首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The niche provides a specialised microenvironment necessary for maintenance of stem cells in a non differentiated state. While the hematopoietic stem cell (HSC) niche in vertebrates was the first to be recognized, Drosophila niches supporting germline stem cells were characterised first. Recent evidence for the existence of a niche maintaining hematopoietic precursors in Drosophila opens the way to study in vivo the niche/hematopoietic precursors interactions. The availability of a large collection of cell markers, mutants and sophisticated genetic tools makes Drosophila an attractive model for investigating the cellular and molecular mechanisms that are involved in these interactions.  相似文献   

2.
Disrupting the stem cell niche: good seeds in bad soil   总被引:2,自引:0,他引:2  
Perry JM  Li L 《Cell》2007,129(6):1045-1047
Stem cells reside in a microenvironment or niche that is critical for stem cell maintenance and regulation. But what happens when a stem cell niche is disrupted? In this issue of Cell, two reports (Walkley et al., 2007a, 2007b) demonstrate in mice that alterations in the niche for hematopoietic stem cells lead to the development of myeloproliferative disease.  相似文献   

3.
The complex microenvironment that surrounds hematopoietic stem cells (HSCs) in the bone marrow niche involves different coordinated signaling pathways. The stem cells establish permanent interactions with distinct cell types such as mesenchymal stromal cells, osteoblasts, osteoclasts or endothelial cells and with secreted regulators such as growth factors, cytokines, chemokines and their receptors. These interactions are mediated through adhesion to extracellular matrix compounds also. All these signaling pathways are important for stem cell fates such as self-renewal, proliferation or differentiation, homing and mobilization, as well as for remodeling of the niche. Among these complex molecular cues, this review focuses on heparan sulfate (HS) structures and functions and on the role of enzymes involved in their biosynthesis and turnover. HS associated to core protein, constitute the superfamily of heparan sulfate proteoglycans (HSPGs) present on the cell surface and in the extracellular matrix of all tissues. The key regulatory effects of major medullar HSPGs are described, focusing on their roles in the interactions between hematopoietic stem cells and their endosteal niche, and on their ability to interact with Heparin Binding Proteins (HBPs). Finally, according to the relevance of HS moieties effects on this complex medullar niche, we describe recent data that identify HS mimetics or sulfated HS signatures as new glycanic tools and targets, respectively, for hematopoietic and mesenchymal stem cell based therapeutic applications.  相似文献   

4.
The bone marrow niche maintains hematopoietic stem cell (HSC) homeostasis and declines in function in the physiologically aging population and in patients with hematological malignancies. A fundamental question is now whether and how HSCs are able to renew or repair their niche. Here, we show that disabling HSCs based on disrupting autophagy accelerated niche aging in mice, whereas transplantation of young, but not aged or impaired, donor HSCs normalized niche cell populations and restored niche factors in host mice carrying an artificially harassed niche and in physiologically aged host mice, as well as in leukemia patients. Mechanistically, HSCs, identified using a donor lineage fluorescence-tracing system, transdifferentiate in an autophagy-dependent manner into functional niche cells in the host that include mesenchymal stromal cells and endothelial cells, previously regarded as “nonhematopoietic” sources. Our findings thus identify young donor HSCs as a primary parental source of the niche, thereby suggesting a clinical solution to revitalizing aged or damaged bone marrow hematopoietic niche.  相似文献   

5.
造血干细胞分化生成巨核细胞是一个十分复杂的过程,包括造血干细胞动员及其向巨核系祖细胞分化,巨核系祖细胞增殖、分化生成未成熟巨核细胞,巨核细胞的成熟和血小板释放等过程。研究发现,造血干细胞动员及其向各系细胞分化的大部分过程都在一种称为"龛"的结构中进行,多种龛内信号分子参与了造血干细胞的动员和分化调控。该文对造血干细胞龛内参与造血干细胞动员和分化生成巨核细胞的几种重要细胞因子及其调控作用进行综述。  相似文献   

