首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purification and properties of elm mottle virus   总被引:1,自引:0,他引:1  
A virus obtained commonly from Wych elm (Ulmus glabra) in Scotland showing ringspot and line-pattern leaf symptoms was serologically related to elm mottle virus (EMotV) from East Germany. The virus was seed-borne in elm and was transmitted by inoculation of sap to elm and twenty-one herbaceous species. No symptoms developed in infected elm seedlings kept in the glasshouse. In Chenopodium quinoa sap, EMotV lost infectivity after diluting to 10-4, after 10 min at 60 oC, or 9 days at 18 oC. When purified from C. quinoa sap by clarification with n-butanol (8-5 %, v/v) and differential centrifugation, preparations contained quasi-spherical particles mostly 26–29 nm m diameter (mean = 28 nm) which sedimented as three nucleo-protein components with sedimentation coefficients (so2o, w) of 83, 88 and 1 or S; most infectivity was associated with the 101 S component but infectivity was enhanced by adding the slower sedimenting components. When centrifuged to equilibrium in caesium chloride solution at 4 oC, purified virus preparations were largely degraded and contained many non-infective particles c. 15–22 nm in diameter, and intact infective particles which formed a band of density c. 1–34 g/cm3. Polyacrylamide gel electrophoresis indicated that EMotV contained a single major protein species of estimated mol. wt. 25000 and five RNA species of estimated mol. wt. 1–30, 1.15, 0–82, 0 39 and 0–30 times106. Gel electrophoresis of RNA extracted from the separated components indicated that the 101 S component contained 1–30 x io6 mol. wt. RNA and the 83 S component 0–82 times 106 mol. wt. RNA. In these and other properties, EMotV resembles the serologically unrelated tobacco streak virus.  相似文献   

2.
Two strains of a virus, designated cymbidium ringspot virus (CyRSV), were isolated from cymbidium orchids and from Trifolium repens respectively in Britain. Experimentally infected cymbidiums developed slight chlorotic ring-mottle; T. repens developed flecks and mottling in the leaves, and slight stunting. Of 101 plant species tested, the cymbidium strain infected sixty-one (thirteen systemically) in twenty-three of thirty-five families; the clover strain infected sixty-four species (eighteen systemically) in twenty-two families. Both strains were propagated in Nicotiana clevelandii and assayed in Chenopodium quinoa. CyRSV was readily transmitted by inoculation of sap, and by foliage contact between plants, but not by the aphids Myzus persicae or Acyrtho-siphon pisum, nor through seed of T. incarnatum, Phaseolus vulgaris or N. clevelandii. Highly infective virus was released into soil from roots of infected N. clevelandii, and acquired by bait seedlings planted in such soil. Similar transmission occurred when purified virus was applied to the surface of sterilized soil containing bait plants; there was no evidence for any living soil vector. The virus was eliminated from 96 % of small cuttings taken from infected N. clevelandii plants grown at 35–37 °C for 9 wk. CyRSV was still infective in sap of N. clevelandii after dilution to 10?5-io–6 (only 2 × 10_1 in cymbidium sap), or after 10min at 85–90 °C. It survived at least 10 months at c. 20 °C and more than 12 yr at 2 °C. Lyophilized sap was highly infective after over 13 yr at laboratory temperatures under high vacuum. Purified preparations made by clarification with n-butanol, followed by differential centrifugation and exclusion chromatography on controlled-pore glass beads, contained isometric particles c. 30 nm diam., with s°20W= 137 S, and had a buoyant density in caesium chloride of 1–36 g/ml. The A 260/A 280 ratio was 1–55, and A max(26o)/A min(242) was 1–17. The virus contained c. 15 % of single-stranded RNA of mol. wt 1–7 × 106; the nucleotide base ratios were: G27'8; A24/9; C2I-3; U26-I. There was one capsid polypeptide of mol. wt 43600. The virus was a good immunogen and a strongly reacting antigen in vitro; in Immunoelectrophoresis, each strain migrated as a single antigenic component towards the cathode. The cymbidium and clover strains were serologically closely related, although spurs were produced in immunodiffusion. No serological relationship was found to forty-three other isometric viruses, including eighteen tombusvirus isolates; CyRSV nevertheless shares many properties with tombusviruses, and we assign it provisionally to this group. The cryptogram is: R/r:1:7/15:S/S:S/O.  相似文献   

