首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesenchymal cells arise from the neural crest (NC) or mesoderm. However, it is difficult to distinguish NC-derived cells from mesoderm-derived cells. Using double-transgenic mouse systems encoding P0-Cre, Wnt1-Cre, Mesp1-Cre, and Rosa26EYFP, which enabled us to trace NC-derived or mesoderm-derived cells as YFP-expressing cells, we demonstrated for the first time that both NC-derived (P0- or Wnt1-labeled) and mesoderm-derived (Mesp1-labeled) cells contribute to the development of dental, thymic, and bone marrow (BM) mesenchyme from the fetal stage to the adult stage. Irrespective of the tissues involved, NC-derived and mesoderm-derived cells contributed mainly to perivascular cells and endothelial cells, respectively. Dental and thymic mesenchyme were composed of either NC-derived or mesoderm-derived cells, whereas half of the BM mesenchyme was composed of cells that were not derived from the NC or mesoderm. However, a colony-forming unit-fibroblast (CFU-F) assay indicated that CFU-Fs in the dental pulp, thymus, and BM were composed of NC-derived and mesoderm-derived cells. Secondary CFU-F assays were used to estimate the self-renewal potential, which showed that CFU-Fs in the teeth, thymus, and BM were entirely NC-derived cells, entirely mesoderm-derived cells, and mostly NC-derived cells, respectively. Colony formation was inhibited drastically by the addition of anti-platelet–derived growth factor receptor-β antibody, regardless of the tissue and its origin. Furthermore, dental mesenchyme expressed genes encoding critical hematopoietic factors, such as interleukin-7, stem cell factor, and cysteine-X-cysteine (CXC) chemokine ligand 12, which supports the differentiation of B lymphocytes and osteoclasts. Therefore, the mesenchymal stem cells found in these tissues had different origins, but similar properties in each organ.  相似文献   

2.
Mesenchymal stem cells (MSCs) are multipotent cells that have the capability of differentiating into several different cells such as osteoblasts (bone), chondrocytes (cartilage), adipocytes (fat), myocytes (muscle) and tenocytes (tendon). In this review we highlight the different regulators which determine the lineage a particular MSC will differentiate into. Mesenchymal stem cells are increasingly being used in tissue regeneration and repair. Strict regulation of differentiation of MSCs is essential for a positive outcome of the particular tissue treated with MSCs, especially due to the fact that capacity to differentiate decreases with increasing age of the donor.  相似文献   

3.
Accumulated evidence suggests that in addition to hematopoietic stem cells (HSC), bone marrow (BM) also harbors endothelial stem cells (ESC), mesenchymal stem cells (MSC), multipotential adult progenitor cells (MAPC), pluripotent stem cells (PCS) as well as tissue committed stem cells (TCSC) recently identified by us. In this review we discuss the similarities and differences between these cell populations. Furthermore, we will present the hypothesis that all of these versatile BM derived stem cells are in fact different subpopulations of TCSC. These cells accumulate in bone marrow during ontogenesis and being a mobile population of cells are released from BM into peripheral blood after tissue injury to regenerate damaged organs. Furthermore, since BM is a "hideout" for TCSC, their presence in preparations of bone marrow derived mononuclear cells should be considered before experimental evidence is interpreted simply as trans-differentiation or plasticity of HSC. Finally, our observation that the number of TCSC accumulate in the bone marrow of young animals and their numbers decrease during senescence provides a new insight into aging and may explain why the regeneration processes becomes less effective in older individuals.  相似文献   

4.
Mesenchymal stem cells (MSC) are adult multipotential progenitors which have a high potential in regenerative medicine. They can be isolated from different tissues throughout the body and their homogeneity in terms of phenotype and differentiation capacities is a real concern. To address this issue, we conducted a 2‐DE gel analysis of mesenchymal stem cells isolated from bone marrow (BM), adipose tissue, synovial membrane and umbilical vein wall. We confirmed that BM and adipose tissue derived cells were very similar, which argue for their interchangeable use for cell therapy. We also compared human mesenchymal to embryonic stem cells and showed that umbilical vein wall stem cells, a neo‐natal cell type, were closer to BM cells than to embryonic stem cells. Based on these proteomic data, we could propose a panel of proteins which were the basis for the definition of a mesenchymal stem cell proteomic signature.  相似文献   

