首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tree growth and vegetative propagation are complex but important traits under selection in many tree improvement programmes. To understand the genetic control of these traits, we conducted a quantitative trait locus (QTL) study in three full-sib families of Eucalyptus nitens growing at two different sites. One family growing at Ridgley, Tasmania had 300 progeny and two clonally replicated families growing at Mt. Gambier, South Australia had 327 and 210 progeny. Tree growth was measured over several years at both sites and percentages of roots produced by either stem cuttings or tissue culture were assessed in the two Mt. Gambier families. Linkage analysis of growth traits revealed several QTLs for later year traits but few for early year traits, reflecting temporal differences in the heritabilities of these traits. Two growth QTL positions, one on LG8 and another on LG11 were common between the Ridgley and Mt. Gambier families. Four QTLs were observed for each of the two vegetative propagation methods. Two QTLs for vegetative propagation on LG7 and LG11 were validated in the second family at Mt. Gambier. These results suggest that growth and vegetative propagation traits are controlled by several small effect loci. The QTLs identified in this study are useful starting points for identifying candidate genes using the Eucalyptus grandis genome sequence.  相似文献   

2.
Golden shell color and mineral content are important economic traits of Pacific oyster (Crassostrea gigas). In this study, we mapped a series of quantitative trait loci (QTLs) that control zinc (Zn) and magnesium (Mg) content, shell color and growth performance to two sex-averaged linkage maps from the FAM-A and FAM-B families. In total, ten QTLs were identified in seven linkage groups (LGs) in the FAM-B family, and seven QTLs were identified in four linkage groups in the FAM-A family. Two QTLs affecting the trait of golden shell color were identified in LG8 of the FAM-A and LG10 of the FAM-B families, which could explain 20.2 and 10.5% of the phenotypic variations, respectively. Two QTLs for Zn content were identified that could contribute to 17.9 and 34.44% of the phenotypic variations in FAM-A. Six QTLs for Zn and Mg contents were identified in four LGs (LG1, LG2, LG5, and LG9) in FAM-B, which explained 13.5–26.7% of the phenotypic variations. In addition, seven QTLs related to oyster growth were recognized in both FAM-A and FAM-B families accounting for 14.6–36.7% of the phenotypic variations. All of the DNA markers in QTL regions were blasted and 14 genes associated with above traits were identified. The mRNA expression of these genes was determined by quantitative RT-PCR. These QTLs and candidate genes could be used as potential targets for marker-assisted selection in C. gigas breeding.  相似文献   

3.
Omega-3 fatty acids are essential fatty acids for human health. Therefore, increasing both percentage of omega-3 and a better fatty acid profile in fish fillets is one of the breeding goals in aquaculture. However, it is difficult to increase the omega-3 content in fish fillets, as the phenotypic selection of these traits is not easily feasible. To facilitate the genetic improvement of the Asian seabass for optimal fatty acid profiles, a genome-wide scan for quantitative trait loci (QTL) affecting fatty acid level in the flesh of the Asian seabass was performed on an F2 family containing 314 offspring. All family members were genotyped using 123 informative microsatellites and 22 SNPs. High percentages of n-3 polyunsaturated fatty acids (PUFA), especially C22:6 (DHA 16.48?±?3.09 %) and C20:5 (EPA 7.19?±?0.86 %) were detected in the flesh. One significant and 54 suggestive QTL for different fatty acids and a water content trait were detected on the whole genome. QTL for C18:0b was located on linkage groups (LG) 5. QTL for total n-3 PUFA content in flesh were mapped onto LG6 and LG23 with the phenotypic variance explained ranging from 3.8 to 6.3 %. Four QTL for C22:6 were detected on LG6, LG23, and LG24, explaining 3.9 to 4.9 % of the phenotypic variance, respectively. Mapping of QTL for contents of different fatty acids is the first step towards improving the omega-3 content in the fillets of fish by using marker-assisted selection and is important for understanding the biology of fatty acid deposition.  相似文献   