3.
Arracacha virus B (AVB), a previously undescribed virus, was found together with arracacha virus A or with a 750 nm flexous filamentous virus in arracacha (Arracacia Xanthorrhiza; Umbelliferae) growing in the Huanuco region of the Peruvian Andes. AVB was transmitted by inoculation of sap to 30 species from eight families out of 45 species from 10 families tested. It was transmitted through seed of Chenopodium quinoa but not by Myzus persicae. AVB was best propagated in C. Quinoa or Tetragonia expansa and assayed in C. quinoa, C. murale or C. amaranticolor. Sap from infeted <C. Quinoa was occasionally infective after dilution to 10-4 but not 10-5, after 10 min at 65 d? C but not 70 d? C, and after 12 but not 14 days at 20 d? C. In neutral phosphotungstate, AVB has isometric partilces c. 26 nm in diameter with a hexagonal profile. About 50- 150 A1 cm260 units of purified virus were obtained from 1 kg infected C. quinoa leaf by extraction in 0.5 M phosphate buffer at pH 7.5, containing 0.05 M ethylene-daiminetetra-acetate (EDTA) and 0.2% mercaptoethanol, and clarificatin with chloroform, followed by two precipitations with polyethylene glycol and three cylces of differential centrifugation. Purified virus coefficent (Sd?20 w,) of 126 S and A260/A280 ratio of 1.80, bnut formed two isopycnic bands in CsC1 of buoyant density 1.481 and 1.492 g/cm3 with estimated nucleic acid contents of 40 and 41% respectively. AVB particles contained two proteins of mol.wt 26 000 (major component) and 20 000. AVB was not serologically related to any of 20 other morphologically similar viruses. Its properties suggest that it does not fall into any recognised group of viruses. the cryptogram of AVB is */*:*/40–41:S/S:S/*  相似文献   

4.
Crimson clover latent virus (CCLV) was detected in five seed lots of crimson clover (Trifolium incarnatum) from Europe and in one from the United States of America. Ninety-seven per cent of all crimson clover plants examined were found to be infected but were without symptoms. Keeping crimson clover plants at 32–38°C for 34 days failed to free them from CCLV. The virus was not transmitted by Myzus persicae, but was transmitted by inoculation of sap to Chenopodium album, C. amaranticolor and C. quinoa. Twenty-four other plant species from seven families were not infected. CCLV was best propagated in C. quinoa in which it caused stunting and systemic chlorosis. Sap from infected C. quinoa was infective after dilution to 10-2 but not 10-3, after 10 min at 60°C but not 65°C, and after 20 days at 20°C. In neutral phosphotungstate, CCLV had isometric particles c. 26 nm in diameter with a hexagonal profile. About 20 to 80 A1cm,260 units of purified virus were obtained from 1 kg of infected C. quinoa or C. amaranticolor leaves by extraction in 0.5 M phosphate buffer, pH 7.5, containing 0.01 M ethylene diamine tetra-acetate and 0.4% 2–mercaptoethanol and clarification with chloroform-butanol followed by two precipitations with polyethylene glycol (mol. wt 6000) and several cycles of differential centrifugation. Purified virus sedimented as three components with sedimentation coefficients (s°20, w) of 52S, 101S and 122S. The 101S and 122S components had buoyant densities in CsCl of 1.438 and 1.495 g/cm3 respectively. From these values the nucleic acid content of the 101S and 122S components was estimated to be 32–35% and 40–41% respectively. The virus contained a single protein with an estimated mol. wt of 52 000 and two single-stranded RNA species of estimated mol. wt 1.6 × 106 and 2.2 × 106. CCLV was serologically unrelated to 31 other morphologically similar viruses. Although its vector is unknown, CCLV seems to have affinities with nepoviruses. The cryptogram of CCLV is R/1:2.2/40–41 + 1.6132–35:S/S:S/*.  相似文献   

