首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
A T Sim  D G Hardie 《FEBS letters》1988,233(2):294-298
Acetyl-CoA carboxylase purified from isolated hepatocytes is activated dramatically by protein phosphatase treatment, concomitant with a reduction of the phosphate content from 3.7 to 1.1 mol/subunit. Glucagon treatment of the cells produces a further inactivation of the enzyme that is totally reversed by phosphatase treatment, and is associated with an increase in phosphate content of 0.8 mol/subunit, distributed in two peptides which contain the sites phosphorylated in vitro by the cyclic AMP-dependent and AMP-activated protein kinases. Sequencing of these peptides shows that the low activity of acetyl-CoA carboxylase is due to phosphorylation by the AMP-activated protein kinase, and not cyclic AMP-dependent protein kinase, even after glucagon treatment.  相似文献   

2.
1. We have synthesized two peptides, one based on the exact sequence around the unique site (Ser79) for the AMP-activated protein kinase on rat acetyl-CoA carboxylase (SSMS peptide) and another in which the serine residue corresponding to the site for cyclic-AMP-dependent protein kinase (Ser77) was replaced by alanine (SAMS peptide). 2. Both peptides were phosphorylated with similar kinetics by the AMP-activated protein kinase, but only the SSMS peptide was a substrate for cyclic-AMP-dependent protein kinase. The SAMS peptide was not phosphorylated by any of five other purified protein kinases tested. 3. The Km of AMP-activated protein kinase for the SAMS peptide is higher than that for acetyl-CoA carboxylase, but the Vmax for peptide phosphorylation is 2.5 times higher than that of its parent protein. This peptide therefore gives a convenient and sensitive assay for the AMP-activated protein kinase. 4. Acetyl-CoA-carboxylase kinase and peptide kinase activities copurify through six steps from a post-mitochondrial supernatant of rat liver, showing that the SAMS peptide is a specific substrate for the AMP-activated protein kinase in this tissue. We could not demonstrate AMP-dependence of the kinase activity in crude preparations, apparently due to endogenous AMP remaining bound to the enzyme. However, 8-bromoadenosine 5-monophosphate (Br8AMP) is a partial agonist at the allosteric (AMP) site, and inhibition by 2 mM Br8AMP can be used to test that one is measuring the AMP-stimulated form of the kinase. 5. Using this approach, we have examined the kinase activity in nine different rat tissues, plus a mouse macrophage cell line, and find that there is a correlation between tissues expressing significant levels of peptide kinase activity and those active in the synthesis or storage of lipids. 6. We also use the peptide assay to show that cyclic AMP-dependent protein kinase does not activate purified AMP-activated protein kinase, and does not affect the activation of partially purified AMP-activated protein kinase by endogenous kinase kinase.  相似文献   

3.
In intact rat adipocytes hormone-sensitive lipase has been shown to be phosphorylated on serine residues in two different phosphorylation sites: a regulatory site phosphorylated by cyclic AMP-dependent protein kinase and a basal site, which does not directly affect the enzyme activity, phosphorylated by cyclic AMP-independent protein kinase(s) [(1984) Proc. Natl. Acad. Sci USA 81, 3317-3321]. Cyclic GMP-dependent protein kinase catalyzed the phosphorylation of the same two phosphorylation sites on the isolated enzyme, at serine residues. Both sites were phosphorylated at about the same rate, with the hormone-sensitive lipase activity concomitantly enhanced.  相似文献   

4.
The catalytic subunit of cyclic AMP-dependent protein kinase stimulates the inactivation of acetyl-coenzyme A (CoA) carboxylase by acetyl-CoA carboxylase kinase. The stimulated inactivation of carboxylase is due to activation of carboxylase kinase by the catalytic subunit. Activation of carboxylase kinase activity is accompanied by the incorporation of 0.6 mol of phosphate per mole of carboxylase kinase. Addition of the regulatory subunit of cyclic AMP-dependent protein kinase prevents the activation of carboxylase kinase. Phosphorylation and activation of carboxylase kinase has no effect on the Km for ATP, but decreases the Km for acetyl-CoA carboxylase from 93 to 45 nm. Inactivation of carboxylase by the carboxylase kinase requires the presence of coenzyme A even when the activated carboxylase kinase is used. Acetyl-CoA carboxylase is not phosphorylated or inactivated by the catalytic subunit of cyclic AMP-dependent protein kinase.  相似文献   