5.
Most hematopoietic stem progenitor cells (HSPCs) reside in bone marrow (BM), but a small amount of HSPCs have been found to circulate between BM and tissues through blood and lymph. Several lines of evidence suggest that sphingosine-1-phosphate (S1P) gradient triggers HSPC egression to blood circulation after mobilization from BM stem cell niches. Stem cells also visit certain tissues. After a temporary 36 h short stay in local tissues, HSPCs go to lymph in response to S1P gradient between lymph and tissue and eventually enter the blood circulation. S1P also has a role in the guidance of the primitive HSPCs homing to BM in vivo, as S1P analogue FTY720 treatment can improve HSPC BM homing and engraftment. In stress conditions, various stem cells or progenitor cells can be attracted to local injured tissues and participate in local tissue cell differentiation and tissue rebuilding through modulation the expression level of S1P1, S1P2 or S1P3 receptors. Hence, S1P is important for stem cells circulation in blood system to accomplish its role in body surveillance and injury recovery.  相似文献   

6.
Many studies have already examined the hematopoietic recovery after irradiation but paid with very little attention to the bone marrow microenvironment. Nonetheless previous studies in a murine model of reversible radio-induced bone marrow aplasia have shown a significant increase in alkaline phosphatase activity (ALP) prior to hematopoietic regeneration. This increase in ALP activity was not due to cell proliferation but could be attributed to modifications of the properties of mesenchymal stem cells (MSC). We thus undertook a study to assess the kinetics of the evolution of MSC correlated to their hematopoietic supportive capacities in mice treated with sub lethal total body irradiation. In our study, colony-forming units-fibroblasts (CFU-Fs) assay showed a significant MSC rate increase in irradiated bone marrows. CFU-Fs colonies still possessed differentiation capacities of MSC but colonies from mice sacrificed 3 days after irradiation displayed high rates of ALP activity and a transient increase in osteoblastic markers expression while pparγ and neuropilin-1 decreased. Hematopoietic supportive capacities of CFU-Fs were also modified: as compared to controls, irradiated CFU-Fs significantly increased the proliferation rate of hematopoietic precursors and accelerated the differentiation toward the granulocytic lineage. Our data provide the first evidence of the key role exerted by the balance between osteoblasts and adipocytes in spontaneous bone marrow regeneration. First, (pre)osteoblast differentiation from MSC stimulated hematopoietic precursor's proliferation and granulopoietic regeneration. Then, in a second time (pre)osteoblasts progressively disappeared in favour of adipocytic cells which down regulated the proliferation and granulocytic differentiation and then contributed to a return to pre-irradiation conditions.  相似文献   

7.
Umbilical cord blood (CB) has become a commonly accepted source of hematopoietic stem cells for transplantation in children and adults. It is readily available and outperforms bone marrow (BM) as well as peripheral blood stem cells in terms of tolerance for HLA‐mismatches between donor and recipient and its decreased graft‐versus‐host disease. Clinical use has been expanded from hematological malignancies to various areas such as treatment of metabolic genetic disorders or to induce angiogenesis. For the last years CB has been under intense experimental investigation in in vitro differentiation models as well as in preclinical animal models. Since CB‐derived stem cells offer multiple advantages over adult stem cells from other sources like BM, CB may provide a future source of stem cells for tissue repair and regeneration. To facilitate the use of CB‐derived stem cells in clinical scenarios, the biology of these cells needs to be further explored in detail particularly with regard to the fact that different non‐hematopoietic stem cell populations occur within CB. Here we explore the most consistent and the most contradictory data referring to the differentiation potential of CB‐derived stem cells and give an outlook on their potential clinical value including and possible reprogramming into IPS cells. J. Cell. Biochem. 108: 762–768, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Tano N  Kim HW  Ashraf M 《PloS one》2011,6(10):e23114
The interaction between chemokine receptor type 4 (CXCR4) and its ligand, stromal cell-derived factor (SDF)-1, plays an important role in stem cell mobilization and migration in ischemic tissues. MicroRNAs (miRs) are key regulators of stem cell function and are involved in regulation of stem cell survival and differentiation to adopt different cell lineages. In this study, we show that ischemia inhibits the expression of miR-150 in BM-derived mononuclear cells (MNC) and activates its target Cxcr4 gene. Our results show that miR-150/CXCR4 cascade enhances MNC mobilization and migration. By using mouse acute myocardial infarction (MI) model, we found that MNCs in peripheral blood (PB) were increased significantly at day 5 after AMI as compared to control group and the number of CXCR4 positive MNCs both in bone marrow (BM) and PB was also markedly increased after MI. Analysis by microarray-based miRNA profiling and real-time PCR revealed that the expression of miR-150 which targets Cxcr4 gene as predicted was significantly downregulated in BM-MNCs after MI. Abrogation of miR-150 markedly increased CXCR4 protein expression suggesting its target gene. To show that miR-150 regulates MNC mobilization, knockdown of miR-150 in BM-MNCs by specific antisense inhibitor resulted in their higher migration ability in vitro as compared to scramble-transfected MNCs. Furthermore, in vivo BM transplantation of MNCs lacking miR-150 expression by lentiviral vector into the irradiated wild type mice resulted in the increased number of MNCs in PB after AMI as compared to control. In conclusion, this study demonstrates that ischemia mobilizes BM stem cells via miR-150/CXCR4 dependent mechanism and miR-150 may be a novel therapeutic target for stem cell migration to the ischemic tissue for neovascularization and repair.  相似文献   