5.
A virus obtained from pelargonium cvs Irene and Paul Crampel appears to differ from any previously reported; although symptomless in most pelargonium cvs tested, it caused colour break in the flowers of two seedling clones. It seems uncommon in pelargoniums. The virus was readily transmitted by inoculation of sap, but not by Myzus persicae with short feeds, by dodder or through seed. It infected only fifteen of 100 species tested in six of thirty-five plant families. Pelargoniums were freed from the virus by heat-treatment. The virus remained infective after 10 min at 85 oC, 3 wk at 20 oC or 27 wk at 2 oC; it was infective at 1/500000 dilution of Nicotiana clevelandii or Chenopodium quinoa sap. Purified preparations were readily made by several methods, and contained isometric particles c. 30 nm diameter. Although a good antigen, the virus was serologically unrelated to any of forty-two isometric viruses. In immunoelectrophoresis, the virus moved as a single antigenic component towards the cathode. It gave a single, specific zone in density-gradient centrifugation, and one moving component (s020 w= 125 S) in analytical centrifugation. The virus contained one protein of mol. wt. c. 41000. The present cryptogram of the virus is (R)/*: */*:S/S:S/*, and the name pelargonium flower-break virus is proposed.  相似文献   

6.
An isolate of Australian lucerne latent virus (ALLV) from lucerne in New Zealand was mechanically transmitted to a few herbaceous hosts. It induced diagnostic symptoms in several species of the Chenopodiaceae, but was symptomless in most other hosts including lucerne and Trifolium subterraneum. It was seed transmitted in lucerne. When assayed to Chenopodium quinoa, infective C. quinoa sap lost infectivity after diluting to 10-4, heating for 10 min at 55°C and storage for 4 days at 4°C. ALLV was purified from infected C. quinoa or pea plants by extracting sap in 0.1 m borate buffer (pH 7) containing 0.2% 2-mercaptoethanol and clarifying with 15% bentonite suspension, high and low speed centrifugation and sucrose density gradient centrifugation. Purified virus preparations contained isometric particles about 25 nm in diameter and sedimented as three virus components with sedimentation coefficients (s20-w0) of 56 S, 128 S and 133 S. The 56 S component appeared to consist of nucleic acid-free protein shells. Polyacrylamide gel electrophoresis of virus preparations showed that ALLV contained a single protein species of mol. wt 55 000 and two RNA species of mol. wt 2.1 × 106 and 2.4 × 106. An antiserum to ALLV had an homologous titre of 1/256 to purified virus but failed to detect ALLV in infective sap of C. quinoa, pea or lucerne. Purified ALLV failed to react to antisera to 28 distinct isometric plant viruses including those to 10 nepoviruses.  相似文献   

7.
A virus, now named peanut green mosaic virus (PGMV), was isolated from groundnut (Arachis hypogaea) in India and identified as a member of the potato virus Y group by electron microscopy, aphid transmission, and its chemical properties. It was sap transmissible to 16 species of the Leguminosae, Solanaceae, Chenopodiaceae, Aizoaceae and Pedaliaceae; Phaseolus vulgaris was a good local lesion host. PGMV remained infective in buffered groundnut leaf sap at dilutions of 10-3 after 3 to 4 days at 25 °C, or heating for 10 min to 55 °C but not 60 °C. PGMV was transmitted in the non-persistent manner by Aphis gossypii and Myzus persicae but was not seed-borne. Purified virus preparations contained flexuous filamentous particles c. 750 nm long which sedimented as a single component with a sedimentation coefficient (S°20w) of 171S, and contained a single polypeptide (mol. wt 34 500 daltons) and one nucleic acid species (mol. wt 3.25 × 106 daltons). PGMV is serologically unrelated to peanut mottle virus (PMV) and other viruses infecting leguminous crops. Infected leaves contained cylindrical, cytoplasmic inclusions.  相似文献   

