共查询到20条相似文献,搜索用时 15 毫秒
1.
Toll-like receptor 4, but not toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides 总被引:13,自引:0,他引:13
Tapping RI Akashi S Miyake K Godowski PJ Tobias PS 《Journal of immunology (Baltimore, Md. : 1950)》2000,165(10):5780-5787
Two members of the mammalian Toll-like receptor (TLR) family, TLR2 and TLR4, have been implicated as receptors mediating cellular activation in response to bacterial LPS. Through the use of mAbs raised against human TLR2 and TLR4, we have conducted studies in human cell lines and whole blood to ascertain the relative contribution of these receptors to LPS induced cytokine release. We show that the contribution of TLR2 and TLR4 to LPS-induced cellular activation correlates with the relative expression levels of these two TLRs in a given cell type. In addition, we have found that significant differences in cell stimulatory activity exist between various smooth and rough LPS types that cannot be ascribed to known LPS structural features. These results suggest that impurities in the LPS may be responsible for some of the activity and this would be in agreement with recently published results of others. Upon repurification, none of the commercial LPS preparations activate cells through TLR2, but continue to stimulate cells with comparable activity through TLR4. Our results confirm recent findings that TLR4, but not TLR2, mediates cellular activation in response to LPS derived from both Escherichia coli and Salmonella minnesota. Additionally, we show that TLR4 is the predominant signaling receptor for LPS in human whole blood. 相似文献
2.
Tarabishy AB Aldabagh B Sun Y Imamura Y Mukherjee PK Lass JH Ghannoum MA Pearlman E 《Journal of immunology (Baltimore, Md. : 1950)》2008,181(1):593-600
The fungal pathogens Fusarium solani and Fusarium oxysporum cause severe corneal disease in the United States and worldwide and were the causative organisms in a recent outbreak of contact lens-associated keratitis. To characterize innate immunity in Fusarium keratitis, we developed a murine model in which conidia are injected into the corneal stroma. Immunocompetent C57BL/6 mice rapidly developed severe corneal opacification associated with neutrophil infiltration and clearance of Fusarium hyphae. In contrast, neutrophil infiltration was delayed in MyD88-/- mice, resulting in uncontrolled growth of Fusarium hyphae in the corneal stroma and anterior chamber, and eventually resulting in corneal perforation. Corneal opacification scores in TLR2-/-, TLR4-/-, and TLR2/4-/- mice were similar to those of C57BL/6 mice; however, TLR4-/- and TLR2/4-/- mice had impaired antifungal responses. The phenotype of infected IL-1R1-/- mice was similar to that of MyD88-/- mice, with uncontrolled fungal growth resulting in corneal perforation. IL-1R1-/- mice also produced significantly less CXCL1/KC in the corneal stroma compared with C57BL/6 mice consistent with delayed neutrophil recruitment to the corneal stroma. Together, these findings indicate that IL-1R1 and MyD88 regulate CXC chemokine production and neutrophil recruitment to the cornea, and that TLR4 has an important role in controlling growth and replication of these pathogenic fungi. 相似文献
3.
Dunzendorfer S Lee HK Soldau K Tobias PS 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(2):1166-1170
TLR4 is the primary recognition molecule for inflammatory responses initiated by bacterial LPS (endotoxin). Internalization of endotoxin by various cell types is an important step for its removal and detoxification. Because of its role as an LPS-signaling receptor, TLR4 has been suggested to be involved in cellular LPS uptake as well. LPS uptake was investigated in primary monocytes and endothelial cells derived from TLR4 and CD14 knockout C57BL/6 mice using tritiated and fluorescein-labeled LPS. Intracellular LPS distribution was investigated by deconvolution confocal microscopy. We could not observe any difference in LPS uptake and intracellular LPS distribution in either monocytes or endothelial cells between TLR4(-/-) and wild-type cells. As expected, CD14(-/-) monocytes showed a highly impaired LPS uptake, confirming CD14-dependent uptake in monocytes. Upon longer incubation periods, the CD14-deficient monocytes mimicked the LPS uptake pattern of endothelial cells. Endothelial cell LPS uptake is slower than monocyte uptake, LBP rather than CD14 dependent, and sensitive to polyanionic polymers, which have been shown to block scavenger receptor-dependent uptake mechanisms. We conclude that TLR4 is not involved in cellular LPS uptake mechanisms. In membrane CD14-positive cells, LPS is predominantly taken up via CD14-mediated pathways, whereas in the CD14-negative endothelial cells, there is a role for scavenger receptor-dependent pathways. 相似文献
4.