4.
Disease resistance‐related traits have received increasing importance in aquaculture breeding programs worldwide. Currently, genomic information offers new possibilities in breeding to address the improvement of this kind of traits. The turbot is one of the most promising European aquaculture species, and Philasterides dicentrarchi is a scuticociliate parasite causing fatal disease in farmed turbot. An appealing approach to fight against disease is to achieve a more robust broodstock, which could prevent or diminish the devastating effects of scuticociliatosis on farmed individuals. In the present study, a genome scan for quantitative trait loci (QTL) affecting resistance and survival time to P. dicentrarchi in four turbot families was carried out. The objectives were to identify QTL using different statistical approaches [linear regression (LR) and maximum likelihood (ML)] and to locate significantly associated markers for their application in genetic breeding strategies. Several genomic regions controlling resistance and survival time to P. dicentrarchi were detected. When analyzing each family separately, significant QTL for resistance were identified by the LR method in two linkage groups (LG1 and LG9) and for survival time in LG1, while the ML methodology identified QTL for resistance in LG9 and LG23 and for survival time in LG6 and LG23. The analysis of the total data set identified an additional significant QTL for resistance and survival time in LG3 with the LR method. Significant association between disease resistance‐related traits and genotypes was detected for several markers, a single one explaining up to 22% of the phenotypic variance. Obtained results will be essential to identify candidate genes for resistance and to apply them in marker‐assisted selection programs to improve turbot production.  相似文献   

5.
Linolenic acid and seed lipoxygenases are associated with off flavours in soybean products. F5 recombinant inbred lines (RILs) from a cross between a low linolenic acid line (RG10) and a seed lipoxygenase-free line (OX948) were genotyped for simple sequence repeats (SSR), random amplified polymorphic DNA (RAPD), sequence-tagged sites (STS), and cleaved amplified polymorphic sequence (CAPS) markers and evaluated for seed and agronomic traits at 3 Ontario locations in 2 years. One hundred twenty markers covering 1247.5 cM were mapped to 18 linkage groups (LGs) in the soybean composite genetic map. Seed lipoxygenases L-1 and L-2 mapped as single major genes to the same location on LG G13-F. L-3 mapped to LG G11-E. This is the first report of a map position for L-3. A major quantitative trait locus (QTL) associated with reduced linolenic acid content was identified on LG G3-B2. QTLs for 12 additional seed and agronomic traits were detected. Linolenic acid content, linoleic acid content, yield, seed mass, protein content, and plant height QTL were present in at least 4 of 6 environments. Three to 8 QTLs per trait were detected that accounted for up to 78% of total variation. Linolenic acid and lipoxygenase loci did not overlap yield QTL, suggesting that it should be possible to develop high-yielding lines resistant to oxidative degradation by marker-assisted selection (MAS).  相似文献   

6.
The availability of genomic resources such as expressed sequence tag-derived simple sequence repeat (EST-SSR) markers in adaptive genes with high transferability across related species allows the construction of genetic maps and the comparison of genome structure and quantitative trait loci (QTL) positions. In the present study, genetic linkage maps were constructed for both parents of a Quercus robur × Q. robur ssp. slavonica full-sib pedigree. A total of 182 markers (61 AFLPs, 23 nuclear SSRs, 98 EST-SSRs) and 172 markers (49 AFLPs, 21 nSSRs, 101 EST-SSRs, 1 isozyme) were mapped on the female and male linkage maps, respectively. The total map length and average marker spacing were 1,038 and 5.7 cM for the female map and 998.5 and 5.8 cM for the male map. A total of 68 nuclear SSRs and EST-SSRs segregating in both parents allowed to define homologous linkage groups (LG) between both parental maps. QTL for leaf morphological traits were mapped on all 12 LG at a chromosome-wide level and on 6 LG at a genome-wide level. The phenotypic effects explained by each single QTL ranged from 4.0 % for leaf area to 15.8 % for the number of intercalary veins. QTL clusters for leaf characters that discriminate between Q. robur and Quercus petraea were mapped reproducibly on three LG, and some putative candidate genes among potentially many others were identified on LG3 and LG5. Genetic linkage maps based on EST-SSRs can be valuable tools for the identification of genes involved in adaptive trait variation and for comparative mapping.  相似文献   