6.
7.
During postnatal life, the bone marrow (BM) supports both self-renewal and differentiation of hematopoietic stem cells (HSCs) in specialized niches, such as osteoblastic niche and vascular niche. A cell adhesion molecule, N-cadherin expressed in the HSCs and osteoblasts, suggesting that homophylic binding of N-cadherin induce the adhesion of HSCs to the niche cells. Here we demonstrate that an anti-cancer drug, 5-fuluorouracil induces reactive oxygen species (ROS) in HSCs, which suppressed N-cadherin expression. These events result in the shift of side population (SP) cells to non-SP cells, indicating that quiescent HSCs are detached from the niche. Administration of a potent anti-oxidant, N-acetyl cystein (NAC) suppressed the shift from SP cells. These data suggest that ROS suppressed the N-cadherin-mediated cell adhesion, and induce the exit of HSCs from the niche.  相似文献   

8.
The interconnected Insulin/IGF signaling (IlS) and Target of Rapamycin (TOR) signaling pathways constitute the main branches of the nutrient-sensing system that couples growth to nutritional conditions in Drosophila. Here, we addressed the influence of these pathways and of diet restriction on the balance between the maintenance of multipotent hematopoietic progenitors and their differentiation in the Drosophila lymph gland. In this larval hematopoietic organ, a pool of stem-like progenitor blood cells (prohemocytes) is kept undifferentiated in response to signaling from a specialized group of cells forming the posterior signaling center (PSC), which serves as a stem cell niche. We show that, reminiscent of the situation in human, loss of the negative regulator of IIS Pten results in lymph gland hyperplasia, aberrant blood cell differentiation and hematopoietic progenitor exhaustion. Using site-directed loss- and gain-of-function analysis, we demonstrate that components of the IIS/TOR pathways control lymph gland homeostasis at two levels. First, they cell-autonomously regulate the size and activity of the hematopoietic niche. Second, they are required within the prohemocytes to control their growth and maintenance. Moreover, we show that diet restriction or genetic alteration mimicking amino acid deprivation triggers progenitor cell differentiation. Hence, our study highlights the role of the IIS/TOR pathways in orchestrating hematopoietic progenitor fate and links blood cell fate to nutritional status.  相似文献   

9.
Both cellular as well as extracellular matrix components of the stem cell microenvironment, or niche, are critical in stem cell regulation. Recent data highlight a central role for osteoblasts and their by product osteopontin as a key part of the hematopoietic stem cell (HSC) niche. Herein we describe a model for the yin and yang of HSC regulation mediated by osteoblasts. In this respect, osteoblasts synthesise proteins with opposing effects on HSC proliferation and differentiation highlighting their pivotal role in adult hematopoiesis. Although osteoblasts play a central role in HSC regulation other stromal and microenvironmental cell types and their extracellular matrix proteins also contribute to this biology. For example, the glycosaminoglycan hyaluronic acid as well as the membrane bound form of stem cell factor are also key regulators of HSC. Osteopontin and these “niche” molecules are not only involved in regulation of HSC quiescence but also effect HSC homing, trans-marrow migration and lodgement. Accordingly this leads us to expand upon Schofield’s niche hypothesis: we propose that the HSC niche is critical for attraction of primitive hematopoietic progenitors to the endosteal region and tightly tethering them within this location, and by doing so placing them into intimate contact with cells such as osteoblasts whose extracellular products are able to exquisitely regulate their fate.  相似文献   

10.
Luo B  Lam BS  Lee SH  Wey S  Zhou H  Wang M  Chen SY  Adams GB  Lee AS 《PloS one》2011,6(5):e20364
Hematopoietic stem cell (HSC) homeostasis in the adult bone marrow (BM) is regulated by both intrinsic gene expression products and interactions with extrinsic factors in the HSC niche. GRP94, an endoplasmic reticulum chaperone, has been reported to be essential for the expression of specific integrins and to selectively regulate early T and B lymphopoiesis. In GRP94 deficient BM chimeras, multipotent hematopoietic progenitors persisted and even increased, however, the mechanism is not well understood. Here we employed a conditional knockout (KO) strategy to acutely eliminate GRP94 in the hematopoietic system. We observed an increase in HSCs and granulocyte-monocyte progenitors in the Grp94 KO BM, correlating with an increased number of colony forming units. Cell cycle analysis revealed that a loss of quiescence and an increase in proliferation led to an increase in Grp94 KO HSCs. This expansion of the HSC pool can be attributed to the impaired interaction of HSCs with the niche, evidenced by enhanced HSC mobilization and severely compromised homing and lodging ability of primitive hematopoietic cells. Transplanting wild-type (WT) hematopoietic cells into a GRP94 null microenvironment yielded a normal hematology profile and comparable numbers of HSCs as compared to WT control, suggesting that GRP94 in HSCs, but not niche cells, is required for maintaining HSC homeostasis. Investigating this, we further determined that there was a near complete loss of integrin α4 expression on the cell surface of Grp94 KO HSCs, which showed impaired binding with fibronectin, an extracellular matrix molecule known to play a role in mediating HSC-niche interactions. Furthermore, the Grp94 KO mice displayed altered myeloid and lymphoid differentiation. Collectively, our studies establish GRP94 as a novel cell intrinsic factor required to maintain the interaction of HSCs with their niche, and thus regulate their physiology.  相似文献   