9.
Treatment of common and debilitating degenerative cartilage diseases particularly osteoarthritis is a clinical challenge because of the limited capacity of the tissue for self‐repair. Because of their unlimited capacity for self‐renewal and ability to differentiate into multiple lineages, human embryonic stem cells (hESCs) are a potentially powerful tool for repair of cartilage defects. The primary objective of the present study was to develop culture systems and conditions that enable hESCs to directly and uniformly differentiate into the chondrogenic lineage without prior embryoid body (EB) formation, since the inherent cellular heterogeneity of EBs hinders obtaining homogeneous populations of chondrogenic cells that can be used for cartilage repair. To this end, we have subjected undifferentiated pluripotent hESCs to the high density micromass culture conditions we have extensively used to direct the differentiation of embryonic limb bud mesenchymal cells into chondrocytes. We report that micromass cultures of pluripotent hESCs undergo direct, rapid, progressive, and substantially uniform chondrogenic differentiation in the presence of BMP2 or a combination of BMP2 and TGF‐β1, signaling molecules that act in concert to regulate chondrogenesis in the developing limb. The gene expression profiles of hESC‐derived cultures harvested at various times during the progression of their differentiation has enabled us to identify cultures comprising cells in different phases of the chondrogenic lineage ranging from cultures just entering the lineage to well differentiated chondrocytes. Thus, we are poised to compare the abilities of hESC‐derived progenitors in different phases of the chondrogenic lineage for cartilage repair. J. Cell. Physiol. 224: 664–671, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
11.
Neural crest (NC) cells are a migratory cell population synonymous with vertebrate evolution. They generate a wide variety of cell and tissue types during embryonic and adult development including cartilage and bone, connective tissue, pigment and endocrine cells as well as neurons and glia amongst many others. Such incredible lineage potential combined with a limited capacity for self-renewal, which persists even into adult life, demonstrates that NC cells bear the key hallmarks of stem and progenitor cells. In this review, we describe the identification, characterization and isolation of NC stem and progenitor cells from different tissues in both embryo and adult organisms. We discuss their specific properties and their potential application in cell-based tissue and disease-specific repair.  相似文献   

12.
13.
Bone marrow (BM) was for many years primarily regarded as the source of hematopoietic stem cells. In this review we discuss current views of the BM stem cell compartment and present data showing that BM contains not only hematopoietic but also heterogeneous non-hematopoietic stem cells. It is likely that similar or overlapping populations of primitive non-hematopoietic stem cells in BM were detected by different investigators using different experimental strategies and hence were assigned different names (e.g., mesenchymal stem cells, multipotent adult progenitor cells, or marrow-isolated adult multilineage inducible cells). However, the search still continues for true pluripotent stem cells in adult BM, which would fulfill the required criteria (e.g. complementation of blastocyst development). Recently our group has identified in BM a population of very small embryonic-like stem cells (VSELs), which express several markers characteristic for pluripotent stem cells and are found during early embryogenesis in the epiblast of the cylinder-stage embryo.  相似文献   