7.
High-density genetic linkage maps were constructed for the Japanese flounder (Paralichthys olivaceus). A total of 1624 microsatellite markers were polymorphic in the reference family. Linkage analysis using JoinMap 4.0 resulted in the mapping of 1487 markers to 24 linkage groups, a result which was consistent with the 24 chromosomes seen in chromosome spreads. The female map was composed of 1257 markers, covering a total of 1663.8 cM with an average interval 1.35 cM between markers. The male map consisted of 1224 markers, spanning 1726.5 cM, with an average interval of 1.44 cM. The genome length in the Japanese flounder was estimated to be 1730.3 cM for the females and 1798.0 cM for the males, a coverage of 96.2% for the female and 96.0% for the male map. The mean recombination at common intervals throughout the genome revealed a slight difference between sexes, i.e. 1.07 times higher in the male than female. High-density genetic linkage maps are very useful for marker-assisted selection (MAS) programs for economically valuable traits in this species and for further evolutionary studies in flatfish and vertebrate species. Furthermore, four quantiative trait loci (QTL) associated with growth traits were mapped on the genetic map. One QTL was identified for body weight on LG 14 f, which explained 14.85% of the total variation of the body weight. Three QTL were identified for body width on LG14f and LG14m, accounting for 16.75%, 13.62% and 13.65% of the total variation in body width, respectively. The additive effects were evident as negative values. There were four QTL for growth traits clustered on LG14, which should prove to be very useful for improving growth traits using molecular MAS.  相似文献   

8.
Improved Catharanthus roseus cultivars are required for high yields of vinblastine, vindoline and catharanthine and/or serpentine and ajmalicine, the pharmaceutical terpenoid indole alkaloids. An approach to derive them is to map QTL for terpenoid indole alkaloids yields, identify DNA markers tightly linked to the QTL and apply marker assisted selection. Towards the end, 197 recombinant inbred lines from a cross were grown over two seasons to characterize variability for seven biomass and 23 terpenoid indole alkaloids content-traits and yield-traits. The recombinant inbred lines were genotyped for 178 DNA markers which formed a framework genetic map of eight linkage groups (LG), spanning 1786.5 cM, with 10.0 cM average intermarker distance. Estimates of correlations between traits allowed selection of seven relatively more important traits for terpenoid indole alkaloids yields. QTL analysis was performed on them using single marker (regression) analysis, simple interval mapping and composite interval mapping procedures. A total of 20 QTL were detected on five of eight LG, 10 for five traits on LG1, five for four traits on LG2, three for one trait on LG3 and one each for different traits on LG three and four. QTL for the same or different traits were found clustered on three LG. Co-location of two QTL for biomass traits was in accord of correlation between them. The QTL were validated for use in marker assisted selection by the recombinant inbred line which transgressively expressed 16 traits contributory to the yield vinblastine, vindoline and catharanthine from leaves and roots that possessed favourable alleles of 13 relevant QTL.  相似文献   

9.
Recent studies have revealed that the major genes of the mammalian sex determination pathway are also involved in sex determination of fish. Several studies have reported QTL in various species and strains of tilapia, regions contributing to sex determination have been identified on linkage groups 1, 3, and 23. Genes contributing to sex-specific mortality have been detected on linkage groups 2, 6, and 23. To test whether the same genes might control sex determination in mammals and fishes, we mapped 11 genes that are considered putative master key regulators of sex determination: Amh, Cyp19, Dax1, Dmrt2, Dmrta2, Fhl3l, Foxl2, Ixl, Lhx9, Sf1, and Sox8. We identified polymorphisms in noncoding regions of these genes and genotyped these sites for 90 individuals of an F2 mapping family. Mapping of Dax1 joined LG16 and LG21 into a single linkage group. The Amh and Dmrta2 genes were mapped to two distinct regions of LG23. The Amh gene was mapped 5 cM from UNH879 within a QTL region for sex determination and 2 cM from UNH216 within a QTL region for sex-specific mortality. Dmrta2 was mapped 4 cM from UNH848 within another QTL region for sex determination. Cyp19 was mapped to LG1 far from a previously reported QTL region for sex determination on this chromosome. Seven other candidate genes mapped to LG4, -11, -12, -14, and -17.  相似文献   

10.
Mutational load and resource allocation factors and their effects on limiting seed set were investigated in ryegrass by comparative mapping genomics and quantitative trait loci (QTL) analysis in two perennial ryegrass (Lolium perenne) mapping families sharing common genetic markers. Quantitative trait loci for seed-set were identified on chromosome (LG) 7 in both families and on LG4 of the F2/WSC family. On LG7, seed-set and heading date QTLs colocalized in both families and cannot be unequivocally resolved. Comparative genomics suggests that the LG7 region is syntenous to a region of rice LG6 which contains both fertility (S5(n)) and heading date (Hd1, Hd3a) candidate genes. The LG4 region is syntenous to a region of rice LG3 which contains a fertility (S33) candidate gene. QTL maxima for seed-set and heading date on LG4 in the F2/WSC family are separated by c. 8 cm, indicating distinct genetic control. Low seed set is under the control of recessive genes at both LG4 and LG7 locations. The identification of QTLs associated with seed set, a major component of seed yield in perennial ryegrass, indicates that mutational load associated with these genomic regions can be mitigated through marker-assisted selection.  相似文献   

11.