Kato K Lu W Kai H Kim KC 《American journal of physiology. Lung cellular and molecular physiology》2007,293(3):L686-L692
MUC1 is a membrane-tethered mucin-like glycoprotein expressed on the surface of various mucosal epithelial cells as well as hematopoietic cells. Recently, we showed that MUC1 suppresses flagellin-induced Toll-like receptor (TLR) 5 signaling both in vivo and in vitro through cross talk with TLR5. In this study, we determined whether phosphoinositide 3-kinase (PI3K), a negative regulator of TLR5 signaling, is involved in the cross talk between MUC1 and TLR5 using various genetically modified epithelial cell lines. Our results showed 1) activation of MUC1 induced recruitment of the PI3K regulatory subunit p85 to the MUC1 cytoplasmic tail (CT) as well as Akt phosphorylation, 2) MUC1-induced Akt phosphorylation required the presence of Tyr(20) within the PI3K binding motif of the MUC1 CT, and 3) mutation of Tyr(20) or pharmacological inhibition of PI3K activation failed to block MUC1-induced suppression of TLR5 signaling. We conclude that whereas PI3K is downstream of MUC1 activation and negatively regulates TLR5 signaling, it is not responsible for MUC1-induced suppression of TLR5 signaling. 相似文献
5.
Cigarette smoke-induced pulmonary inflammation is TLR4/MyD88 and IL-1R1/MyD88 signaling dependent 总被引:7,自引:0,他引:7
Doz E Noulin N Boichot E Guénon I Fick L Le Bert M Lagente V Ryffel B Schnyder B Quesniaux VF Couillin I 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(2):1169-1178
Acute cigarette smoke exposure of the airways (two cigarettes twice daily for three days) induces acute inflammation in mice. In this study, we show that airway inflammation is dependent on Toll-like receptor 4 and IL-1R1 signaling. Cigarette smoke induced a significant recruitment of neutrophils in the bronchoalveolar space and pulmonary parenchyma, which was reduced in TLR4-, MyD88-, and IL-1R1-deficient mice. Diminished neutrophil influx was associated with reduced IL-1, IL-6, and keratinocyte-derived chemokine levels and matrix metalloproteinase-9 activity in the bronchoalveolar space. Further, cigarette smoke condensate (CSC) induced a macrophage proinflammatory response in vitro, which was dependent on MyD88, IL-1R1, and TLR4 signaling, but not attributable to LPS. Heat shock protein 70, a known TLR4 agonist, was induced in the airways upon smoke exposure, which probably activates the innate immune system via TLR4/MyD88, resulting in airway inflammation. CSC-activated macrophages released mature IL-1beta only in presence of ATP, whereas CSC alone promoted the TLR4/MyD88 signaling dependent production of IL-1alpha and pro-IL-1beta implicating cooperation between TLRs and the inflammasome. In conclusion, acute cigarette exposure results in LPS-independent TLR4 activation, leading to IL-1 production and IL-1R1 signaling, which is crucial for cigarette smoke induced inflammation leading to chronic obstructive pulmonary disease with emphysema. 相似文献
6.
