格列酮10mg/kg.d和安慰剂灌胃。另设10只同周龄db/m小鼠,给予安慰剂灌胃作为非糖尿病对照(db/m对照组)。每周监测体重、血糖,4周后用蛋白印迹法检测各组小鼠骨骼肌组织中PTP1B蛋白含量。结果db/db组小鼠骨骼肌PTP1B表达显著高于db/m组,给予吡格列酮干预,血糖、胰岛素抵抗指数显著低于db/db组(P〈0.05),骨骼肌PTP1B表达水平亦显著降低(P〈0.05)。结论吡格列酮改善胰岛素抵抗,可能与降低骨骼肌PTP1B蛋白表达有关。  相似文献   

17.
18.
There are conflicting reports on the link between the micronutrient selenium and the prevalence of diabetes. To investigate the possibility that selenium acts as a “double-edged sword” in diabetes, cDNA microarray profiling and two-dimensional differential gel electrophoresis coupled with mass spectrometry were used to determine changes in mRNA and protein expression in pancreatic and liver tissues of diabetic db/db mice in response to dietary selenate supplementation. Fasting blood glucose levels increased continuously in db/db mice administered placebo (DMCtrl), but decreased gradually in selenate-supplemented db/db mice (DMSe) and approached normal levels after termination of the experiment. Pancreatic islet size was increased in DMSe mice compared with DMCtrl mice, resulting in a clear increase in insulin production and a doubling of plasma insulin concentration. Genes that encode proteins involved in key pancreatic β-cell functions, including regulation of β-cell proliferation and differentiation and insulin synthesis, were found to be specifically upregulated in DMSe mice. In contrast, apoptosis-associated genes were downregulated, indicating that islet function was protected by selenate treatment. Conversely, liver fat accumulation increased in DMSe mice together with significant upregulation of lipogenic and inflammatory genes. Genes related to detoxification were downregulated and antioxidant enzymatic activity was reduced, indicating an unexpected reduction in antioxidant defense capacity and exacerbation of fatty liver degeneration. Moreover, proteomic analysis of the liver showed differential expression of proteins involved in glucolipid metabolism and the endoplasmic reticulum assembly pathway. Taken together, these results suggest that dietary selenate supplementation in db/db mice decreased hyperglycemia by increasing insulin production and secretion; however, long-term hyperinsulinemia eventually led to reduced antioxidant defense capacity, which exacerbated fatty liver degeneration.  相似文献   

19.
The genetic factors that underlie the increasing incidence of diabetes with age are poorly understood. We examined whether telomere length, which is inherited and known to shorten with age, plays a role in the age-dependent increased incidence of diabetes. We show that in mice with short telomeres, insulin secretion is impaired and leads to glucose intolerance despite the presence of an intact β-cell mass. In ex vivo studies, short telomeres induced cell-autonomous defects in β-cells including reduced mitochondrial membrane hyperpolarization and Ca(2+) influx which limited insulin release. To examine the mechanism, we looked for evidence of apoptosis but found no baseline increase in β-cells with short telomeres. However, there was evidence of all the hallmarks of senescence including slower proliferation of β-cells and accumulation of p16(INK4a). Specifically, we identified gene expression changes in pathways which are essential for Ca(2+)-mediated exocytosis. We also show that telomere length is additive to the damaging effect of endoplasmic reticulum stress which occurs in the late stages of type 2 diabetes. This additive effect manifests as more severe hyperglycemia in Akita mice with short telomeres which had a profound loss of β-cell mass and increased β-cell apoptosis. Our data indicate that short telomeres can affect β-cell metabolism even in the presence of intact β-cell number, thus identifying a novel mechanism of telomere-mediated disease. They implicate telomere length as a determinant of β-cell function and diabetes pathogenesis.  相似文献   

20.
Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis   总被引:30,自引:0,他引:30  
Glucagon-like peptide-1 (GLP-1) stimulates insulin secretion and augments beta cell mass via activation of beta cell proliferation and islet neogenesis. We examined whether GLP-1 receptor signaling modifies the cellular susceptibility to apoptosis. Mice administered streptozotocin (STZ), an agent known to induce beta cell apoptosis, exhibit sustained improvement in glycemic control and increased levels of plasma insulin with concomitant administration of the GLP-1 agonist exendin-4 (Ex-4). Blood glucose remained significantly lower for weeks after cessation of exendin-4. STZ induced beta cell apoptosis, which was significantly reduced by co-administration of Ex-4. Conversely, mice with a targeted disruption of the GLP-1 receptor gene exhibited increased beta cell apoptosis after STZ administration. Exendin-4 directly reduced cytokine-induced apoptosis in purified rat beta cells exposed to interleukin 1beta, tumor necrosis fator alpha, and interferon gamma in vitro. Furthermore, Ex-4-treated BHK-GLP-1R cells exhibited significantly increased cell viability, reduced caspase activity, and decreased cleavage of beta-catenin after treatment with cycloheximide in vitro. These findings demonstrate that GLP-1 receptor signaling directly modifies the susceptibility to apoptotic injury, and provides a new potential mechanism linking GLP-1 receptor activation to preservation or enhancement of beta cell mass in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号