8.
Host range, purification and properties of potato virus T   总被引:2,自引:0,他引:2  
Potato virus T (PVT) infected nine species of tuber-bearing Solanum, most of them symptomlessly, and as a rule was transmitted through the tubers to progeny plants: two genotypes of S. tuberosum ssp. andigena were not infected. The virus was also transmitted by inoculation with sap to 37 other species in eight plant families. Chenopodium amaranticolor is useful as an indicator host, C quinoa as a source of virus for purification, and Phaseolus vulgaris as a local-lesion assay host; the systemic symptoms in Datura stramonium, Nicotiana debneyi and in these three species are useful for diagnosis. Attempts to transmit PVT by aphids failed, but the virus was transmitted through seed to progeny seedlings of four solanaceous species, and from pollen to seed of S. demissum. PVT was purified by clarifying sap with n-butanol or bentonite, followed by precipitation with polyethylene glycol, differential centrifugation and sedimentation in a sucrose density gradient. Purified preparations had an E260/E280 ratio of 1.18 and contained a single infective component with a sedimentation coefficient of 99 S. This component consisted of flexuous filamentous particles of about 640 times 12 nm that showed a characteristic substructure when stained with uranyl acetate. The virus particles contained a single species of infective single-stranded RNA, of molecular weight 2–2 times 106 daltons, and a single species of polypeptide of molecular weight about 27 000 daltons. PVT is serologically related to apple stem grooving virus but not to four other common potato viruses with flexuous filamentous particles. Apple stem grooving virus and PVT cause similar symptoms in several hosts, but also differ somewhat in host range and symptomatology. Apple stem grooving virus did not infect potato, caused additional symptoms in C. quinoa also infected with PVT, and its particles did not show the structural features specific to PVT. The two viruses are considered to be distinct. The cryptogram of PVT is R/1:2–2/(5): E/E: S/C.  相似文献   

9.
Hypochoeris mosaic virus (HMV) is common in Hypochoeris radicata (‘cat's ear’) in western Canada. It infected 10 of 53 mechanically inoculated species in five of twelve families, but was not transmitted by aphids or through seed or soil. Sap from infected Nicotiana clevelandii was sometimes infective after dilution to 10-1 and occasionally 102, after 10 min at 45 but not 50°C, and after 1 but not 2 days at 20°C. Infectivity of crude nucleic acid extracts from infected leaves was rapidly abolished by RNase but not by DNase. Host sap contained very few rod-shaped particles or particle fragments mostly 21.0–22.5 nm in diameter, and up to 420 nm long but with predominant lengths of 120–140 and 240–260 nm. Many rods in purified virus preparations were less than 240 nm long, and the majority were c. 140 nm or shorter. The particles had a helical substructure with a pitch of 2.58 nm and contained a single type of protein of estimated mol. wt 24.5 × 103. HMV showed no serological relationship to eight morphologically similar viruses (beet necrotic yellow vein, broad bean necrosis, barley stripe mosaic, peanut clump, potato mop-top, Nicotiana velutina mosaic, wheat soil-borne mosaic and defective strains of tobacco mosaic). It is probably a hitherto undescribed tobamovirus.  相似文献   