Power MR Peng Y Maydanski E Marshall JS Lin TJ 《The Journal of biological chemistry》2004,279(47):49315-49322
Toll-like receptors (TLR) induce distinct patterns of host responses through myeloid differentiation factor 88 (MyD88)-dependent and/or -independent pathways, depending on the nature of the pathogen. Pseudomonas aeruginosa is a cause of serious lung infection in immunocompromised individuals and cystic fibrosis patients. The role of the TLR-MyD88 pathway in P. aeruginosa-induced lung infection in vivo was examined in this study. MyD88-/- mice demonstrated an impaired clearance of P. aeruginosa from the lung. Little or no neutrophil recruitment was observed in the airways of MyD88-/- mice following P. aeruginosa lung infection. This observation was associated with a reduced production of inflammatory mediators that affect neutrophil recruitment, including macrophage-inflammatory protein-2, tumor necrosis factor, and interleukin-1beta in the airways of MyD88-/- mice. Similarly, MyD88-/- mice showed inhibited NF-kappaB activation in the lung following P. aeruginosa infection. Interestingly, P. aeruginosa infection induced a 7.5-fold increase of TLR2 mRNA expression in the lungs of MyD88+/+ mice. Furthermore, host responses to P. aeruginosa lung infection in TLR2-/- and TLR4 mutant mice were partially inhibited compared with the responses of respective control mice. Taken together, our results indicate that the MyD88-dependent pathway is essential for the development of early host responses to P. aeruginosa infection, leading to the clearance of this bacterium, and that TLR2 and TLR4 are involved in this process. 相似文献
7.
Eisenbarth SC Zhadkevich A Ranney P Herrick CA Bottomly K 《Journal of immunology (Baltimore, Md. : 1950)》2004,172(7):4527-4534
Allergic asthma is an inflammatory lung disease thought to be initiated and directed by type 2 helper T cells responding to environmental Ags. The mechanisms by which allergens induce Th2-adaptive immune responses are not well understood, although it is now clear that innate immune signals are required to promote DC activation and Th2 sensitization to inhaled proteins. However, the effect of ongoing Th2 inflammation, as seen in chronic asthma, on naive lymphocyte activation has not been explored. It has been noted that patients with atopic disorders demonstrate an increased risk of developing sensitivities to new allergens. This suggests that signals from an adaptive immune response may facilitate sensitization to new Ags. We used a Th2-adoptive transfer murine model of asthma to identify a novel mechanism, termed "collateral priming," in which naive CD4(+) T cells are activated by adaptive rather than innate immune signals. Th2 priming to newly encountered Ags was dependent on the production of IL-4 by the transferred Th2 population but was independent of Toll-like receptor 4 signaling and the myeloid differentiation factor 88 Toll-like receptor signaling pathway. These results identify a novel mechanism of T cell priming in which an Ag-specific adaptive immune response initiates distinct Ag-specific T cell responses in the absence of classical innate immune system triggering signals. 相似文献
8.
Tyrosine 769 of the keratinocyte growth factor receptor is required for receptor signaling but not endocytosis 总被引:1,自引:0,他引:1
Ceridono M Belleudi F Ceccarelli S Torrisi MR 《Biochemical and biophysical research communications》2005,327(2):523-532
Keratinocyte growth factor receptor (KGFR) is a receptor tyrosine kinase expressed on epithelial cells which belongs to the family of fibroblast growth factor receptors (FGFRs). Following ligand binding, KGFR is rapidly autophosphorylated on specific tyrosine residues in the intracellular domain, recruits substrate proteins, and is rapidly internalized by clathrin-mediated endocytosis. The role of different autophosphorylation sites in FGFRs, and in particular the role of the tyrosine 766 in FGFR1, first identified as PLCgamma binding site, has been extensively studied. We analyzed here the possible role of the tyrosine 769 in KGFR, corresponding to tyrosine 766 in FGFR1, in the regulation of KGFR signal transduction and MAPK activation as well as in the control of the endocytic process of KGFR. A mutant KGFR in which tyrosine 769 was substituted by phenylalanine was generated and transfected in NIH3T3 and HeLa cells. Our results indicate that tyrosine 769 is required for the binding to KGFR and tyrosine phosphorylation of PLCgamma as well as for the full activation of MAPKs and for cell proliferation through the regulation of FRS2 tyrosine phosphorylation, suggesting that this residue represents a key regulator of KGFR signal transduction. Our data also show that tyrosine 769 is not involved in the regulation of the endocytic process of KGFR. 相似文献
9.