11.
Tissue homeostasis demands regulatory feedback, suggesting that hematopoietic stem cell (HSC) activity is controlled in part by HSC progeny. Yet, cell extrinsic HSC regulation has been well characterized only in niche cells of non-hematopoietic origin. Here we identify feedback regulation of HSCs by megakaryocytes (Mks), which are mature hematopoietic cells, through production of thrombopoietin (Thpo), a cytokine pertinent for HSC maintenance. Induced ablation of Mk cell population in mice perturbed quiescent HSCs in bone marrow (BM). The ablation of Mks resulted in decreased intra-BM Thpo concentration presumably due to Thpo production by Mks. Thpo administration Mk ablated mice restored HSC functions. Overall, our study establishes Mk as an essential cellular component of the HSC niche and delineates cytokine-oriented regulation of HSCs by their own progeny.  相似文献   

12.
Ju XF  An TZ  Teng CB 《生理科学进展》2007,38(3):213-218
干细胞巢即干细胞周围的微环境构成,一般包括干细胞的相邻细胞、粘附分子及基质等,但不同的干细胞有不同的巢结构。干细胞巢通过不同信号途径调控着干细胞的行为,使干细胞的自我更新和分化处于平衡状态。根据近年来有关干细胞巢的研究,本文从果蝇生殖系干细胞巢、哺乳动物造血干细胞巢、肠干细胞巢、毛囊表皮干细胞巢和神经干细胞巢等五个系统分别综述了干细胞巢的构成及其对干细胞的调节作用,探讨了干细胞巢作用于干细胞的内在机制。  相似文献   

13.
Location, location, location: the cancer stem cell niche   总被引:3,自引:0,他引:3  
Sneddon JB  Werb Z 《Cell Stem Cell》2007,1(6):607-611
The existence of a stem cell niche, or physiological microenvironment, consisting of specialized cells that directly and indirectly participate in stem cell regulation has been verified for mammalian adult stem cells in the intestinal, neural, epidermal, and hematopoietic systems. In light of these findings, it has been proposed that a "cancer stem cell niche" also exists and that interactions with this tumor niche may specify a self-renewing population of tumor cells. We discuss emerging data that support the idea of a veritable cancer stem cell niche and propose several models for the relationship between cancer cells and their niches.  相似文献   

14.
Understanding the in vivo regulation of hematopoietic stem cells (HSCs) will be critical to identifying key factors involved in the regulation of HSC self‐renewal and differentiation. The niche (microenvironment) in which HSCs reside has recently regained attention accompanied by a dramatic increase in the understanding of the cellular constituents of the bone marrow HSC niche. The use of sophisticated genetic models allowing modulation of specific lineages has demonstrated roles for mesenchymal‐derived elements such as osteoblasts and adipocytes, vasculature, nerves, and a range of hematopoietic progeny of the HSC as being participants in the regulation of the bone marrow microenvironment. Whilst providing significant insight into the cellular composition of the niche, is it possible to manipulate any given cell lineage in vivo without impacting, knowingly or unknowingly, on those that remain? J. Cell. Biochem. 112: 1486–1490, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

