首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ca2+-ATPase of sarcoplasmic reticulum was purified and depleted of proteolipids by solubilization in Triton X-100 and by fractionation on a DE-52 column. The protein reconstituted by deoxycholate-cholate dialysis at low lipid to protein ratios (2-5 mg of lipid/mg of protein), with either dioleoylphosphatidylethanolamine or monogalactosyldiglyceride, exhibited high initial rates of ATP-dependent Ca2+ uptake [300-900 nmol min-1 (mg of protein)-1] and coupling ratios (Ca2+ transported/ATP hydrolyzed) up to 1.2. Ca2+-ATPase reconstituted with lipids of increasing degrees of methylation (dioleoylphosphatidylethanolamine, dioleoylmonomethylphosphatidylethanolamine, dioleoyldimethylphosphatidylethanolamine and dioleoylphosphatidylcholine) or increasing degrees of glycosylation (monogalactosyldiglyceride and digalactosyldiglyceride) revealed a progressive decrease in both ATP-dependent Ca2+-uptake and coupling ratios. The rate and extent of Ca2+ uptake decreased as the dioleoylphosphatidylethanolamine/dioleoylphosphatidylcholine or monogalactosyldiglyceride/dioleoylphosphatidylcholine molar ratios in the reconstituted vesicles were reduced. Vesicles reconstituted with high molar ratios of dioleoylphosphatidylethanolamine/dioleoylphosphatidylcholine or monogalactosyldiglyceride/dioleoylphosphatidylcholine and at a high lipid to protein ratio became leaky and released the Ca2+ accumulated inside the vesicles when the temperature of the incubation mixture was increased (e.g., from 20 to 37 degrees C).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
J D Pilot  J M East  A G Lee 《Biochemistry》2001,40(49):14891-14897
Diacylglycerol kinase (DGK) of Escherichia coli has been reconstituted into a variety of phospholipid bilayers and its activity determined as a function of lipid headgroup structure and phase preference. The anionic phospholipids dioleoylphosphatidic acid, dioleoylphosphatidylserine, and cardiolipin were all found to support activities lower than that supported by dioleoylphosphatidylcholine. In mixtures of dioleoylphosphatidylcholine and 20 mol % anionic phospholipids, the presence of anionic phospholipids all resulted in lower activities than in dioleoylphosphatidylcholine, except for dioleoylphosphatidylglycerol whose presence had little effect on activity. In some cases, the low activity in the presence of anionic phospholipid followed from a decrease in v(max); in some cases, it followed from an increase in the K(m) for diacylglycerol, and in the case of dioleoylphosphatidic acid, it followed from both. Activities in mixtures containing 80 mol % dioleoylphosphatidylethanolamine were lower than in dioleoylphosphatidylcholine at temperatures where both lipids adopted a bilayer phase; at higher temperatures where dioleoylphosphatidylethanolamine preferred a hexagonal H(II) phase, the differences in activity were greater. These experiments suggest that the presence of lipids preferring a hexagonal H(II) phase leads to low activities. Activities of DGK are low in a gel phase lipid.  相似文献   

3.
The transport activity of the lactose carrier of Escherichia coli has been reconstituted in proteoliposomes composed of different phospholipids. The maximal activity was observed with the natural E. coli lipid as well as mixtures containing phosphatidylethanolamine or phosphatidylserine. Phosphatidylcholine or mixtures of phosphatidylcholine with phosphatidylglycerol, phosphatidic acid, or cardiolipin showed low activity. The lactose carrier reconstituted with amino phospholipids of increasing degrees of methylation (dioleoylphosphatidylethanolamine, dioleoylmonomethylphosphatidylethanolamine, dioleoyldimethylphosphatidylethanolamine, and dioleoylphosphatidylcholine) revealed a progressive decrease in both counterflow and proton motive force-driven lactose uptake activities. Trinitrophenylation of phosphatidylethanolamine in the E. coli proteoliposomes resulted in a marked reduction in lactose carrier activity. Partial restitution of transport activity was obtained by detergent extraction of the carrier from these inactive proteoliposomes and reconstitution of the carrier into proteoliposomes containing normal E. coli lipid. These results suggest that the amino group of the amino phospholipids (e.g. phosphatidylethanolamine and phosphatidylserine) is required for the full function of the lactose carrier from E. coli.  相似文献   