Báfica A Scanga CA Schito ML Hieny S Sher A 《Journal of immunology (Baltimore, Md. : 1950)》2003,171(3):1123-1127
Mycobacterial infection has been implicated as a possible factor in AIDS progression in populations where HIV-1 and Mycobacterium tuberculosis are coendemic. In support of this concept, we have previously shown that HIV-1-transgenic (Tg) mice infected with mycobacteria display enhanced viral gene and protein expression. In this study, we demonstrate that the induction of HIV-1 observed in this model is dependent on Toll-like receptor 2 (TLR2), a pattern recognition receptor known to be involved in mycobacteria-host interaction. Spleen cells from HIV-1-Tg mice deficient in TLR2 (Tg/TLR2(-/-)) were found to be completely defective in p24 production induced in response to live M. tuberculosis or Mycobacterium avium as well as certain mycobacterial products. Importantly, following in vivo mycobacterial infection, Tg/TLR2(-/-) mice failed to display the enhanced HIV-1 gag/env mRNA and p24 protein synthesis exhibited by wild-type Tg animals. Together, these results argue that TLR2 plays a crucial role in the activation of HIV-1 expression by mycobacterial coinfections. 相似文献
10.
11.
Gene expressions of Toll-like receptor 2, but not Toll-like receptor 4, is induced by LPS and inflammatory cytokines in mouse macrophages 总被引:25,自引:0,他引:25
Matsuguchi T Musikacharoen T Ogawa T Yoshikai Y 《Journal of immunology (Baltimore, Md. : 1950)》2000,165(10):5767-5772
Toll-like receptors (TLRs) are a family of mammalian homologues of Drosophila Toll and play important roles in host defense. Two of the TLRs, TLR2 and TLR4, mediate the responsiveness to LPS. Here the gene expression of TLR2 and TLR4 was analyzed in mouse macrophages. Mouse splenic macrophages responded to an intraperitoneal injection or in vitro treatment of LPS by increased gene expression of TLR2, but not TLR4. Treatment of a mouse macrophage cell line with LPS, synthetic lipid A, IL-2, IL-15, IL-1beta, IFN-gamma, or TNF-alpha significantly increased TLR2 mRNA expression, whereas TLR4 mRNA expression remained constant. TLR2 mRNA increase in response to synthetic lipid A was severely impaired in splenic macrophages isolated from TLR4-mutated C3H/HeJ mice, suggesting that TLR4 plays an essential role in the process. Specific inhibitors of mitogen-activated protein/extracellular signal-regulated kinase kinase and p38 kinase did not significantly inhibit TLR2 mRNA up-regulation by LPS. In contrast, LPS-mediated TLR2 mRNA induction was abrogated by pretreatment with a high concentration of curcumin, suggesting that NF-kappaB activation may be essential for the process. Taken together, our results indicate that TLR2, in contrast to TLR4, can be induced in macrophages in response to bacterial infections and may accelerate the innate immunity against pathogens. 相似文献
12.
13.
Ayumu Inutsuka 《Biochemical and biophysical research communications》2009,390(4):1160-34871
Calyculin A (CL-A), a toxin isolated from the marine sponge Discodermia calyx, is a strong inhibitor of protein phosphatase 1 (PP1) and 2A (PP2A). Although CL-A is known to induce rapid neurite retraction in developing neurons, the cytoskeletal dynamics of this retraction have remained unclear. Here, we investigated the cytoskeletal dynamics during CL-A-induced neurite retraction in cultured rat hippocampal neurons, using fluorescence microscopy as well as polarized light microscopy, which can visualize the polymerization state of the cytoskeleton in living cells. We observed that MTs were bent while maintaining their polymerization state during the neurite retraction. In addition, we also found that CL-A still induced neurite retraction when MTs were depolymerized by nocodazole or stabilized by paclitaxel. These results imply a mechanism other than depolymerization of MTs for CL-A-induced neurite retraction. Our pharmacological studies showed that blebbistatin and cytochalasin D, an inhibitor of myosin II and a depolymerizer of actin, strongly inhibited CL-A-induced neurite retraction. Based on all these findings, we propose that CL-A generates strong contractile forces by actomyosin to induce rapid neurite retraction independently from MT depolymerization. 相似文献
14.