10.
Arracacha virus A (AVA), a previously undescribed virus, is common in arracacha (Arracacia xanthorrhiza; Umbelliferae) in the Huanuco region of the Peruvian Andes. AVA was not transmitted by Myzus persicae, but was transmitted by inoculation of sap to 38 species from 10 families out of 63 species from 12 families tested. AVA was best propagated and assayed in Chenopodium quinoa and Nicotiana clevelandii in which it caused severe diseases. Sap from infected C. quinoa was occasionally infective after dilution to 10-4 but not 10-5, after 10 min at 65 °C but not 70 °C, and after 15 days at 20 °C. In neutral phosphotungstate, AVA has isometric particles c. 26 nm in diameter with a hexagonal profile, some of which were either fully or partially penetrated by the negative stain. Up to 50–200 E2601cm units of purified virus was obtained from 1 kg of infected N. clevelandii leaf by extraction in 0.05 M phosphate buffer at pH 7.5 containing 0.05 M ethylene diaminetetra-acetate, and clarification with chloroform, followed by differential precipitation with ammonium sulphate and three cycles of differential centrifugation. Purified virus sedimented as three components with sedimentation coefficients (S20w°) of 50 S, 92 S and 125 S and E260/E280 ratios of 0.65, 1.50 and 1.85 respectively. At equilibrium in CsCl gradients, buoyant densities of the 50, 92 and 125 S components were 1.32, 1.45 and 1.52 g/cm3 respectively. From the sedimentation coefficients and buoyant densities, the nucleic acid contents of the 92 S and 125 S components were estimated at 30–35% and 43–44% respectively. Only the 125 S component seemed to be infective but its infectivity was greater when mixed with the 92 S component. All three components contained a single protein with a molecular weight of 53 000. AVA was not serologically related to any of 33 other morphologically similar viruses. Although the vector is unknown, its properties suggest that it is a member of the nepovirus group. The cryptogram of AVA is */*: */43–44 +*/30–35: S/S:S/*.  相似文献   

11.
Cowpea mild mottle virus (CMMV), a previously undescribed virus widespread in cowpeas (Vigna unguiculata) in the Eastern Region of Ghana, was seed-borne in V. unguiculata, Phaseolus vulgaris and Glycine max, but was not transmitted by twelve aphid species including Aphis craccivora, A. fabae, Acyrthosiphon pisum and Myzus persicae. CMMV was transmitted by inoculation of sap to eleven of seventeen members of the Papilionaceae causing very severe diseases in G. max and Arachis hypogaea, and to ten of fifty-one species within five of nineteen other families; it was best propagated in G. max and Nicotiana clevelandii, and assayed in Chenopodium quinoa. Sap from systemically infected G. max was infective after dilution to 10-3 but not 10-4, after 10 min at 65 °C but not at 70 °C, or after 4 days at 18 °C or 16 days at 2 °C. Lyophilized sap was infective after 3 years in vacuo. CMMV has straight to slightly flexuous, fragile filamentous particles, c. 13 × 650 nm which, in sap, are occasionally surrounded by a loose external spiral. About 5 mg of purified virus was obtained from 1 kg of leaf tissue of G. max or N. clevelandii by clarifying leaf extracts in 0.02 m borate buffer (pH 9.5) with chloroform, followed by two or three cycles of differential centrifugation, and density gradient centrifugation. Virus preparations had ultraviolet absorption spectra typical of a nucleoprotein containing c. 5 % nucleic acid, contained numerous particles without external spirals, which sedimented as a single component with a sedimentation coefficient (s°20, w) of 165 × 4S, and contained a single polypeptide species with a molecular weight of 32000–33000. CMMV showed a distant serological relationship to carnation latent virus, but not to ten other morphologically similar viruses; it thus seems to be a distinct member of the carlavirus group, and has the cryptogram: */*:*/(5):E/E:S/*.  相似文献   

12.
Pepper veinal mottle virus (PVMV), a previously undescribed virus widespread in Capsicum annuum and C. frutescens in the Eastern Region of Ghana, is acquired and inoculated in 2 min feeding periods by aphids (Myzus persicae and Aphis gossypii); it is transmissible by inoculation of sap to eleven of fifteen Solanaceae and to five of forty-six other species within three of seventeen other families. The virus was propagated in Nicotiana clevelandii and Petunia hybrida, and assayed in Chenopodium quinoa, C. amaranticolor and C. murale. Sap from Capsicum annuum was infective after dilution to 10-3 but not 10-4, after 10 min at 55 but not 60oC, and after 7 but not 8 days at 25oC. Lyophilized sap from P. hybrida was infective after 6 years in vacuo. Yields of 10–25 mg of virus per kg of leaf tissue were consistently obtained from P. hybrida or N. clevelandii by extracting systemically infected leaves in 0.5 M borate (pH 7.8) containing 0.2% mercaptoethanol and chloroform, followed by repeated precipitation with 50 g polyethylene glycol (M.W. 6000) per l, several cycles of differential centrifugation and centrifugation in sucrose density-gradient columns. Virus preparations had ultraviolet absorption spectra typical of a nucleoprotein containing c. 6% nuclei acid (A 260/280 = 1.25; A 260/246 = 1.27) and contained numerous unaggregated and unbroken filamentous particles c. 770 times 12 nm which sedimented as a single component with a sedimentation coefficient (so20,w) of 155 S. PVMV contained RNA (moles %: G = 24, A = 23, C = 27, U = 26), and a single protein species with a molecular weight of 32000–33000 daltons. PVMV was not serologically related to potato virus Y (three strains), or to twelve other morphologically similar viruses, and seems to be a distinct member of the potato virus Y group. The cryptogram of PVMV is R/(I):*/(6):E/E:S/Ap.  相似文献   