14.
The bone marrow (BM) niche is essential for lifelong hematopoietic stem cell (HSC) maintenance, proliferation and differentiation. Several BM cell types, including osteoblast lineage cells (OBC), mesenchymal stem cells (MSC) and endothelial cells (EC) have been implicated in supporting HSC location and function, but the relative importance of these cell types and their secreted ligands remain controversial. We recently found that the cell surface receptors Robo4 and CXCR4 cooperate to localize HSC to BM niches. We hypothesized that Slit2, a putative ligand for Robo4, cooperates with the CXCR4 ligand SDF1 to direct HSC to specific BM niche sites. Here, we have isolated OBC, MSC and EC by flow cytometry and determined their frequency within the bone marrow and the relative mRNA levels of Slit2, SDF1 and Robo4. We found that expression of Slit2 and SDF1 were dynamically regulated in MSC and OBC-like populations following radiation, while Robo4 expression was restricted to EC. Radiation also significantly affected the cellularity and frequency of both the non-adherent and adherent cells within the BM stroma. These data support a physiological role for Slit2 in regulating the dynamic function of Robo-expressing cells within BM niches at steady state and following radiation.  相似文献   

15.
16.
Cellular therapy exerts profound therapeutic potential for curing a broad spectrum of diseases. Adult stem cells reside within a specified dynamic niche in vivo, which is essential for continuous tissue homeostatic maintenance through balancing self-renewal with lineage selection. Meanwhile, adult stem cells may be multipotent or unipotent, and are present in both quiescent and actively dividing states in vivo of the mammalians, which may switch to each other state in response to biophysical cues through mitochondria-mediated mechanisms, such as alterations in mitochondrial respiration and metabolism. In general, stem cells facilitate tissue repair after tissue-specific homing through various mechanisms, including immunomodulation of local microenvironment, differentiation into functional cells, cell “empowerment” via paracrine secretion, immunoregulation, and intercellular mitochondrial transfer. Interestingly, cell-source-specific features have been reported between different tissue-derived adult stem cells with distinct functional properties due to the different microenvironments in vivo, as well as differential functional properties in different tissue-derived stem cell-derived extracellular vehicles, mitochondrial metabolism, and mitochondrial transfer capacity. Here, we summarized the current understanding on roles of mitochondrial dynamics during stem cell homeostasis and aging, and lineage-specific differentiation. Also, we proposed potential unique mitochondrial molecular signature features between different source-derived stem cells and potential associations between stem cell aging and mitochondria–endoplasmic reticulum (ER) communication, as well as potential novel strategies for anti-aging intervention and healthy aging.Subject terms: Energy metabolism, Stem-cell research  相似文献   

17.
Stem cell‐mediated tissue repair is a promising approach for many diseases. Mammalian intestine is an actively regenerating tissue such that epithelial cells are constantly shedding and underlying precursor cells are constantly replenishing the loss of cells. An imbalance of these processes will lead to intestinal diseases including inflammation and cancer. Mammalian intestinal stem cells (ISCs) are located in bases of crypts but at least two groups of cells have been cited as stem cells. Moreover, precursor cells in the transit amplifying zone can also proliferate. The involvement of multiple cell types makes it more difficult to examine tissue damage response in mammalian intestine. In adult Drosophila midgut, the ISCs are the only cells that can go through mitosis. By feeding pathogenic bacteria and stress inducing chemicals to adult flies, we demonstrate that Drosophila ISCs in the midgut can respond by increasing their division. The resulting enteroblasts, precursor cells for enterocytes and enteroendocrine cells, also differentiate faster to become cells resembling enterocyte lineage. These results are consistent with the idea that Drosophila midgut stem cells can respond to tissue damage induced by pathogens and initiate tissue repair. This system should allow molecular and genetic analyses of stem cell‐mediated tissue repair. J. Cell. Physiol. 220: 664–671, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Adult stem cells were once thought to produce only the cell lineages characteristic of the tissues in which they reside. Recent studies suggest that cells derived from one adult tissue can be reprogrammed to change into cellular phenotypes not normally found in that tissue. Bone marrow (BM) derived cells have been demonstrated to differentiate into multiple lineages, including glial cells and neurons, both in vivo and in vitro. This unexpected plasticity of BM cells occurs not only under experimental conditions, but also in humans following BM transplantation. As a result, BM transplantation has emerged as a novel approach to enhance neural regeneration and restore injured brain tissue. Several research teams have reported that transplanted BM cells can differentiate into neural derivatives; indeed, some of these cells were capable of integration into the host brain, where they promoted functional recovery after brain injury. Other researchers conducting similar studies were unable to find any evidence of neural differentiation, concluding that differentiation 'from marrow to brain' is not a common phenomenon. More recently, two papers in Nature also cast doubt on the plasticity of adult stem cells, suggesting that the acquisition of different identities by grafted BM cells may merely reflect their fusion with host cells. Reasons for the wide discrepancies among findings in current BM stem cell research are unclear, making it difficult to understand the mechanisms by which transplanted marrow stem cells provide therapeutic benefit. Here, we summarize recent findings on this subject, and address some of the major controversies that have marked the evolution of adult stem cell research.  相似文献   