4.
Glycophorin was incorporated into large unilamellar dioleoylphosphatidylcholine vesicles by either a detergent dialysis method using octylglucoside or a method avoiding the use of detergents. The vesicles were characterized and the permeability properties and transbilayer movement of lipids in both vesicles were investigated as a function of the protein concentration and were compared to protein-free vesicles. An insight in the permeability properties of the vesicles was obtained by monitoring the ratio potassium (permeant): dextran (impermeant) trap immediately after separation of the vesicles from the external medium. Glycophorin incorporated without the use of detergents in 1:300 protein:lipid molar ratio induces a high potassium permeability for the majority of the vesicles as judged from the low potassium trap (K+:dextran trap = 0.21). In contrast, the vesicles in which glycophorin is incorporated via the octylglucoside method (1:500 protein:lipid molar ratio) are much less permeable to potassium (K+:dextran trap = 0.67 and t12 of potassium efflux at 22°C is 7.5 h.). The relationship between protein-induced bilayer permeability and lipid transbilayer movement in both vesicle preparations is discussed. Addition of wheat-germ agglutinin to glycophorin-containing vesicles comprised of dioleoylphosphatidylcholine and total erythrocyte lipids caused no or just a small effect (less than 20% release of potassium) on the potassium permeability of these vesicles. Also, addition of lectin to dioleoylphosphatidylethanolamine-glycophorin bilayer vesicles in a 25:1 lipid:glycophorin molar ratio had no effect on the permeability characteristics of the vesicles. In contrast, addition of wheat-germ agglutinin to bilayer vesicles made of dioleoylphosphatidylethanolamine and glycophorin in a 200:1 molar ratio resulted in a release of 74% of the enclosed potassium by triggering a bilayer to hexagonal (HII) phase transition. The role of protein aggregation and the formation of defects in the lipid bilayer on membrane permeability and lipid transbilayer movement is discussed.  相似文献   

5.
A partially purified calmodulin (CaM)-sensitive adenylate cyclase from bovine cerebral cortex was reconstituted with a series of phosphatidylcholine liposomes having variable fatty acid composition. The enzyme was successfully associated with dimyristoyl, dipalmitoyl, distearoyl, and dioleoylphosphatidylcholine liposomes. The specific activity of the enzyme in the various liposomes varied over a 4.6-fold range indicating some degree of specificity for fatty acid composition. The adenylate cyclase-liposome preparation retained sensitivity to both CaM and 5'-guanylylimidodiphosphate (GppNHp). Arrhenius plots of enzyme activity in the four different liposome preparations all exhibited a pronounced discontinuity at 30 degrees C +/- 2, even though the bulk-phase thermal transition points for the liposomes varied from -20 to 54 degrees C. Fluorescence anisotropy studies of reconstituted liposome systems illustrated that incorporation of protein did not alter the normal-phase transition point of these lipids. Since Arrhenius plots of the enzyme in Lubrol PX, prior to reconstitution with lipids, were strictly linear, it is concluded that the breaks at 30 degrees C may be the effect of a local enzyme-phospholipid environment. It appears that this adenylate cyclase is not particularly sensitive to phase transitions of the bulk lipid phase. The phospholipid reconstituted enzyme system appears suitable for examination of the influence of lipids on the CaM-sensitive adenylate cyclase.  相似文献   

6.
Spherical phospholipid bilayers, or vesicles, were prepared layer by layer using a double-emulsion technique, which allows the outer layer of the vesicles to be formed with two phospholipids that have different head groups: phosphatidylcholine (PC) and phosphatidylethanolamine. At the outer layer of the vesicles, the phospholipase D (PLD) catalyzed for the conversion of PC to phosphatidic acid. The reaction caused by PLD induced the curvature change of the vesicles, which eventually led to the rupture of the vesicles. Before the investigation, the ratio of dioleoylphosphatidylethanolamine to oleoylhydroxyphosphatidylethanolamine was found as a condition such that the vesicles made with the mixed lipids were as stable as those made with pure dioleoylphosphatidylcholine. Response time from the PLD injection to vesicle rupture was monitored by the composition of the outer layer by the fluorescence intensity change of pH-sensitive dye encapsulated in the vesicles. The response time began to be slowed at approximately 30?% PC. The response times for the compositions were associated with the surface density of PC at the outer layer. These results also seem to be determined by the size of PLD, specifically the PLD active site.  相似文献   

