首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Savannah regions are predicted to undergo changes in precipitation patterns according to current climate change projections. This change will affect leaf phenology, which controls net primary productivity. It is of importance to study this since savannahs play an important role in the global carbon cycle due to their areal coverage and can have an effect on the food security in regions that depend on subsistence farming. In this study we investigate how soil moisture, mean annual precipitation, and day length control savannah phenology by developing a lagged time series model. The model uses climate data for 15 flux tower sites across four continents, and normalized difference vegetation index from satellite to optimize a statistical phenological model. We show that all three variables can be used to estimate savannah phenology on a global scale. However, it was not possible to create a simplified savannah model that works equally well for all sites on the global scale without inclusion of more site specific parameters. The simplified model showed no bias towards tree cover or between continents and resulted in a cross-validated r2 of 0.6 and root mean squared error of 0.1. We therefore expect similar average results when applying the model to other savannah areas and further expect that it could be used to estimate the productivity of savannah regions.  相似文献   

4.
A wide variety of behaviors in several species has been statistically associated with the natural variations in geomagnetism. To examine whether changes in geomagnetic activity are associated with pain thresholds, adult mice were exposed to a hotplate paradigm once weekly for 52 weeks during the dark cycle. Planetary A index values from the previous 6 days of a given hotplate session were correlated with the mean response latency for subjects to the thermal stimulus. We found that hotplate latency was significantly (P < 0.05) and inversely correlated (rho = -0.25) with the daily geomagnetic intensity 3 days prior to testing. Therefore, if the geomagnetic activity was greater 3 days before a given hotplate trial, subjects tended to exhibit shorter response latencies, suggesting lower pain thresholds or less analgesia. These results are supported by related experimental findings and suggest that natural variations in geomagnetic intensity may influence nociceptive behaviors in mice.  相似文献   

5.
Aims The plasticity of ecosystem responses could buffer and postpone the effects of climates on ecosystem carbon fluxes, but this lagged effect is often ignored. In this study, we used carbon flux data collected from three typical grassland ecosystems in China, including a temperate semiarid steppe in Inner Mongolia (Neimeng site, NM), an alpine shrub-meadow in Qinghai (Haibei site, HB) and an alpine meadow steppe in Tibet (Dangxiong site, DX), to examine the time lagged effects of environmental factors on CO2 exchange.Methods Eddy covariance data were collected from three typical Chinese grasslands. In linking carbon fluxes with climatic factors, we used their averages or cumulative values within each 12-month period and we called them 'yearly' statistics in this study. To investigate the lagged effects of the climatic factors on the carbon fluxes, the climatic 'yearly' statistics were kept still and the 'yearly' statistics of the carbon fluxes were shifted backward 1 month at a time.Important findings Soil moisture and precipitation was the main factor driving the annual variations of carbon fluxes at the alpine HB and DX, respectively, while the NM site was under a synthetic impact of each climatic factor. The time lagged effect analysis showed that temperature had several months, even half a year lag effects on CO2 exchange at the three studied sites, while moisture's effects were mostly exhibited as an immediate manner, except at NM. In general, the lagged climatic effects were relatively weak for the alpine ecosystem. Our results implied that it might be months or even 1 year before the variations of ecosystem carbon fluxes are adjusted to the current climate, so such lag effects could be resistant to more frequent climate extremes and should be a critical component to be considered in evaluating ecosystem stability. An improved knowledge on the lag effects could advance our understanding on the driving mechanisms of climate change effects on ecosystem carbon fluxes.  相似文献   

6.
7.

Background

Many studies have found extreme temperature can increase the risk of mortality. However, it is not clear whether extreme diurnal temperature range (DTR) is associated with daily disease-specific mortality, and how season might modify any association.

Objectives

To better understand the acute effect of DTR on mortality and identify whether season is a modifier of the DTR effect.

Methods

The distributed lag nonlinear model (DLNM) was applied to assess the non-linear and delayed effects of DTR on deaths (non-accidental mortality (NAD), cardiovascular disease (CVD), respiratory disease (RD) and cerebrovascular disease (CBD)) in the full year, the cold season and the warm season.