19.
Mesenchymal Stem Cells (MSCs) are non-hematopoietic and multipotent stem cells, which have been considered in regenerative medicine. These cells are easily separated from different sources, such as bone marrow (BM), umbilical cord (UC), adipose tissue (AT), and etc. MSCs have the differentiation capability into chondrocytes, osteocytes, and adipocytes; This differentiation potential along with the paracrine properties have made them a key choice for tissue repair. MSCs also have various advantages over other stem cells, which is why they have been extensively studied in recent years. The effectiveness of MSCs-based therapies depend on several factors, including differentiation status at the time of use, concentration per injection, delivery method, the used vehicle, and the nature and extent of the damage. Although, MSCs have emerged promising sources for regenerative medicine, there are potential risks regarding their safety in their clinical use, including tumorigenesis, lack of availability, aging, and sensitivity to toxic environments. In this study, we aimed to discuss how MSCs may be useful in treating defects and diseases. To this aim, we will review recent advances of MSCs action mechanisms in regenerative medicine, as well as the most recent clinical trials. We will also have a brief overview of MSCs resources, differences between their sources, culture conditions, extraction methods, and clinical application of MSCs in various fields of regenerative medicine.  相似文献   

20.
BM stem cells and cardiac repair: where do we stand in 2004?   总被引:1,自引:0,他引:1  
Orlic D 《Cytotherapy》2005,7(1):3-15
Adult BM stem cells are being investigated for their potential to regenerate injured tissues by a process referred to as plasticity or transdifferentiation. Although data supporting stem cell plasticity is extensive, a controversy has emerged based on findings that propose cell-cell fusion as a more appropriate interpretation for this phenomenon. A major focus of this controversy is the claim that acutely infarcted myocardium in adult hearts can be regenerated by BM stem cells. Many researchers consider the adult heart to be a post-mitotic organ, whereas others believe that a low level of cardiomyocyte renewal occurs throughout life. If renewal occurs, it may be in response to cardiac stem cell activity or to stem cells that migrate from distant tissues. Post-mortem microscopic analysis of experimentally induced myocardial infarctions in several rodent models suggests that cardiomyocyte renewal is achieved by stem cells that infiltrate the damaged tissue. For a better understanding of the possible involvement of stem cells in myocardial regeneration, it is important to develop appropriate technologies to monitor myocardial repair over time with an emphasis on large animal models. Studies on non-human primate, swine and canine models of acute myocardial infarctions would enable investigators to utilize clinical quality cell-delivery devices, track labeled donor cells after precision transplantation and utilize non-invasive imaging for functional assays over time with clinical accuracy. In addition, if stem cell plasticity is to reach the next level of acceptance, it is important to identify the environmental cues needed for stem cell trafficking and to define the genetic and cellular mechanisms that initiate transdifferentiation. Only then will it be possible to determine if, and to what extent, BM stem cells are involved in myocardial regeneration and to begin to regulate precisely tissue repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号