首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Head development in vertebrates requires reciprocal patterning interactions between cranial neural crest and the ectodermal, mesodermal and endodermal components of the branchial arches. Patterning elements within the pharyngeal endoderm and oral ectoderm appear to play defining roles in this process. Several homeobox genes of the NK-2 class (Nkx2-1, Nkx2-3, Nkx2-5 and Nkx2-6) are expressed regionally in the developing pharynx, and Nkx2-1 mutants and Nkx2-5/Nkx2-6 double mutants show loss of thyroid and distal lung progenitors, and pharyngeal cell viability, respectively. Here we examined the expression and genetic role of Nkx2-3 in pharyngeal development. Nkx2-3 was expressed in the pharyngeal floor and pouches, as well as in oral and branchial arch ectoderm. Expression persisted in the developing thyroid until birth, in mucous-forming cells of the lingual and sublingual salivary glands, and in odontogenic epithelium of the mandible. Examination of Nkx2-3 null mice revealed defects in maturation and cellular organisation of the sublingual glands. Furthermore, cusps were absent from mandibular molars and the third molar was occasionally missing. These data suggest roles for Nkx2-3 during pharyngeal organogenesis, although the considerable potential for genetic redundancy within and outside of this gene family may mask earlier functions in organ specification.  相似文献   

3.
4.
5.
6.
7.
Previous studies have indicated that the Undulated short-tail deletion mutation in mouse Pax1 (Pax1(Un-s)) not only ablates Pax1, but also disturbs a gene or genes nearby Pax1. However, which gene(s) is involved and how the Pax1(Un-s) phenotype is confined to the Pax1-positive tissues remain unknown. In the present study, we determined the Pax1(Un-s) deletion interval to be 125 kb and characterized genes around Pax1. We show that the Pax1(Un-s) mutation affects four physically linked genes within or near the deletion, including Pax1, Nkx2-2, and their potential antisense genes. Remarkably, Nkx2-2 is ectopically activated in the sclerotome and limb buds of Pax1(Un-s) embryos, both of which normally express Pax1. This result suggests that the Pax1(Un-s) deletion leads to an illegitimate interaction between remotely located Pax1 enhancers and the Nkx2-2 promoter by disrupting an insulation mechanism between Pax1 and Nkx2-2. Furthermore, we show that expression of Bapx1, a downstream target of Pax1, is more strongly affected in Pax1(Un-s) mutants than in Pax1-null mutants, suggesting that the ectopic expression of Nkx2-2 interferes with the Pax1-Bapx1 pathway. Taken together, we propose that a combination of a loss-of-function mutation of Pax1 and a gain-of-function mutation of Nkx2-2 is the molecular basis of the Pax1(Un-s) mutation.  相似文献   

8.
9.
Tet enzymes (Tet1/2/3) oxidize 5-methylcytosine to promote DNA demethylation and partner with chromatin modifiers to regulate gene expression. Tet1 is highly expressed in embryonic stem cells (ESCs), but its enzymatic and non-enzymatic roles in gene regulation are not dissected. We have generated Tet1 catalytically inactive (Tet1m/m) and knockout (Tet1−/−) ESCs and mice to study these functions. Loss of Tet1, but not loss of its catalytic activity, caused aberrant upregulation of bivalent (H3K4me3+; H3K27me3+) developmental genes, leading to defects in differentiation. Wild-type and catalytic-mutant Tet1 occupied similar genomic loci which overlapped with H3K27 tri-methyltransferase PRC2 and the deacetylase complex Sin3a at promoters of bivalent genes and with the helicase Chd4 at active genes. Loss of Tet1, but not loss of its catalytic activity, impaired enrichment of PRC2 and Sin3a at bivalent promoters leading to reduced H3K27 trimethylation and deacetylation, respectively, in absence of any changes in DNA methylation. Tet1−/−, but not Tet1m/m, embryos expressed higher levels of Gata6 and were developmentally delayed. Thus, the critical functions of Tet1 in ESCs and early development are mediated through its non-catalytic roles in regulating H3K27 modifications to silence developmental genes, and are more important than its catalytic functions in DNA demethylation.  相似文献   