7.
Purified G-protein from vesicular stomatitis virus was reconstituted into egg phosphatidylcholine vesicles by detergent dialysis of octyl glucoside. A homogeneous population of reconstituted vesicles could be obtained, provided the protein to lipid ratio was high (about 0.3 mol % protein) and the detergent removal was slow. The reconstituted vesicles were assayed for fusion activity using electron microscopy and fluorescence energy transfer. The fusion activity mediated by the viral envelope protein was dependent upon pH, temperature, and target membrane lipid composition. Incubation of reconstituted vesicles at low pH with small unilamellar vesicles containing negatively charged lipids resulted in the appearance of large cochleate structures, as shown by electron microscopy using negative stain. This process did not cause leakage of a vesicle-encapsulated aqueous marker. The rate of fusion was pH-dependent with a pK of about 4 and the apparent energy of activation for the fusion was 16 +/- 1 kcal/mol. G-protein-mediated fusion showed a large preference for target membranes which contain phosphatidylserine or phosphatidic acid. Inclusion of 36% cholesterol in any of the lipid compositions had no effect on the rate of fusion. These reconstituted vesicles provide a system to study the mechanism of pH-dependent fusion induced by a viral spike protein.  相似文献   

8.
Rat liver dolichyl-phosphomannose synthase is optimally active when the enzyme is reconstituted with lipids that prefer a nonlamellar macroscopic organization in isolation, such as phosphatidylethanolamine (PE), but the enzyme is only negligibly active in the presence of lipids that normally form stable bilayers, such as phosphatidylcholine (PC) [Jensen, J.W., & Schutzbach, J.S. (1985) Eur. J. Biochem. 153, 41-48]. We now report that the activity of the synthase can be modulated by incorporating diacylglycerol and lysophosphatidylcholine into the lipid matrix. Enzyme activity in PC bilayers was stimulated by the presence of diacylglycerol, a lipid that has a conical dynamic molecular shape and disrupts bilayer stability. In PC/diacylglycerol mixtures the apparent Km for dolichyl-P was 30-fold lower than the apparent Km for the polyprenol acceptor in PC membranes. Enzyme activity was also stimulated when diacylglycerol was generated in situ by incubation of PC vesicles with phospholipase C. In contrast, the activity of enzyme reconstituted in PE dispersions, or in PE/PC bilayers, was markedly inhibited by the presence of lysophospholipids. Enzyme activity was also reduced by the in situ generation of lysophospholipids in PE/PC vesicles by incubation with phospholipase A2. Since lysophospholipids and diacylglycerols arise in vivo as products of phospholipid metabolism, modulation of enzyme activity by these compounds may represent a potential regulatory mechanism for the synthesis of oligosaccharide lipids.  相似文献   

9.
We purified the ATPase Fo sector from a nonoverexpressing strain of Escherichia coli, reconstituted it into lipid vesicles made of either asolectin or two different mixtures of purified lipids, and measured proton flux through the reconstituted proton channel. We measured single-channel conductances and found that Fo activity depends on both lipids and reconstitution methods. In asolectin vesicles, Fo has a single-channel conductance of about 0.2 fS. Additionally, the relatively impure Fo prepared from cells carrying single-copy ATPase genes allowed us to observe two other fluxes, a nonselective cation leak (C(L)) and a slow H+ flux (Hs). Unlike the Fo flux, these fluxes could not be blocked by the Fo inhibitor DCCD. The C, reduces the total apparent trapped volume inside vesicles and therefore must equilibrate both H+ and K+ in the vesicles that contain it. When reconstituted into bilayers, these Fo preparations displayed a 120 pS cation channel with characteristics consistent with C(L) flux. The Hs conducts only H+ but at a slower rate than the Fo. We were therefore able to: 1) quantitate the single-channel conductance of the Fo, 2) demonstrate that our Fo purification method co-purified other membrane proteins that have ion-conduction properties, and 3) show that certain lipids are necessary for functional reconstitution of Fo.  相似文献   