13.
Tephrosia symptomless virus (TSV), isolated from Tephrosia villosa, is widely distributed in coastal districts of Kenya. The virus was readily transmitted by inoculation of sap, but not by Aphis craccivora or Apion sp. (Curculionidae) or through soil. Host range was very restricted and it infected only 10 of 70 species tested in one of nine plant families; susceptible species were confined to five genera within the Papilionaceae. The virus was cultured, propagated and assayed in soybean. TSV remained infective after 10 min at 85°C, 3 wk at 20°C and 26 wk at -12°C; crude infective sap of Glycine max retained infectivity when diluted 10-6 but not 10-7. Virus was purified from systemically infected soybean by clarifying sap extracted in 0.06 m phosphate buffer containing 0.001 m EDTA and 0.1% thioglycollic acid (pH 7.5) with equal volumes of 1:1 n-butanol/chloroform followed by two cycles of differential and one of sucrose density gradient centrifugation. Purified preparations contained c. 33 nm isometric particles. TSV contained RNA and one protein of molecular weight 1.53. 106 and c. 42 000, respectively. Analytical centrifugation indicated a single component with a sedimentation coefficient (s.20, w) of 127 S; in Cs2SO4 and CsCl isopycnic gradients a single virus band formed; buoyant density in CsCl was 1.361. TSV was not related serologically to any of 44 viruses in nine plant virus groups but it resembled the tombusviruses and other ungrouped viruses such as carnation mottle in some of its properties.  相似文献   

14.
An isolate of pea early-browning virus from Britain (PEBV (B)) has tubular particles most of which are either about 103 or 212 mμ long with sedimentation coefficients of 210 and 286 S respectively. Both types show cross-banding at intervals of 2.5 mμ. Virus preparations containing only the shorter particles were not infective. PEBV (B) was transmitted to pea seedlings by both adult and juvenile Trichodorus primitivus (de Man) (Nematoda) and persisted for 32 days in T. primitivus kept without plants. In two experiments T. primitivus failed to transmit a Dutch isolate (PEBV (D)), which is distantly related serologically to PEBV (B). PEBV (B) was transmitted by nematodes to cucumber roots more readily in soil at 20d? than at 24d? C., and more readily at 24d? than at 29d? C. When transmitted by inoculation of sap, PEBV (B) and PEBV (D) caused similar symptoms in some pea varieties but differed in virulence towards others. Thirty-one varieties resistant to natural infection with PEBV in The Netherlands were susceptible to PEBV (B) when manually inoculated with sap or when grown in naturally infested soil from one site; twenty-six of these varieties did not become infected in soil from a second site, in which several other varieties that are susceptible in The Netherlands were infected. Varieties should therefore be tested for resistance by growing them on many infested fields. All but one of the pea varieties resistant to PEBV in The Netherlands became infected with the English form of tomato black ring virus when grown in soil containing infective Longidorus attenuatus Hooper.  相似文献   