5.
The primary structure of a region on hormone-sensitive lipase was determined to be: Lys-Thr-Glu-Pro-Met-Arg-Arg-Ser- Val-Ser-Glu-Ala-Ala-Leu-Thr-Gln-Pro-Glu-Gly-Pro-Leu-Gly-Thr-Asp-Ser-Leu-Lys. Ser-8 was the only residue in the intact protein phosphorylated by cyclic AMP-dependent protein kinase. However, Ser-10 also appeared to be present in a phosphorylated form, suggesting that it is a target for a distinct protein kinase in vivo.  相似文献   

6.
A newly discovered cyclic AMP-independent protein kinase, which catalyzes the total conversion of glycogen synthase from the I- to the D-form, has been isolated from rabbit skeletal muscle. This enzyme, designated glycogen synthase kinase, is separable from cyclic AMP-dependent protein kinase by column chromatography on phosphocellulose. Synthase kinase and cyclic AMP-dependent protein kinase are distinct in their specificity for protein substrates, the effects of cyclic AMP and the inhibitor of cyclic AMP-dependent protein kinase on their activities, and the extent to which they phosphorylate I-form glycogen synthase. The phosphorylation of I-form enzyme by synthase kinase results in the incorporation of 4 mol of phosphate/85,000 subunit; however only two of the phosphate sites seem predominantly to determine glucose-6-P dependence. The resulting multiply phosphorylated enzyme, which is highly dependent on glucose-6 P for activity, has a phosphate content comparable to the D-form enzyme isolated from rabbit muscle.  相似文献   

7.
Native acetyl CoA carboxylase was phosphorylated by catalytic subunit of cyclic AMP-dependent protein kinase and ATP-citrate lyase kinase to 1 and 0.5 mol/subunit respectively. Both protein kinases added together increased acetyl CoA carboxylase phosphorylation additively. Partial proteolysis of 32P-acetyl CoA carboxylase followed by electrophoretic analysis showed that the 32P-phosphopeptides generated from acetyl CoA carboxylase phosphorylated with lyase kinase were different from the peptides obtained from the enzyme phosphorylated by cyclic AMP-dependent protein kinase. Mapping of tryptic 32P-phosphopeptides by high performance liquid chromatography showed that the major phosphopeptides phosphorylated by ATP-citrate lyase kinase were different from the major phosphopeptides phosphorylated by cyclic AMP-dependent protein kinase. The results suggest that at least one different site on acetyl CoA carboxylase is preferentially phosphorylated by each protein kinase.  相似文献   

8.
H Olsson  P Belfrage 《FEBS letters》1988,232(1):78-82
Phosphorylation of the basal site with glycogen synthase kinase-4 enhanced the rate of phosphorylation of the regulatory site by cyclic AMP-dependent protein kinase 1.7-fold. In contrast, the phosphorylation state of the regulatory site did not affect the rate of phosphorylation of the basal site with glycogen synthase kinase-4. The rate of dephosphorylation of either the regulatory or the basal phosphorylation site by protein phosphatase-1, 2A or 2C was independent of the phosphorylation state of the other site. These results suggest that the basal phosphorylation site could play an indirect role in the control of the hormone-sensitive lipase activity in the adipocyte by functioning as a recognition site for the cyclic AMP-dependent protein kinase in the phosphorylation of the activity-controlling regulatory phosphorylation site in response to lipolytic hormones.  相似文献   

9.
M R Munday  D Carling  D G Hardie 《FEBS letters》1988,235(1-2):144-148
We have reported previously that cyclic AMP-dependent protein kinase phosphorylates two sites on acetyl-CoA carboxylase (site 1: Arg-Met-Ser(P)-Phe, and site 2: Ser-Ser(P)-Met-Ser-Gly-Leu), while the AMP-activated protein kinase also phosphorylates site 1, plus site 3 (Ser-Ser-Met-Ser(P)-Gly-Leu), the latter being two residues C-terminal to site 2. We now report that prior phosphorylation of site 2 by cyclic AMP-dependent protein kinase prevents the subsequent phosphorylation of site 3 and the consequent large decrease in Vmax produced by the AMP-activated protein kinase. Similarly, prior phosphorylation of site 3 by the AMP-activated protein kinase prevents subsequent phosphorylation of site 2 by cyclic AMP-dependent protein kinase.  相似文献   