Skerrett SJ Liggitt HD Hajjar AM Wilson CB 《Journal of immunology (Baltimore, Md. : 1950)》2004,172(6):3377-3381
Myeloid differentiation factor 88 (MyD88) is an adapter molecule required for signal transduction via Toll-like receptors (TLRs) and receptors of the IL-1 family. Consequently, MyD88-deficient mice are highly susceptible to bacterial infections, including systemic infection with Staphylococcus aureus. To determine the role of MyD88 in innate immunity to bacterial pneumonia, we exposed MyD88-deficient and wild-type mice to aerosolized Pseudomonas aeruginosa or S. aureus. As predicted, MyD88-deficient mice failed to mount an early cytokine or inflammatory response or to control bacterial replication after infection with P. aeruginosa, which resulted in necrotizing pneumonia and death. By contrast, MyD88-deficient mice controlled S. aureus infection despite blunted local cytokine and inflammatory responses. Thus, whereas MyD88-dependent signaling is integral to the initiation of cytokine and inflammatory responses to both pathogens following infection of the lower respiratory tract, MyD88 is essential for innate immunity to P. aeruginosa but not S. aureus. 相似文献
15.
16.
Toll-like receptor 2 pathway drives streptococcal cell wall-induced joint inflammation: critical role of myeloid differentiation factor 88 总被引:7,自引:0,他引:7
Joosten LA Koenders MI Smeets RL Heuvelmans-Jacobs M Helsen MM Takeda K Akira S Lubberts E van de Loo FA van den Berg WB 《Journal of immunology (Baltimore, Md. : 1950)》2003,171(11):6145-6153
The IL-1R/Toll-like receptor (TLR) superfamily of receptors has a key role in innate immunity and inflammation. In this study, we report that streptococcal cell wall (SCW)-induced joint inflammation is predominantly dependent on TLR-2 signaling, since TLR-2-deficient mice were unable to develop either joint swelling or inhibition of cartilage matrix synthesis. Myeloid differentiation factor 88 (MyD88) is a Toll/IL-1R domain containing adaptor molecule known to have a central role in both IL-1R/IL-18R and TLR signaling. Mice deficient for MyD88 did not develop SCW-induced arthritis; both joint swelling and disturbance of cartilage chondrocyte anabolic function was completely abolished. Local levels of proinflammatory cytokines and chemokines in synovial tissue washouts were strongly reduced in MyD88-deficient mice. Histology confirmed the pivotal role of MyD88 in acute joint inflammation. TLR-2-deficient mice still allow influx of inflammatory cells into the joint cavity, although the number of cells was markedly reduced. No influx of inflammatory cells was seen in joints of MyD88-deficient mice. In addition, cartilage matrix proteoglycan loss was completely absent in MyD88 knockout mice. These findings clearly demonstrated that MyD88 is a key component in SCW-induced joint inflammation. Since agonists of the Toll-like pathway are abundantly involved in both septic and rheumatoid arthritis, targeting of MyD88 may be a novel therapy in inflammatory joint diseases. 相似文献
17.
Yokota S Ohnishi T Muroi M Tanamoto K Fujii N Amano K 《FEMS immunology and medical microbiology》2007,51(1):140-148
Helicobacter pylori is recognized as an etiologic agent of gastroduodenal diseases. Among toxic substances produced by H. pylori, LPS exhibits extremely low endotoxic activity as compared to the typical LPSs, such as that produced by Escherichia coli. We found that the LPS-low-responder stomach cancer cell line MKN28, which expresses Toll-like receptor 4 (TLR4) at extremely low levels, showed similar levels of interleukin-8 (IL-8) induction by H. pylori or E. coli LPS preparations. Weak IL-8 induction by H. pylori LPS preparations was suppressed by expression of a dominant negative mutant of TLR2 but not of TLR4. Data from luciferase reporter analysis indicated that cotransfection of TLR2-TLR1 or TLR2-TLR6 was required for the activation induced by H. pylori LPS preparations. In conclusion, the H. pylori LPS preparations significantly induce an inflammatory reaction via the receptor complex containing TLR2-TLR1 or TLR2-TLR6 but not that containing TLR4. The TLR2-TLR1 complex was preferentially recognized by the H. pylori LPS preparations over the TLR2-TLR6 complex. Whereas the magnitude of response to H. pylori LPS preparation was markedly less than that to E. coli LPS preparation in LPS-high-responder cells strongly expressing TLR4, it was comparable to that of E. coli LPS in low-responder cells expressing negligible amount of TLR4. 相似文献
18.