10.
The effects of negatively charged and neutral lipids on the function of the reconstituted nicotinic acetylcholine receptor from Torpedo californica were determined with two assays using acetylcholine receptor-containing vesicles: the ion flux response and the affinity-state transition. The receptor was reconstituted into three different lipid environments, with and without neutral lipids: (1) phosphatidylcholine/phosphatidylserine; (2) phosphatidylcholine/phosphatidic acid; and (3) phosphatidylcholine/cardiolipin. Analysis of the ion flux responses showed that: (1) all three negatively charged lipid environments gave fully functional acetylcholine receptor ion channels, provided neutral lipids were added; (2) in each lipid environment, the neutral lipids tested were functionally equivalent to cholesterol; and (3) the rate of receptor desensitization depends upon the type of neutral lipid and negatively charged phospholipid reconstituted with the receptor. The functional effects of neutral and negatively charged lipids on the acetylcholine receptor are discussed in terms of protein-lipid interactions and stabilization of protein structure by lipids.  相似文献   

11.
The effect of bipolar tetraether lipids, extracted from the thermophilic archaebacterium Sulfolobus acidocaldarius, on the branched-chain amino acid transport system of the mesophilic bacterium Lactococcus lactis was investigated. Liposomes were prepared from mixtures of monolayer lipids and the bilayer lipid phosphatidylcholine (PC), analyzed on their miscibility, and fused with membrane vesicles from L. lactis. Freeze-fracture electron microscopy demonstrates that the bipolar lipids in the hybrid membranes adopted a monomolecular organization at high S. acidocaldarius lipid content. Leucine transport activity (i.e., delta mu H(+)-driven and counterflow uptake) increased with the content of S. acidocaldarius lipids and was optimal at a one-to-one (w/w) ratio of PC to S. acidocaldarius lipids. Membrane fluidity decreased with increasing S. acidocaldarius lipid content. These data suggest that transport proteins can be functionally reconstituted into membranes composed of membrane-spanning lipids provided that membrane viscosity is restricted.  相似文献   

12.
Portet T  Dimova R 《Biophysical journal》2010,99(10):3264-3273
We report a novel and facile method for measuring edge tensions of lipid membranes. The approach is based on electroporation of giant unilamellar vesicles and analysis of the pore closure dynamics. We applied this method to evaluate the edge tension in membranes with four different compositions: egg phosphatidylcholine (eggPC), dioleoylphosphatidylcholine (DOPC), and mixtures of DOPC with cholesterol and dioleoylphosphatidylethanolamine. Our data confirm previous results for eggPC and DOPC. The addition of 17 mol % cholesterol to the DOPC membrane causes an increase in the membrane edge tension. On the contrary, when the same fraction of dioleoylphosphatidylethanolamine is added to the membrane, a decrease in the edge tension is observed, which is an unexpected result considering the inverted-cone shape geometry of the molecule. It is presumed that interlipid hydrogen bonding is the origin of this behavior. Furthermore, cholesterol was found to lower the lysis tension of DOPC bilayers. This behavior differs from that observed on bilayers made of stearoyloleoylphosphatidylcholine, suggesting that cholesterol influences the membrane mechanical stability in a lipid-specific manner.  相似文献   

13.
The hydrophobic surfactant proteins SP-B and SP-C greatly accelerate the adsorption of vesicles containing the surfactant lipids to form a film that lowers the surface tension of the air/water interface in the lungs. Pulmonary surfactant enters the interface by a process analogous to the fusion of two vesicles. As with fusion, several factors affect adsorption according to how they alter the curvature of lipid leaflets, suggesting that adsorption proceeds via a rate-limiting structure with negative curvature, in which the hydrophilic face of the phospholipid leaflets is concave. In the studies reported here, we tested whether the surfactant proteins might promote adsorption by inducing lipids to adopt a more negative curvature, closer to the configuration of the hypothetical intermediate. Our experiments used x-ray diffraction to determine how the proteins in their physiological ratio affect the radius of cylindrical monolayers in the negatively curved, inverse hexagonal phase. With binary mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), the proteins produced a dose-related effect on curvature that depended on the phospholipid composition. With DOPE alone, the proteins produced no change. With an increasing mol fraction of DOPC, the response to the proteins increased, reaching a maximum 50% reduction in cylindrical radius at 5% (w/w) protein. This change represented a doubling of curvature at the outer cylindrical surface. The change in spontaneous curvature, defined at approximately the level of the glycerol group, would be greater. Analysis of the results in terms of a Langmuir model for binding to a surface suggests that the effect of the lipids is consistent with a change in the maximum binding capacity. Our findings show that surfactant proteins can promote negative curvature, and support the possibility that they facilitate adsorption by that mechanism.  相似文献   