10.
Guanosine 3′,5′-monophosphate-dependent protein kinase (cyclic GMP-dependent protein kinase) and adenosine 3′,5′-monophosphate-dependent protein kinase (cyclic AMP-dependent protein kinase) exhibited a high degree of cyclic nucleotide specificity when hormone-sensitive triacylglycerol lipase, phosphorylase kinase, and cardiac troponin were used as substrates. The concentration of cyclic GMP required to activate half-maximally cyclic dependent protein kinase was 1000- to 100-folds less than that of cylic AMP with these substrates. The opposite was true with cyclic AMP-dependent protein kinase where 1000- to 100-fold less cyclic GMP was required for half-maximal enzyme activation. This contrasts with the lower degree of cyclic nucleotide specificity of cyclic GMP-dependent protein kinase of 25-fold when histone H2b was used as a substrate for phosphorylation. Cyclic IMP resembled cyclic AMP in effectiveness in stimulating cyclic GMP-dependent protein kinase but was intermediate between cyclic AMP and cyclic GMP in stimulating cyclic. AMP-dependent protein kinase. The effect of cyclic IMP on cyclic GMP-dependent protein kinase was confirmed in studies of autophosphorylation of cyclic GMP-dependent protein kinase where both cyclic AMP and cyclic IMP enhanced autophophorylation. The high degree of cyclic nucleotide specificity observed suggests that cyclic AMP and cyclic GMP activate only their specific kinase and that crossover to the opposite kinase is unlikely to occur at reported cellular concentrations of cyclic nucleotides.  相似文献   

11.
Guanosine 3',5'-monophosphate-dependent protein kinase (cyclic GMP-dependent protein kinase) and adenosine 3',5'-monophosphate-dependent protein kinase (cyclic AMP-dependent protein kinase) exhibited a high degree of cyclic nucleotide specificity when hormone-sensitive triacylglycerol lipase, phosphorylase kinase, and cardiac troponin were used as substrates. The concentration of cyclic GMP required to activate half-maximally cyclic dependent protein kinase was 1000- to 100-fold less than that of cyclic AMP with these substrates. The opposite was true with cyclic AMP-dependent protein kinase where 1000- to 100-fold less cyclic AMP than cyclic GMP was required for half-maximal enzyme activation. This contrasts with the lower degree of cyclic nucleotide specificity of cyclic GMP-dependent protein kinase of 25-fold when histone H2b was used as a substrate for phosphorylation. Cyclic IMP resembled cyclic AMP in effectiveness in stimulating cyclic GMP-dependent protein kinase but was intermediate between cyclic AMP and cyclic GMP in stimulating cyclic AMP-dependent protein kinase. The effect of cyclic IMP on cyclic GMP-dependent protein kinase was confirmed in studies of autophosphorylation of cyclic GMP-dependent protein kinase where both cyclic AMP and cyclic IMP enhanced autophosphorylation. The high degree of cyclic nucleotide specificity observed suggests that cyclic AMP and cyclic GMP activate only their specific kinase and that crossover to the opposite kinase is unlikely to occur at reported cellular concentrations of cyclic nucleotides.  相似文献   

12.
Adrenalin and glucagon inhibit glycogen, fatty acid and cholesterol synthesis by elevation of cyclic AMP, activation of cyclic AMP-dependent protein kinase and increased phosphorylation of the rate-limiting enzymes of these pathways. Here, we review recent evidence which indicates that inhibition of these biosynthetic pathways in muscle, adipose tissue and liver is much more indirect than has previously been supposed. In particular, cyclic AMP-dependent protein kinase does not appear to inhibit glycogen synthase, acetyl-CoA carboxylase and HMG-CoA reductase by phosphorylating them directly. It appears to achieve the same end result by inactivation of the protein phosphatases which dephosphorylate these regulatory enzymes in vivo, although this has only been established definitively in the case of glycogen synthesis.  相似文献   