Background

Fish species often exhibit significant sexual dimorphism for commercially important traits. Accordingly, the control of phenotypic sex, and in particular the production of monosex cultures, is of particular interest to the aquaculture industry. Sex determination in the widely farmed Nile tilapia (Oreochromis niloticus) is complex, involving genomic regions on at least three chromosomes (chromosomes 1, 3 and 23) and interacting in certain cases with elevated early rearing temperature as well. Thus, sex ratios may vary substantially from 50%.

Results

This study focused on mapping sex-determining quantitative trait loci (QTL) in families with skewed sex ratios. These included four families that showed an excess of males (male ratio varied between 64% and 93%) when reared at standard temperature (28°C) and a fifth family in which an excess of males (96%) was observed when fry were reared at 36°C for ten days from first feeding. All the samples used in the current study were genotyped for two single-nucleotide polymorphisms (rs397507167 and rs397507165) located in the expected major sex-determining region in linkage group 1 (LG 1). The only misassigned individuals were phenotypic males with the expected female genotype, suggesting that those offspring had undergone sex-reversal with respect to the major sex-determining locus. We mapped SNPs identified from double digest Restriction-site Associated DNA (ddRAD) sequencing in these five families. Three genetic maps were constructed consisting of 641, 175 and 1,155 SNPs from the three largest families. QTL analyses provided evidence for a novel genome-wide significant QTL in LG 20. Evidence was also found for another sex-determining QTL in the fifth family, in the proximal region of LG 1.

Conclusions

Overall, the results from this study suggest that these previously undetected QTLs are involved in sex determination in the Nile tilapia, causing sex reversal (masculinisation) with respect to the XX genotype at the major sex-determining locus in LG 1.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1383-x) contains supplementary material, which is available to authorized users.  相似文献   

12.
There is substantial genetic variation for drought adaption in pearl millet in terms of traits controlling plant water use. It is important to understand genomic regions responsible for these traits. Here, F7 recombinant inbred lines were used to identify quantitative trait loci (QTL) and allelic interactions for traits affecting plant water use, and their relevance is discussed for crop productivity in water‐limited environments. Four QTL contributed to increased transpiration rate under high vapour pressure deficit (VPD) conditions, all with alleles from drought‐sensitive parent ICMB 841. Of these four QTL, a major QTL (35.7%) was mapped on linkage group (LG) 6. The alleles for 863B at this QTL decreased transpiration rate and this QTL co‐mapped to a previously detected LG 6 QTL, with alleles from 863B for grain weight and panicle harvest index across severe terminal drought stress environments. This provided additional support for a link between water saving from a lower transpiration rate under high VPD and drought tolerance. 863B alleles in this same genomic region also increased shoot weight, leaf area and total transpiration under well‐watered conditions. One unexpected outcome was reduced transpiration under high VPD (15%) from the interaction of two alleles for high VPD transpiration (LG 6 (B), 40.7) and specific leaf mass and biomass (LG 7 (A), 35.3), (A, allele from ICMB 841, B, allele from 863B, marker position). The LG 6 QTL appears to combine alleles for growth potential, beneficial for non‐stress conditions, and for saving water under high evaporative demand, beneficial under stressful conditions. Mapping QTL for water‐use traits, and assessing their interactions offers considerable potential for improving pearl millet adaptation to specific stress conditions through physiology‐informed marker‐assisted selection.  相似文献   