10.
11.
During heart development the second heart field (SHF) provides progenitor cells for most cardiomyocytes and expresses the homeodomain factor Nkx2-5. We now show that feedback repression of Bmp2/Smad1 signaling by Nkx2-5 critically regulates SHF proliferation and outflow tract (OFT) morphology. In the cardiac fields of Nkx2-5 mutants, genes controlling cardiac specification (including Bmp2) and maintenance of the progenitor state were upregulated, leading initially to progenitor overspecification, but subsequently to failed SHF proliferation and OFT truncation. In Smad1 mutants, SHF proliferation and deployment to the OFT were increased, while Smad1 deletion in Nkx2-5 mutants rescued SHF proliferation and OFT development. In Nkx2-5 hypomorphic mice, which recapitulate human congenital heart disease (CHD), OFT anomalies were also rescued by Smad1 deletion. Our findings demonstrate that Nkx2-5 orchestrates the transition between periods of cardiac induction, progenitor proliferation, and OFT morphogenesis via a Smad1-dependent negative feedback loop, which may be a frequent molecular target in CHD.  相似文献   

12.
13.
14.
Zhang Y  Liu Z  Medrzycki M  Cao K  Fan Y 《PloS one》2012,7(6):e38829
The evolutionarily conserved homeotic (Hox) genes are organized in clusters and expressed collinearly to specify body patterning during embryonic development. Chromatin reorganization and decompaction are intimately connected with Hox gene activation. Linker histone H1 plays a key role in facilitating folding of higher order chromatin structure. Previous studies have shown that deletion of three somatic H1 subtypes together leads to embryonic lethality and that H1c/H1d/H1e triple knockout (TKO) embryonic stem cells (ESCs) display bulk chromatin decompaction. To investigate the potential role of H1 and higher order chromatin folding in the regulation of Hox gene expression, we systematically analyzed the expression of all 39 Hox genes in triple H1 null mouse embryos and ESCs by quantitative RT-PCR. Surprisingly, we find that H1 depletion causes significant reduction in the expression of a broad range of Hox genes in embryos and ESCs. To examine if any of the three H1 subtypes (H1c, H1d and H1e) is responsible for decreased expression of Hox gene in triple-H1 null ESCs, we derived and characterized H1c(-/-), H1d(-/-), and H1e(-/-) single-H1 null ESCs. We show that deletion of individual H1 subtypes results in down-regulation of specific Hox genes in ESCs. Finally we demonstrate that, in triple-H1- and single-H1-null ESCs, the levels of H3K4 trimethylation (H3K4me3) and H3K27 trimethylation (H3K27me3) were affected at specific Hox genes with decreased expression. Our data demonstrate that marked reduction in total H1 levels causes significant reduction in both expression and the level of active histone mark H3K4me3 at many Hox genes and that individual H1 subtypes may also contribute to the regulation of specific Hox gene expression. We suggest possible mechanisms for such an unexpected role of histone H1 in Hox gene regulation.  相似文献   

15.
Nkx2.2 and NeuroD1 are vital for proper differentiation of pancreatic islet cell types. Nkx2.2-null mice fail to form β cells, have reduced numbers of α and PP cells and display an increase in ghrelin-producing ε cells. NeuroD1-null mice display a reduction of α and β cells after embryonic day (e) 17.5. To begin to determine the relative contributions of Nkx2.2 and NeuroD1 in islet development, we generated Nkx2.2−/−;NeuroD1−/− double knockout (DKO) mice. As expected, the DKO mice fail to form β cells, similar to the Nkx2.2-null mice, suggesting that the Nkx2.2 phenotype may be dominant over the NeuroD1 phenotype in the β cells. Surprisingly, however, the α, PP and ε phenotypes of the Nkx2.2-null mice are partially rescued by the simultaneous elimination of NeuroD1, even at early developmental time points when NeuroD1 null mice alone do not display a phenotype. Our results indicate that Nkx2.2 and NeuroD1 interact to regulate pancreatic islet cell fates, and this epistatic relationship is cell-type dependent. Furthermore, this study reveals a previously unappreciated early function of NeuroD1 in regulating the specification of α, PP and ε cells.  相似文献   