15.
《Cytotherapy》2020,22(3):127-134
Enhanced interleukin-1β (IL-1β) signaling is a common event in patients with acute myeloid leukemia (AML). It was previously demonstrated that chronic IL-1β exposure severely impaired hematopoietic stem cell (HSC) self-renewal capability in mice and promoted leukemia cell growth in primary AML cells. However, the role of IL-1β in the murine bone marrow (BM) niche remains unclear. Here, we explored the role of IL-1β in the BM niche in Il-1r1−/− mice, chronic IL-1β exposure mice and mixed lineage leukemia-AF9 fusion gene (MLL-AF9)–induced AML mice models. We demonstrated that IL-1R1 deficiency did not affect the function of HSCs or niche cells under steady-state conditions or during transplantation. Chronic exposure to IL-1β decreased the expansion of Il-1r1−/− hematopoietic cells in Il-1r1+/+ recipient mice. These results indicated that IL-1β exposure impaired the ability of niche cells to support hematopoietic cells. Furthermore, we revealed that IL-1R1 deficiency in niche cells prolonged the survival of MLL-AF9–induced AML mice. The results of our study suggest that inhibition of the IL-1β/IL-1R1 signaling pathway in the niche might be a non–cell-autonomous therapy strategy for AML.  相似文献   

16.
The specialized microenvironment or niche where stem cells reside provides regulatory input governing stem cell function. We tested the hypothesis that targeting the niche might improve stem cell-based therapies using three mouse models that are relevant to clinical uses of hematopoietic stem (HS) cells. We and others previously identified the osteoblast as a component of the adult HS cell niche and established that activation of the parathyroid hormone (PTH) receptor on osteoblasts increases stem cell number. Here we show that pharmacologic use of PTH increases the number of HS cells mobilized into the peripheral blood for stem cell harvests, protects stem cells from repeated exposure to cytotoxic chemotherapy and expands stem cells in transplant recipients. These data provide evidence that the niche may be an attractive target for drug-based stem cell therapeutics.  相似文献   

17.
Two distinct microenvironmental niches that regulate hematopoietic stem/progenitor cell physiology in the adult bone marrow have been proposed; the endosteal and the vascular niche. While extensive studies have been performed relating to molecular interactions in the endosteal niche, the mechanisms that regulate hematopoietic stem/progenitor cell interaction with bone marrow endothelial cells are less well defined. Here we demonstrate that endothelial cells derived from the bone marrow supported hematopoietic stem/progenitor cells to a higher degree than other endothelial or stromal cell populations. This support was dependant upon placental growth factor expression, as genetic knockdown of mRNA levels reduced the ability of endothelial cells to support hematopoietic stem/progenitor cells in vitro. Furthermore, using an in vivo model of recovery from radiation induced myelosuppression, we demonstrate that bone marrow endothelial cells were able to augment the recovery of the hematopoietic stem/progenitor cells. However, this effect was diminished when the same cells with reduced placental growth factor expression were administered, possibly owing to a reduced homing of the cells to the bone marrow vasculature. Our data suggest that placental growth factor elaborated from bone marrow endothelial cells mediates the regulatory effects of the vascular niche on hematopoietic stem/progenitor cell physiology.  相似文献   

18.
19.
The chorio-allantoic placenta forms through the fusion of the allantois (progenitor tissue of the umbilical cord), with the chorionic plate. The murine placenta contains high levels of hematopoietic stem cells, and is therefore a stem cell niche. However, it is not known whether the placenta is a site of hematopoietic cell emergence, or whether hematopoietic cells originate from other sites in the conceptus and then colonize the placenta. Here, we show that the allantois and chorion, isolated prior to the establishment of circulation, have the potential to give rise to myeloid and definitive erythroid cells following explant culture. We further show that the hematopoietic potential of the allantois and chorion does not require their union, indicating that it is an intrinsic property of these tissues. These results suggest that the placenta is not only a niche for, but also a source of, hematopoietic cells.  相似文献   

20.
Wingless (Wnt) is a potent morphogen demonstrated in multiple cell lineages to promote the expansion and maintenance of stem and progenitor cell populations. Wnt effects are highly context dependent, and varying effects of Wnt signaling on hematopoietic stem cells (HSCs) have been reported. We explored the impact of Wnt signaling in vivo, specifically in the context of the HSC niche by using an osteoblast-specific promoter driving expression of the paninhibitor of canonical Wnt signaling, Dickkopf1 (Dkk1). Here we report that Wnt signaling was markedly inhibited in HSCs and, unexpectedly given prior reports, reduction in HSC Wnt signaling resulted in reduced p21Cip1 expression, increased cell cycling, and a progressive decline in regenerative function after transplantation. This effect was microenvironment determined, but irreversible if the cells were transferred to a normal host. Wnt pathway activation in the niche is required to limit HSC proliferation and preserve the reconstituting function of endogenous hematopoietic stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号