15.
Garlic yellow streak virus, a potyvirus infecting garlic in New Zealand   总被引:1,自引:0,他引:1  
In New Zealand, all garlic (Allium sativum) plants tested were infected by a virus with flexuous filamentous particles 700–800 nm long. This virus, called garlic yellow streak virus (GYSV), infected only two of 12 species tested and was transmitted to garlic by the aphid Myzus persicae in a non-persistent manner. In garlic sap, GYSV was infective at a dilution of 10-4 but not 10-3, after heating for 10 min at 60°C but not 65°C, and after 2 days but not 3 days at 25°C. The yield of virus, purified from naturally infected garlic, was 3–4 mg/kg fresh leaf. Preparations had A260/A280= 1.28 and Aman/Amin= 1.08. The virus particles had a sedimentation coefficient of 149S and a buoyant density in CsCl of 1.334 g/cm3. Mol. wt estimates for the virus nucleic acid were 2.95 × 106 by electrophoresis in polyacrylamide gels and 3.46 × 106 from the sedimentation coefficient (41.4S) in linear-log sucrose density gradients. Two polypeptides were detected in virus preparations; one (mol. wt 30 500) was possibly a breakdown product of the other (mol. wt 33 000). GYSV was serologically distantly related to onion yellow dwarf and leek yellow stripe viruses but was considered to be a separate virus because it differed from them in host range.  相似文献   

16.
Vein-clearing followed by downward rolling and necrosis of leaves and severe stunting of groundnut (Arachis hypogaea) plants were caused by cowpea mild mottle virus (CMMV). The virus was readily transmitted by mechanical sap inoculations to groundnut and to 10 plant species belonging to Leguminosae, Chenopodiaceae and Solanaceae. Chenopodium quinoa and Beta vulgaris were good diagnostic hosts. Diseased sap remained infective at 10–3 but not 10–4, when stored 8 to 9 days at 25 °C; for 10min at 75 °C but not 80°C. In limited tests, virus was not seed-transmitted m groundnut or soybean. Virus was transmitted by Bemisia tabaci but not by Aphis craccivora or Myzus persicae. An antiserum for CMMV was produced and virus was serologically related to CMMV reported on cowpea and groundnut crinkle virus (GCV) from West Africa. Employing carbon diffraction grating replica as a standard the modal length of virus particles to be 610 nm. Infected cells contained large number of virus particles associated with endoplasmic reticulum.  相似文献   

17.
Lilac chlorotic leafspot virus (LCLV), a hitherto undescribed virus, was isolated from three of 65 lilacs (Syringa vulgaris) with chlorotic leafspotting symptoms growing in S.E. England. The virus was transmitted readily by sap-inoculation to 21 of 52 species from eight of 20 families, but it was not seed-borne in four hosts or transmitted in the semi-persistent manner by any of four aphid species. The virus was moderately stable in vitro; sap from Chenopodium quinoa was infective after 10 min at 60 but not 65 oC, after 8–16 days at 20 oC or 25–30 wk at 2 oC, and after dilution to 10-3 but not 10-4. Up to 180 mg of purified virus per kg leaf tissue were obtained from C. quinoa by clarification of buffered leaf extracts with 8% (v/v) n-butanol, followed by one cycle of differential centrifugation and molecular permeation chromatography on controlled pore glass beads (700 Å, 120–200 mesh). LCLV has fragile flexuous filamentous particles which, when intact, mostly measured c. 12-5 times 1500–1600 nm; the helical substructure (pitch c. 3–7 nm) was clearly visible on some particles mounted in uranyl acetate. The particles sedimented as a single component (sedimentation coefficient 96 S; buoyant density 1–302 g cm-3) and contained c. 5% nucleic acid and a single polypeptide of mol. wt 27 times 103. Although these properties place LCLV in the closterovirus group, the virus showed no serological relationship to any of six closteroviruses (beet yellows, beet yellow stunt, carnation necrotic fleck, apple chlorotic leafspot, apple stem grooving and potato virus T) and differed from other recognised or possible members of this group in host range and/or symptoms induced in indicator species. The infrequent occurrence of LCLV in lilac in S.E. England indicates that the virus could probably be eradicated by selecting only virus-free plant material for propagation.  相似文献   