16.
Roles of transition nuclear proteins in spermiogenesis   总被引:13,自引:0,他引:13  
The transition nuclear proteins (TPs) constitute 90% of the chromatin basic proteins during the steps of spermiogenesis between histone removal and the deposition of the protamines. We first summarize the properties of the two major transition nuclear proteins, TP1 and TP2, and present concepts, based on their time of appearance in vivo and in vitro properties, regarding their roles. Distinct roles for the two TPs in histone displacement, sperm nuclear shaping, chromatin condensation, and maintenance of DNA integrity have been proposed. More definitive information on their roles in spermiogenesis has recently been obtained using mice with null mutations in the Tnp1 or Tnp2 genes for TP1 and TP2, respectively. In these mice, histone displacement and sperm nuclear shaping appear to progress quite normally. Spermatid nuclear condensation occurs, albeit in an abnormal fashion, and the mature sperm of the Tnp -null mutants are not as condensed as wild-type sperm. There is also evidence that sperm from these mutant mice contain an elevated level of DNA strand breaks. The mutant sperm showed several unexpected phenotypes, including a high incidence of configurational defects, such as heads bent back on midpieces, midpieces in hairpin configurations, coils, and clumps, other midpiece defects, reduced levels of proteolytic processing of protamine 2 during maturation, and reduced motility. The two TPs appear partly to compensate for each other as both Tnp1 - and Tnp2 -null mice were able to produce offspring, and appear to have largely overlapping functions as the two mutants had similar phenotypes.  相似文献   

17.
18.
SWI2/SNF2 chromatin remodeling ATPases play important roles in plant and metazoan development. Whereas metazoans generally encode one or two SWI2/SNF2 ATPase genes, Arabidopsis encodes four such chromatin regulators: the well‐studied BRAHMA and SPLAYED ATPases, as well as two closely related non‐canonical SWI2/SNF2 ATPases, CHR12 and CHR23. No developmental role has as yet been described for CHR12 and CHR23. Here, we show that although strong single chr12 or chr23 mutants are morphologically indistinguishable from the wild type, chr12 chr23 double mutants cause embryonic lethality. The double mutant embryos fail to initiate root and shoot meristems, and display few and aberrant cell divisions. Weak double mutant embryos give rise to viable seedlings with dramatic defects in the maintenance of both the shoot and the root stem cell populations. Paradoxically, the stem cell defects are correlated with increased expression of the stem cell markers WUSCHEL and WOX5. During subsequent development, the meristem defects are partially overcome to allow for the formation of very small, bushy adult plants. Based on the observed morphological defects, we named the two chromatin remodelers MINUSCULE 1 and 2. Possible links between minu1 minu2 defects and defects in hormone signaling and replication‐coupled chromatin assembly are discussed.  相似文献   

19.
20.
The development of the mammalian antero-posterior (A-P) axis is proposed to be established by distinct anterior and posterior signaling centers, anterior visceral endoderm and primitive streak, respectively. Knock-out studies in mice have shown that Otx2 and Cripto have crucial roles in the generation and/or functions of these anterior and posterior centers, respectively. In both Otx2 and Cripto single mutants, the initial formation of the A-P axis takes place in a proximal-distal (P-D) orientation, but subsequent axis rotation fails to occur. To examine the developmental consequences of the lack of these two genes, we have analyzed the Otx2(-/-);Cripto(-/-) double homozygous mutant phenotype. In the double mutants, the expression of the A-P axis markers Cer-l, Lim1, and Wnt3 was not induced, while expression of Fgf8 and T was expanded throughout the epiblast, indicating that the double mutants could not form the A-P axis even in its initial P-D orientation. In addition, the double mutants displayed defects in differentiation of the visceral endoderm overlying the epiblast, as well as in the extraembryonic ectoderm. Furthermore, differentiation of neuroectoderm was accelerated as judged by the reduction of Oct4 expression and emergence of Sox1 and Gbx2 expression in the double mutant epiblast. The resulting ectoderm only displayed characteristics of anterior hindbrain, implicating it as a ground state in the mammalian body plan. Our results indicate that complementary functions of Otx2 and Cripto are essential for initial patterning of the A-P axis in the mouse embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号