13.
Glycogen synthase (EC 2.4.1.11) activity was studied in cell extracts from wild-type Chinese hamster ovary (CHO) cells and three mutants resistant to cyclic AMP effects on cell shape and cell growth. Based on the capacity of crude extracts to phosphorylate exogenous hisone, two of the mutants appeared to have altered cyclic AMP-dependent protein kinase (EC 2.7.1.37) and one of them had apparently normal amounts of kinase activity. Glycogen synthase activity was present in comparable amounts in wild-type and all three mutant strains in a presumably inactive phosphorylated form since activity was virtually completely dependent upon the presence of glucose 6-phosphate. The enzyme could be partially dephosphorylated by endogenous phosphatases and rephosphorylated by exogenous cyclic AMP-dependent protein kinase. Attempts to find culture conditions (e.g. glucose starvation)_or cell treatment (e.g. insulin) which might activate glycogen synthase in intact cells were unsuccessful. Since glycogen synthase activity present in CHO cells was independent of the level of cyclic AMP-dependent kinase, we conclude that cyclic AMP-dependent protein kinase does not play a critical role in regulating the state of phosphorylation of the synthase.  相似文献   

14.
Glycogen synthase (EC 2.4.1.11) activity was studied in cell extracts from wild-type Chinese hamster ovary (CHO) cells and three mutants resistant to cyclic AMP effects on cell shape and cell growth. Based on the capacity of crude extracts to phosphorylate exogenous histone, two of the mutants appeared to have altered cyclic AMP-dependent protein kinase (EC 2.7.1.37) and one of them had apparently normal amounts of kinase activity. Glycogen synthase activity was present in comparable amounts in wild-type and all three mutant strains in a presumably inactive phosphorylated form since activity was virtually completely dependent upon the presence of glucose 6-phosphate. The enzyme could be partially dephosphorylated by endogenous phosphatases and rephosphorylated by exogenous cyclic AMP-dependent protein kinase. Attempts to find culture conditions (e.g. glucose starvation) or cell treatment (e.g. insulin) which might activate glycogen synthase in intact cells were unsuccessful. since glycogen synthase activity present in CHO cells was independent of the level of cyclic AMP-dependent kinase, we conclude that cyclic AMP-dependent protein kinase does not play a critical role in regulating the state of phosphorylation of the synthase.  相似文献   

15.
Role of acidic residues as substrate determinants for casein kinase I   总被引:17,自引:0,他引:17  
Sites phosphorylated by casein kinase I have been characterized by the presence of acidic amino acids NH2-terminal to the modified residue. Recently, phosphoserine was shown to be a particularly effective determinant for casein kinase I action when present in the motif -S(P)-X-X-S- (Flotow, H., Graves, P. R., Wang, A., Fiol, C. J., Roeske, R. W., and Roach, P. J. (1990) J. Biol. Chem. 265, 14264-14269). Nonetheless, nonphosphorylated substrates for casein kinase I are well documented. In this study, we examined the efficacy of Asp and Glu residues as determinants of casein kinase I action using synthetic peptide substrates. Peptides with runs of Asp residues in the motif Dn-X-X-S- were substrates for casein kinase I. Peptides with n = 3 or 4 were the most effective substrates, much better than n = 2. The peptide with n = 1, a single Asp residue, was a very poor substrate. A block of 4 Glu residues was a little less effective as a substrate determinant than 4 Asp residues in an otherwise identical peptide. The most effective substrate, with the motif -D-D-D-D-X-X-S-, was specific for casein kinase I and was not detectably phosphorylated by cyclic AMP-dependent protein kinase, casein kinase II, glycogen synthase kinase 3, or phosphorylase kinase and thus will be useful for the specific assay of casein kinase I. This peptide was nonetheless significantly worse as a substrate than peptides in which casein kinase I action was determined by phosphoserine in the -3 position. Still, the fact that Asp or Glu residues can specify a casein kinase I substrate suggests that acidic character has a role in substrate selection by this protein kinase.  相似文献   