18.
A virus with isometric particles c. 26–28 nm in diameter isolated from naturally infected lucerne (Medicago sativa) in Australia and reported there to be a strain of lucerne Australian latent virus (LALV), is shown to be a distinct virus. The virus, called lucerne Australian symptomless (LASV), was mechanically transmitted to 10 of 22 plant species inoculated, but only induced symptoms in three Chenopodium species and Gomphrena globosa. Virus particles occurred in relatively low concentrations in plant sap, and the virus could not be reliably maintained in culture by serial transmission to plants during winter (October-April). During the summer, sap of infected C. quinoa remained infective after diluting 10-2 but not 10-3, after heating for 10 min at 50 but not 55 oC and after storage for 24 days (the longest period tested) at 20, 4 and -15 oC. LASV was seed-borne to 6% of C. quinoa seedlings. Partially purified preparations of virus particles contained one nucleoprotein component with a sedimentation coefficient of c. BOS. Particles contained two polypeptide species of estimated mol. wts 26 000 and 40 000, and two ssRNA species which, when denatured in glyoxal, had apparent mol. wts of 2–5 times 106 and 1–4 times 106. The infectivity of virus RNA was abolished by incubation with proteinase K. Purified particles of LASV reacted with homologous antiserum (gel diffusion titre 1:256) but not with antiserum to LALV or to 13 other plant viruses with isometric particles including arracacha B (AVB), broad bean wilt, rubus Chinese seed-borne (RCSV) and strawberry latent ringspot (SLRV) viruses, and five comoviruses. These properties distinguish LASV from LALV and from all recognised nepoviruses and comoviruses. Its closest affinities are with SLRV, RCSV and possibly AVB; these viruses may comprise a distinct virus group or nepovirus subgroup.  相似文献   

19.
Further evidence that dioscorea latent virus is a potexvirus   总被引:2,自引:0,他引:2  
Dioscorea latent virus (DLV) was isolated from Dioscoreafloribunda but was not detected in any of 37 cvs of D. alata, D. bulbifera, D. esculenta or D. rotundata from eight countries. It was readily sap-transmitted to 13 of 34 species from five of 12 families; it induced symptomless systemic infection in Nicotiana benthamiana and N. megalosiphon, but only symptomless local infection in other hosts. DLV was stable in vitro: sap from infected N. megalosiphon was still infective after 10 min at 75–80 oC but not 85 oC, after dilution to 10-6 but not 10-7, and after at least 12 months at 23 oC. DLV was not transmitted through seed, by contact or by the aphids Aphis gossypii and Myzus persicae. DLV had filamentous particles most of which measured c. 350–900 nm in purified preparations, with two modal lengths of 445 and 875 nm; the particles sedimented as two components with sedimentation coefficients of 111 S and 131 S and had a buoyant density in caesium chloride of 1–33 g cm-3. The virus had a single nucleic acid species with a mol. wt of 2–3 ± 04 × 106 and usually produced two protein bands (mol. wts 24 900 and 23 100) in SDS-PAGE, although virus preparations made in the presence of chloroform yielded only the larger polypeptide. DLV was serologically distantly related to commelina X and lily X viruses, but not to 11 other established or possible members of the potexvirus group. These results provide further evidence that DLV is a distinct but definitive potexvirus.  相似文献   

20.
Purified preparations of an isolate of black raspberry latent virus (BRLV) contained quasispherical particles with a mean diameter of 28·5 nm; these particles were resolved into three sedimenting components (s20, w= 82S, 95S and 104S), but when centrifuged to equilibrium in caesium chloride solution they formed a single infective band (σ= 1·35 g/cm3). During electrophoresis in polyacrylamide gels, virus particles separated into three classes, and virus RNA was resolved into three major (mol. wt 1·35, 1·10 and 0·85 × 106) and one minor (mol. wt 0·4 × 106) component. The protein from virus particles had an estimated mol. wt of 28000. Isolates of BRLV were found to be serologically related but not identical to some strains of tobacco streak virus. No symptoms developed in black raspberry seedlings infected with BRLV by mechanical inoculation, nor in eight red raspberry cultivars infected by graft inoculation. However, graft inoculation of BRLV to Rubus henryi, R. phoenicolasius and Himalaya blackberry induced symptoms typical of necrotic shock disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号