Results

A non-linear relationship was consistently found between extreme DTR and mortality. Immediate effects of extreme low DTR on all types of mortality were stronger than those of extreme high DTR in the full year. The cumulative effects of extreme DTRs increased with the increment of lag days for all types of mortality in cold season, and they were greater for extreme high DTRs than those of extreme low DTRs. In hot season, the cumulative effects for extreme low DTRs increased with the increment of lag days, but for extreme high DTR they reached maxima at a lag of 13 days for all types of mortality except for CBD(at lag6 days), and then decreased.

Conclusions

Our findings suggest that extreme DTR is an independent risk factor of daily mortality, and season is a modifier of the association of DTR with daily mortality.  相似文献   

8.
The North Atlantic Oscillation (NAO) is a large‐scale pattern of climate variability that has been shown to have important ecological effects on a wide spectrum of taxa. Studies on terrestrial invertebrates are, however, lacking. We studied climate‐connected causes of changes in population sizes in island populations of the spittlebug Philaenus spumarius (L.) (Homoptera). Three populations living in meadows on small Baltic Sea islands were investigated during the years 1970–2005 in Tvärminne archipelago, southern Finland. A separate analysis was done on the effects of NAO and local climate variables on spittlebug survival in 1969–1978, for which survival data existed for two islands. We studied survival at two stages of the life cycle: growth rate from females to next year's instars (probably mostly related to overwintering egg survival), and survival from third instar stage to adult. The latter is connected to mortality caused by desiccation of plants and spittle masses. Higher winter NAO values were consistently associated with smaller population sizes on all three islands. Local climate variables entering the most parsimonious autoregressive models of population abundance were April and May mean temperature, May precipitation, an index of May humidity, and mean temperature of the coldest month of the previous winter. High winter NAO values had a clear negative effect on late instar survival in 1969–1978. Even May–June humidity and mean temperature of the coldest month were associated with late instar survival. The climate variables studied (including NAO) had no effect on the growth rate from females to next year's instars. NAO probably affected the populations primarily in late spring. Cold and snowy winters contribute to later snow melt and greater spring humidity in the meadows. We show that winter NAO has a considerable lagged effect on April and May temperature; even this second lagged effect contributes to differences in humidity. The lagged effect of the winter NAO to spring temperatures covers a large area in northern Europe and has been relatively stationary for 100 years at least in the Baltic area.  相似文献   

9.
Global climate change is expected to result in a greater frequency of extreme weather, which can cause lag effects on aboveground net primary production (ANPP). However, our understanding of lag effects is limited. To explore lag effects following extreme weather, we applied four treatments (control, doubled precipitation, 4 °C warming, and warming plus doubled precipitation) for 1 year in a randomized block design and monitored changes in ecosystem processes for 3 years in an old‐field tallgrass prairie in central Oklahoma. Biomass was estimated twice in the pretreatment year, and three times during the treatment and posttreatment years. Total plant biomass was increased by warming in spring of the treatment year and by doubled precipitation in summer. However, double precipitation suppressed fall production. During the following spring, biomass production was significantly suppressed in the formerly warmed plots 2 months after treatments ceased. Nine months after the end of treatments, fall production remained suppressed in double precipitation and warming plus double precipitation treatments. Also, the formerly warmed plots still had a significantly greater proportion of C4 plants, while the warmed plus double precipitation plots retained a high proportion of C3 plants. The lag effects of warming on biomass did not match the temporal patterns of soil nitrogen availability determined by plant root simulator probes, but coincided with warming‐induced decreases in available soil moisture in the deepest layers of soil which recovered to the pretreatment pattern approximately 10 months after the treatments ceased. Analyzing the data with an ecosystem model showed that the lagged temporal patterns of effects of warming and precipitation on biomass can be fully explained by warming‐induced differences in soil moisture. Thus, both the experimental results and modeling analysis indicate that water availability regulates lag effects of warming on biomass production.  相似文献   