13.
A quantitative trait locus for live weight maps to bovine Chromosome 23   总被引:2,自引:0,他引:2  
A multiple-marker mapping approach was used to search for quantitative trait loci (QTLs) affecting production, health, and fertility traits in Finnish Ayrshire dairy cattle. As part of a whole-genome scan, altogether 469 bulls were genotyped for six microsatellite loci in 12 families on Chromosome (Chr) 23. Both multiple-marker interval mapping with regression and maximum-likelihood methods were applied with a granddaughter design. Eighteen traits, belonging to 11 trait groups, were included in the analysis. One QTL exceeded experiment level and one QTL genome level significance thresholds. Across-families analysis provided strong evidence (Pexperiment= 0.0314) for a QTL affecting live weight. The QTL for live weight maps between markers BM1258 and BoLA DRBP1. A QTL significant at genome level (Pgenome= 0.0087) was mapped for veterinary treatment, and the putative QTL probably affects susceptibility to milk fever or ketosis. In addition, three traits exceeded the chromosome 5% significance threshold: protein percentage of milk, calf mortality (sire), and milking speed. In within-family analyses, protein percentage was associated with markers in one family (LOD score = 4.5). Received: 14 December 1998 / Accepted: 28 March 1998  相似文献   

14.
Quantitative trait locus (QTL) mapping is frequently used to understand the genetic architecture of quantitative traits. Herein, we performed a genome scan for QTL affecting the morphometric characters in eight full-sib families containing 522 individuals using different statistical methods (Sib-pair and half-sib model). A total of 194 QTLs were detected in 25 different regions on 10 linkage groups (LGs). Among them, 37 QTLs on five LGs (eight, 13, 24, 40 and 45) were significant (5% genome-wide level), while the remaining 40 (1% chromosome-wide level) and 117 (5% chromosome-wide level) indicated suggestive effect on those traits. Heritabilities for most morphometric traits were moderate to high, ranging from 0.21 to 0.66, with generally strong phenotypic and genetic correlations between the traits. A large number of QTLs for morphometric traits were co-located, consistent with their high correlations, and may reflect pleiotropic effect on the same genes. Biological pathways were mapped for possible candidate genes on QTL regions. One significantly enriched pathway was identified on LG45, which had a P-value of 0.04 and corresponded to the “regulation of actin cytoskeleton pathway”. The results are expected to be useful in marker-assisted selection (MAS) and provide valuable information for the study of gene pathway for morphometric and growth traits of the common carp.  相似文献   

15.
Quantitative trait locus (QTL) studies of a skeletal trait or a few related skeletal components are becoming commonplace, but as yet there has been no investigation of pleiotropic patterns throughout the skeleton. We present a comprehensive survey of pleiotropic patterns affecting mouse skeletal morphology in an intercross of LG/J and SM/J inbred strains (N = 1040), using QTL analysis on 70 skeletal traits. We identify 798 single-trait QTL, coalescing to 105 loci that affect on average 7-8 traits each. The number of traits affected per locus ranges from only 1 trait to 30 traits. Individual traits average 11 QTL each, ranging from 4 to 20. Skeletal traits are affected by many, small-effect loci. Significant additive genotypic values average 0.23 standard deviation (SD) units. Fifty percent of loci show codominance with heterozygotes having intermediate phenotypic values. When dominance does occur, the LG/J allele tends to be dominant to the SM/J allele (30% vs. 8%). Over- and underdominance are relatively rare (12%). Approximately one-fifth of QTL are sex specific, including many for pelvic traits. Evaluating the pleiotropic relationships of skeletal traits is important in understanding the role of genetic variation in the growth and development of the skeleton.  相似文献   

16.
An autosomal genome scan for quantitative trait loci (QTL) affecting twinning rate was carried out in the Norwegian Cattle population. Suggestive QTL were detected on Chromosomes (Chr) 5, 7, 12, and 23. Among these, the QTL positions on both Chr 5 and Chr 23 are strongly supported by literature in the field. Our results also confirm previous mapping of a QTL for twinning to Chr 7, but definitely suggest a different location of the QTL on this chromosome. The most convincing QTL peak was observed for a region in the middle part of Chr 5 close to the insulin-like growth factor 1 (IGF1) gene. Since IGF1 plays an important role in the regulation of folliculogenesis, a mutation search was performed by sequencing more than 3.5 kb of the gene in actual families. The sequencing revealed three polymorphisms in noncoding regions of the gene that will be important in fine structure mapping and characterization of the QTL. Received: 14 December 1999 / Accepted: 25 May 2000  相似文献   