16.
Acetyl-CoA carboxylase (EC 6.4.1.2) has been isolated from rat liver by an avidin-affinity chromatography technique. This preparation has a specific activity of 1.17 +/- 0.06 U/mg and appears as a major (240,000 dalton) and minor (140,000 dalton) band on SDS-polyacrylamide gel electrophoresis. Enzyme isolated by this technique can incorporate 1.09 +/- 0.07 mol phosphate per mol enzyme (Mr = 480,000) when incubated with the catalytic subunit of the cyclic AMP-dependent protein kinase at 30 degrees C for 1 h. The associated activity loss under these conditions is 57 +/- 4.0% when the enzyme is assayed in the presence of 2.0 mM citrate. Less inactivation is observed when the enzyme is assayed in the presence of 5.0 mM citrate. The specific protein inhibitor of the cyclic AMP-dependent protein kinase blocks both the protein kinase stimulated phosphorylation and inactivation of acetyl-CoA carboxylase. The phosphorylated, inactivated rat liver carboxylase can be partially dephosphorylated and reactivated by incubation with a partially purified protein phosphatase. Preparations of acetyl-CoA carboxylase also contained an endogenous protein kinase(s) which incorporated 0.26 +/- 0.11 mol phosphate per mol carboxylase (Mr = 480,000) accompanied by a 26 +/- 9% decline in activity. We have additionally confirmed that the rat mammary gland enzyme, also isolated by avidin affinity chromatography, can be both phosphorylated and inactivated upon incubation with the cyclic AMP-dependent kinase.  相似文献   

17.
1. We have sequenced two tryptic/chymotryptic peptides (TC3 and TC3a) containing a third site phosphorylated on rat acetyl-CoA carboxylase by the AMP-activated protein kinase. Comparison with the complete sequence of rat acetyl-CoA carboxylase predicted from the cDNA sequence [López-Casillas et al. (1988) Proc. Natl Acad. Sci. USA 85, 5784-5788] shows that this site corresponds to Ser1215. 2. Comparison of the cDNA sequence with previous amino acid sequence data identifies the other two sites for the AMP-activated protein kinase as Ser79 and Ser1200. A total of eight serine residues phosphorylated in vitro by six protein kinases can now be identified: six of these (Ser23, Ser25, Ser29, Ser77, Ser79 and Ser95) are clustered in the amino terminal region, while two (Ser1200 and Ser1215) are located in the central region. 3. Prior phosphorylation of Ser77 and Ser1200 by cyclic-AMP-dependent protein kinase prevents subsequent phosphorylation of Ser79 and Ser1200, but not Ser1215, by the AMP-activated protein kinase. Phosphorylation of Ser1215 under these conditions is not associated with a change in enzyme activity. 4. Limited trypsin treatment of native acetyl-CoA carboxylase selectively cleaves off the highly phosphorylated amino-terminal region containing Ser79. 5. Phosphorylation at Ser79 and Ser1200 by the AMP-activated protein kinase dramatically decreases Vmax and increases the A0.5 for citrate. Phosphorylation at Ser77 and Ser1200 by cyclic-AMP-dependent protein kinase causes more modest changes in the A0.5 for citrate and the Vmax. Dephosphorylation, or removal of the amino-terminal region containing Ser77/79 using trypsin, reverses all of these effects. 6. These results suggest that the effects of the AMP-activated protein kinase on acetyl-CoA carboxylase activity are mediated entirely by phosphorylation of Ser79, and not Ser1200 and Ser1215. The smaller effects of cyclic-AMP-dependent protein kinase are mediated by phosphorylation of Ser77.  相似文献   