10.
Mosquito-borne diseases (MBDs) are still threats to public health in Zhejiang. In this study, the associations between the time-lagged mosquito capture data and MBDs incidence over five years were used to examine the potential effects of mosquito abundance on patterns of MBDs epidemiology in Zhejiang during 2008–2012. Light traps were used to collect adult mosquitoes at 11 cities. Correlation tests with and without time lag were performed to investigate the correlations between MBDs incidence rates and mosquito abundance by month. Selected MBDs consisted of Japanese encephalitis (JE), dengue fever (DF) and malaria. A Poisson regression analysis was performed by using a generalized estimating equations (GEE) approach, and the most parsimonious model was selected based on the quasi-likelihood based information criterion (QICu). We identified five mosquito species and the constituent ratio of Culex pipiens pallens, Culex tritaeniorhynchus, Aedes albopictus, Anopheles sinensis and Armigeres subalbatus was 66.73%, 21.47%, 6.72%, 2.83% and 2.25%, respectively. The correlation analysis without and with time lag showed that Culex mosquito abundance at a lag of 0 or 1 month was positively correlated with JE incidence during 2008–2012, Ae. albopictus abundance at a lag of 1 month was positively correlated with DF incidence in 2009, and An. sinensis abundance at a lag of 0–2 months was positively correlated with malaria incidence during 2008–2010. The Poisson regression analysis showed each 0.1 rise of monthly mosquito abundance corresponded to a positive increase of MBD cases for the period of 2008–2012. The rise of mosquito abundance with a lag of 0–2 months increased the risk of human MBDs infection in Zhejiang. Our study provides evidence that mosquito monitoring could be a useful early warning tool for the occurrence and transmission of MBDs.  相似文献   

11.
Changes in climate could have far-reaching consequences for ecosystems sensitive to changes in temperature and precipitation, such as boreal permafrost peatlands and grassland/woodland boundaries. The long-term data from our studies in these ecosystems suggest that transient responses of permafrost and vegetation to climate change may be difficult to predict due to lags and positive feedbacks related to vegetation and disturbance. Boreal permafrost peatlands comprise an ecosystem with strong local controls on microclimate that influence the formation and thaw of permafrost. These local controls may preserve permafrost during the transient stages of climate warming, producing lagged responses. The prairie–forest border region of the northern Great Plains has experienced frequent change and has complex dynamics involving transitions in the grassland composition of prairie and in the degree of woodiness in bordering forests. Fire frequency interacts with fuel loading and tree recruitment in ways that affect the timing and direction of change. Lags and thresholds could lead to sudden large responses to future climate change that are not readily apparent from current vegetation. The creation of adequate models to characterize transient ecosystem changes will require an understanding of the linkages among processes operating at the scale of 10s of meters and over long time periods. Received 14 December 1999; accepted 7 July 2000.  相似文献   

12.
1. In 1990-2003, during a complete 10-year outbreak cycle, the synchrony of the birch defoliating outbreaks of the geometrids Epirrita autumnata and Operophtera brumata was studied quantitatively in the northern part of the Fennoscandian mountain chain (the Scandes). Data were supplemented with similar data from 1964 to 1966 and historical information. A 30-year series of field data from one locality in southern Scandes made possible interregional comparisons. 2. In 1991, outbreaks started in north-eastern Fennoscandia and moved westward like a wave and reached the outer coast of north-western Norway in about 2000. This wave is a new observation. In the same years, a previously documented outbreak wave moved southward along the Scandes. 3. Outbreak periods have usually occurred around the middle of each decade. Seemingly unrelated population peaks at the decadal shift 2000 were reported from islands at the coast of north-western Norway. They are shown here to have been the final ripples of the east-west wave. 4. At some localities, O. brumata peaked 2 years after E. autumnata. A lag of 1 or 2 years also occurred at the locality in southern Scandes. This interspecific time lag is a new observation. In accordance with the north-south wave, a time-lag of 1-2 years occurred between the fluctuations of northern and southern E. autumnata and O. brumata populations. 5. The population peak of E. autumnata occurred 1 year earlier at one locality than at a nearby locality. This pattern and particular altitudinal shifts of the O. brumata population density at these localities repeated in two outbreak periods. This indicates that, for example, local climate may modify outbreak synchrony between nearby localities. 6. At the same localities, O. brumata peaked first at one altitude and 1 or 2 years later at another altitude. This vertical lag is a new observation. 7. E. autumnata shows fluctuation traits similar to some other cyclic animals, e.g. the larch budmoth in the European Alps, some European tetraonid birds and the Canadian snow-shoe hare. These similarities (and dissimilarities) in intra- and interspecific synchronies and causes of E. autumnata and O. brumata synchronies, regionally, locally and among the two species are discussed.  相似文献   