17.
Quantitative trait loci (QTL) for fat deposition, growth and muscling traits have been previously mapped on the basis of low-density linkage maps in a wild boar × Meishan F2 family to the chromosome X region flanked by SW2456 and SW1943 . Improved QTL resolution was possible using data for F2 animals with a marker density of 2.7 cM distance in the SW2456 to SW1943 region, including AR , SERPINA7 and ACSL4 as candidate genes. The resolution of the QTL scan was increased substantially, as evidenced by the higher F -ratio values for all QTL. Maxima of F -ratio values for fat deposition, muscling and growth traits were 28.6, 18.2 and 16.5 respectively, and those QTL positions accounted for 7.9%, 5.0% and 4.5% of the F2 phenotypic variance (VF2) respectively. QTL for fatness and growth and for most muscling traits mapped near ACSL4 , with the exception of the QTL for ham traits that mapped proximally, in the vicinity of AR . An analysis performed separately for F2 male animals showed the predominant QTL affecting fat deposition traits (up to 13.6% VF2) near AR and two QTL for muscling traits (up to 9.9% VF2) mapped close to ACSL4 . In the F2 female animals, QTL affecting muscling (up to 12.1% VF2) mapped at ACSL4 and SW2456 , and QTL for fat deposition (10% VF2) and growth (up to 10.5% VF2) mapped at ACSL4 .  相似文献   

18.
Soybean near isogenic lines (NILs), contrasting for maturity and photoperiod sensitivity loci, were genotyped with approximately 430 mapped simple sequence repeats (SSRs), also known as microsatellite markers. By analysis of allele distributions across the NILs, it was possible to confirm the map location of the Dt1 indeterminate growth locus, to refine the SSR mapping of the T tawny pubescence locus, to map E1 and E3 maturity loci with molecular markers, and to map the E4 and E7 maturity loci for the first time. Molecular markers flanking these loci are now available for marker-assisted breeding for these traits. Analysis of map locations identified a putative homologous relationship among four chromosomal regions; one in the middle of linkage group (LG) C2 carrying E1 and E7, one on LG I carrying E4, one at the top of LG C2, at which there is a reproductive period quantitative trait locus (QTL), and the fourth on LG B1. Other evidence suggests that homology also exists between the E1 + E7 region on LG C2 and a region on LG L linked to a pod maturity QTL. Homology relationships predict possible locations in the soybean genome of additional maturity loci, as well as which maturity loci may share a common evolutionary origin and similar mechanism(s) of action.  相似文献   

19.
Interval mapping was carried out to identify quantitative trait loci (QTL) for milk production traits in five granddaughter design families of the German Holstein population. Fourteen randomly generated markers spanning the whole of BTA6 and six targeted microsatellite markers from BTA6q21-31 were included in the analysis. In one family a QTL with effects on milk fat yield and milk protein yield was mapped to the interval TGLA37-FBN13 (3 CM proximal to FBN13, lodscore 3.22) in the middle part of the chromosome. Although there are several reports about QTL with effects on milk production traits on BTA6 in the literature, a QTL with effects on milk fat and milk protein yield has not been previously described.  相似文献   

20.
Functional bases of polygenically inherited disease resistance are still unknown. In recent years, molecular dissection of polygenic resistance has led to the identification and location of quantitative trait loci (QTLs) on many plant genetic linkage maps. This process is a pre-requisite for resistance QTL characterization at a molecular and functional level. Here, we report the use of a candidate gene approach based on the hypothesis that some resistance QTLs previously mapped in pepper may correspond to defense response (DR) genes. Degenerate oligonucleotide primers were designed for conserved regions of two DR gene families: pathogenesis-related proteins (PR) of class 2 (β-1,3-glucanase) and PR proteins of class 5 (antifungal activity). Cloned pepper PCR-products as well as other solanaceous DR gene families were used as RFLP probes for mapping in three intraspecific maps of the pepper genome. A total of 12 probes out of 23 were positioned and generated 16 loci. Some DR probes revealed multiple gene copies in the pepper genome (PR5, β-1,3-glucanase, chitinase and Glutathione S-transferase). Genes encoding acidic and basic β-1,3-glucanases were clustered on linkage group (LG) P1a, whereas genes encoding chitinases occurred on several LGs (P1b, P2a and P5). A class-III chitinase gene co-localized with a major-effect QTL controlling resistance to Phytophthora capsici on LG P5. PR4, PR2 and PR10 loci mapped within the region of resistance QTLs to P. capsici (LG P1b), Potato virus Y (LG P1a) and Potyvirus E (LG P3), respectively. A digenic interaction between a PR4 and a PR2 loci explained a large effect (35%) of the resistance to Potyvirus E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号