18.
ATP-citrate lyase and acetyl-CoA carboxylase purified from lactating rat mammary gland are phosphorylated stoichiometrically by the calmodulin-dependent multiprotein kinase from rabbit skeletal muscle. The reactions are completely dependent on the presence of both Ca2+ and calmodulin. ATP-citrate lyase and acetyl-CoA carboxylase are also phosphorylated stoichiometrically by the Ca2+- and phospholipid-dependent protein kinase (protein kinase C) purified from bovine brain. Phosphorylation of these substrates is stimulated 6-fold and 40-fold respectively by Ca2+ and phosphatidylserine. The calmodulin-dependent and phospholipid-dependent protein kinases phosphorylate the same serine residue on ATP-citrate lyase that is phosphorylated by cyclic-AMP-dependent protein kinase. The sequence of the tryptic peptide containing this site on the mammary enzyme is identical with the sequence of the peptide containing the site on ATP-citrate lyase that is phosphorylated in isolated hepatocytes in response to insulin and/or glucagon. The calmodulin-dependent, phospholipid-dependent and cyclic-AMP-dependent protein kinases phosphorylate distinct sites on acetyl-CoA carboxylase. However, one of the three phosphorylated tryptic peptides derived from enzyme treated with the phospholipid-dependent kinase is identical with the major phosphopeptide (T1) derived from enzyme treated with cyclic-AMP-dependent protein kinase. Phosphorylation of acetyl-CoA carboxylase by the phospholipid-dependent protein kinase inactivates acetyl-CoA carboxylase in a similar manner to cyclic-AMP-dependent protein kinase. With either protein kinase slightly greater phosphorylation and inactivation is seen after pretreatment of acetyl-CoA carboxylase with protein phosphatase-2A, but the effects of the protein phosphatase treatment are not completely reversed. Inactivation by the phospholipid-dependent protein kinase is Ca2+- and phospholipid-dependent, is reversed by protein phosphatase-2A, and correlates with the degree of phosphorylation. The relevance of these findings to insulin- and growth-factor-promoted phosphorylation of ATP-citrate lyase and acetyl-CoA carboxylase in intact cells is discussed.  相似文献   

19.
The kinetic parameters and phosphorylation state of acetyl-CoA carboxylase were analysed after purification of the enzyme by avidin--Sepharose chromatography from extracts of isolated adipocytes treated with glucagon or adrenaline. The results provide evidence that the mechanism of inhibition of acetyl-CoA carboxylase in adipocytes treated with glucagon [Zammit & Corstorphine (1982) Biochem. J. 208, 783-788] involves increased phosphorylation of the enzyme. Hormone treatment had effects on the kinetic parameters of the enzyme similar to those of phosphorylation of the enzyme in vitro by cyclic AMP-dependent protein kinase. Glucagon treatment of adipocytes led to increased phosphorylation of acetyl-CoA carboxylase in the same chymotryptic peptide as that containing the major site phosphorylated on the enzyme by purified cyclic AMP-dependent protein kinase in vitro [Munday & Hardie (1984) Eur. J. Biochem. 141, 617-627]. The dose--response curves for inhibition of enzyme activity and increased phosphorylation of the enzyme were very similar, with half-maximal effects occurring at concentrations of glucagon (0.5-1 nM) which are close to the physiological range. In general, the patterns of increased 32P-labelling of chymotryptic peptides induced by glucagon or adrenaline were similar, although there were quantitative differences between the effects of the two hormones on individual peptides. The results are discussed in terms of the possible roles of cyclic AMP-dependent and -independent protein kinases in the regulation of acetyl-CoA carboxylase activity and of lipogenesis in white adipose tissue.  相似文献   

20.
Glycogen synthase kinase was isolated from rat skeletal muscle. This kinase, which is cyclic nucleotide-independent and calcium-independent, was separated from phosphorylase kinase, cyclic AMP-dependent protein kinase and phosvitin kinase by phosphocellulose chromatography. Gel filtration on Sephadex G-100 resolved the glycogen synthase kinase into two fractions with apparent molecular weights of 68 000 (peak I) and 52 000 (peak II). This step also separated glycogen synthase kinase from the catalytic subunit of the cyclic AMP-dependent protein kinase, which had an apparent molecular weight of 39 000. Peak II glycogen synthase kinase activity was not affected by the addition of calcium, EGTA or a number of cyclic nucleotides. In addition to ATP, dATP would serve as the phosphate donor. Other trinucleotides tested were either poor or ineffective substrates. Activity was about 5-fold greater with Mg2+ than with Mn2+. Glycogen stimulated activity about 25%. Modifications of the methods of Soderling et al. ((1970) J. Biol. Chem. 245, 6317--6328) and Nimmo et al. ((1976) Eur. J. Biochem. 68, 21--30) were developed for purification of glycogen synthease (UDPglucose:glycogen 4-alpha D-glucosyltransferase, EC 2.4.1.11) to specific activity of 35 units/mg of protein. Using this preparation of glycogen synthase as substrate, the phosphorylation and inactivation catalyzed by glycogen synthase kinase was compared to that catalyzed by cyclic AMP-dependent protein kinase or phosphorylase kinase. Each of the kinases had different specificities for phosphorylation sites on glycogen synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号