13.
Herbivores reduce plant productivity by removing part of the assimilation surface. Also, they can alter plant traits that affect plant–pollinator interactions and reproductive success. The objective of this study was to evaluate the impact of defoliation by sawfly (Caliroa cerasi) larvae on fruit production and quality in three cultivars of sweet cherry (Prunus avium). We hypothesized that the fruit production and quality is reduced as a consequence of changes in the allocation of resources within the plant in response to partial leaf removal during the previous year. Number of flowers per branch meter was higher in infested trees than in non-infested trees, while the number of fruits per branch meter was similar due to fruit abortion in all cultivars. Fruit quality was significantly affected by herbivory in different traits depending on cultivar. Infested Lapins and Van trees had significantly lower soluble solid content than non-infested trees. Titratable acidity was higher and ripening index was lower in infested Bing and Lapins trees than non-infested trees. Infested Van trees also exhibited a significant decrease in equatorial diameter and fresh fruit weight as well as pulp fresh weight and dry weight of seed compared to non-infested trees. Overall our study highlights that the direct impact of herbivores at leaf level has lagged effects on productivity in terms of fruit and seed quality in the year following the leaf damage.  相似文献   

14.
15.
Recently much effort has resulted in papers on how stem cells can be generated from adult tissues in mice, but the salamanders do this routinely. Salamanders can regenerate most of their body parts, such as limbs, eyes, jaw, brain (and spinal cord), heart, etc. Regeneration in salamanders starts by dedifferentiation of the terminally differentiated tissues at the site of injury. The dedifferentiated cells can then differentiate to reconstitute the lost tissues. This transdifferentiation in an adult animal is unprecedented among vertebrates and does not involve recruitment of stem cells. One of the ideas is that such reprogramming of terminally differentiated cells might involve mechanisms that are similar to the maintenance of embryonic stem cells. In the stem cell field much emphasis has been recently given to the reprogramming of adult cells (such as skin fibroblasts) to revert to ES or pluripotent stem cells. It is our conviction that generation of dedifferentiated cells in salamanders and stem cells, such as the ones seen in repair in mammals share molecular signatures. This mini review will discuss these issues and ideas that could unite the stem cell biology with the classical regeneration models.  相似文献   

16.
J.E. Purkyn? was the first to discover, by achromatic microscopy of stained and fixed as well as of fresh material, that animal tissues in general, and those of the central nervous system in particular, are made up of cells, as are those of plants. His discoveries laid the foundations of modern research on the ultrastructure and biophysies of the cerebellar neurons which bear his name, as well as on other types of neurons, in vitro as well as in vivo.  相似文献   

17.
18.
The pancreatic β-cell has a pivotal role in the regulation of glucose homeostasis; its death leads to type I diabetes. Neogenesis of β-cells, the differentiation of β-cells from non-β-cells, could be an important mechanism of islet cell repopulation. To examine the ability of the adult pancreas to generate new β-cells, we characterized the phenotype of β precursor cells in embryos and then determined that cells expressing embryonic traits appeared in islets of adult mouse pancreas following deletion of preexisting insulin cells by streptozotocin, a specific β-cell toxin. These precursor cells generated new β-cells (NBCs) that repopulated the islets. The number of NBCs increased dramatically after restoration of normoglycemia by insulin therapy. Future studies will seek to identify the source of the NBCs and to examine the mechanisms that lead to their differentiation.  相似文献   

19.
Turning germ cells into stem cells   总被引:5,自引:0,他引:5  
Primordial germ cells (PGCs), the embryonic precursors of the gametes of the adult animal, can give rise to two types of pluripotent stem cells. In vivo, PGCs can give rise to embryonal carcinoma cells, the pluripotent stem cells of testicular tumors. Cultured PGCs exposed to a specific cocktail of growth factors give rise to embryonic germ cells, pluripotent stem cells that can contribute to all the lineages of chimeric embryos including the germline. The conversion of PGCs into pluripotent stem cells is a remarkably similar process to nuclear reprogramming in which a somatic nucleus is reprogrammed in the egg cytoplasm. Understanding the genetics of embryonal carcinoma cell formation and the growth factor signaling pathways controlling embryonic germ cell derivation could tell us much about the molecular controls on developmental potency in mammals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号