Zhao H Yang T Madakashira BP Thiels CA Bechtle CA Garcia CM Zhang H Yu K Ornitz DM Beebe DC Robinson ML 《Developmental biology》2008,318(2):276-288
The vertebrate lens provides an excellent model to study the mechanisms that regulate terminal differentiation. Although fibroblast growth factors (FGFs) are thought to be important for lens cell differentiation, it is unclear which FGF receptors mediate these processes during different stages of lens development. Deletion of three FGF receptors (Fgfr1-3) early in lens development demonstrated that expression of only a single allele of Fgfr2 or Fgfr3 was sufficient for grossly normal lens development, while mice possessing only a single Fgfr1 allele developed cataracts and microphthalmia. Profound defects were observed in lenses lacking all three Fgfrs. These included lack of fiber cell elongation, abnormal proliferation in prospective lens fiber cells, reduced expression of the cell cycle inhibitors p27kip1 and p57kip2, increased apoptosis and aberrant or reduced expression of Prox1, Pax6, c-Maf, E-cadherin and α-, β- and γ-crystallins. Therefore, while signaling by FGF receptors is essential for lens fiber differentiation, different FGF receptors function redundantly. 相似文献
19.
Previously we demonstrated that basolateral LPS inhibits HCO(3)(-) absorption in the renal medullary thick ascending limb (MTAL) through TLR4-dependent ERK activation. Here we report that the response of the MTAL to basolateral LPS requires TLR2 in addition to TLR4. The basolateral addition of LPS (ultrapure Escherichia coli K12) decreased HCO(3)(-) absorption in isolated, perfused MTALs from wild-type mice but had no effect in MTALs from TLR2(-/-) mice. In contrast, inhibition of HCO(3)(-) absorption by lumen LPS was preserved in TLR2(-/-) MTALs, indicating that TLR2 is involved specifically in mediating the basolateral LPS response. LPS also did not increase ERK phosphorylation in MTALs from TLR2(-/-) mice. TLR2 deficiency had no effect on expression of TLR4, MD-2, or MyD88. However, LPS-induced recruitment of MyD88 to the basolateral membrane was impaired in TLR2(-/-) MTALs. Inhibition of HCO(3)(-) absorption by LPS did not require CD14. Co-immunoprecipitation studies demonstrated an association between TLR4 and TLR2. Inhibition of HCO(3)(-) absorption by TLR2-specific ligands was preserved in MTALs from TLR4(-/-) mice. These results indicate that the effect of basolateral LPS to inhibit HCO(3)(-) absorption in the MTAL through MyD88-dependent ERK activation depends on a novel interaction between TLR4 and TLR2. TLR2 plays a dual role in the induction of intracellular signals that impair MTAL function, both through cooperation with TLR4 to mediate ERK signaling by LPS and through a TLR4-independent signaling pathway activated by Gram-positive bacterial ligands. Regulation of TLR2 expression and its interaction with TLR4 may provide new mechanisms for controlling and therapeutic targeting of TLR4-mediated LPS responses. 相似文献
20.
Previously, we have found that lipid rafts/caveolae were essential for insulin-like growth factor-1 (IGF-1) receptor signaling during 3T3-L1 preadipocytes differentiation induction. However, it was not identified as to which of the membrane lipid-ordered microdomains mediates the receptor signal. Using small double-stranded RNA-mediated interference (RNAi), we successfully suppressed the caveolin-1 protein expression. In cells stably transfected with vector expressing small interfering RNA (siRNA) fragment, no caveolin-1 protein or caveola was detected. On the other hand, removal of caveolin-1 did not affect the caveolinless lipid rafts or the localization of IGF-1 receptor in lipid rafts on plasma membrane. IGF-1 receptor signal transduction and induced cellular differentiation were normal in RNAi cells with only lipid rafts. Furthermore, these IGF-1 receptor signaling events were still sensitive to the cholesterol-binding reagents. Thus, our results suggest that lipid rafts are sufficient for IGF-1 receptor signaling and the recruitment of signal molecules by caveolin-1 is not essential for IGF-1 receptor signaling. 相似文献