14.
A novel development has allowed for the direct observation of single, pairwise interactions of linear DNA with cationic vesicles and of DNA-cationic lipid complexes with anionic vesicles. A new cationic phospholipid derivative, l,2-dioleoyl-sn-glycero-3-ethylphosphocholine, was used to prepare giant bilayer vesicles and to form DNA-cationic lipid complexes (lipoplexes). The cationic vesicles were electrophoretically maneuvered into contact with DNA, and similarly, complexes were brought into contact with anionic phospholipid vesicles composed of dioleoylphosphatidylglycerol (DOPG; 100%), DOPG/dioleoylphosphatidylethanolamine (DOPE; 1:1) or DOPG/dioleoylphosphatidylcholine (DOPC; 1:1). Video fluorescence microscopy revealed that upon contact with phospholipid anionic vesicles, lipoplexes exhibited four different types of behavior: adhesion, vesicle rupture, membrane perforation (manifested as vesicle shrinkage and/or content loss), and expansion of DNA (which was always concomitant with membrane perforation.) In one instance, the lipoplex was injected into the target vesicle just prior to DNA expansion. In all other instances, the DNA expanded over the outer surface of the vesicle, and expansion was faster, the larger the area of vesicle over which it expanded. Given the likelihood of incorporation of cellular anionic lipids into lipoplexes, the expansion of the DNA could be important in DNA release during cell transfection. Upon contact with naked DNA, giant cationic vesicles usually ruptured and condensed the DNA into a small particle. Contact of cationic vesicles that were partially coated with DNA usually caused the DNA to wrap around the vesicle, leading to vesicle rupture, vesicle fusion (with other attached vesicles or lipid aggregates), or simply cessation of movement. These behaviors clearly indicated that both DNA and vesicles could be partly or fully covered by the other, thus modifying surface charges, which, among others, allowed adhesion of DNA-coated vesicles with uncoated vesicles and of lipid-coated DNA with uncoated DNA.  相似文献   

15.
The lipid specificity for the enzymatic and proton-translocating functions of a reconstituted thermophilic ATPase complex has been investigated. The proteoliposomes were prepared from the ATPase complex of the thermophilic cyanobacterium Synechococcus 6716 and various lipids and lipid mixtures extracted from this organism and from a related mesophilic strain. Some commercial lipids were used as well. An improved method of lipid extraction from chlorophyll-containing membranes is presented. This method is based on acetone extraction and additional chlorophyll separation and results in higher yields, less chlorophyll contamination and a simpler procedure than the conventional methods based on chloroform/methanol extraction. The lipids of Synechococcus 6716 thus extracted were fractionated by thin-layer chromatography. The fatty acyl chain composition of the separated lipids was analyzed by gas chromatography. The coupling quality of the reconstituted ATPase proteoliposomes made of different lipids was tested by a membrane-bound fluorescent probe and uncoupler stimulation of ATP hydrolysis. None of the separated lipids alone was able to produce a well-coupled system. The best results were obtained with the native lipid mixture. The minimum requirement was the combination of a typical bilayer-forming lipid and the non-bilayer (hexagonal II structure)-forming monogalactosyldiacylglycerol. Lipids from the mesophilic Synechococcus 6301 and commercial lipids (also mesophilic) produced poorly coupled vesicles but significant improvement was obtained when thermophilic monogalactosyldiacylglycerol was included. Both the reconstituted and solubilized ATPase complex have a sharp temperature optimum at 50 degrees C. The effect of reconstitution and measurement temperatures on the yield of well-coupled vesicles from different lipid sources was also studied.  相似文献   

16.
Fourier transform infrared spectroscopy has been used to monitor lipid-protein interaction and protein secondary structure in native and reconstituted sarcoplasmic reticulum vesicles. Studies of the temperature dependence of the CH2 symmetric stretching frequency reveal no cooperative phase transitions in purified sarcoplasmic reticulum or in vesicles reconstituted with dioleoylphosphatidylcholine, although a continuous introduction of disorder into the lipid acyl chains is observed as the temperature is raised. In addition, temperature-dependent changes are observed in the Amide I and Amide II vibrations arising from protein peptide bonds. A comparison of lipid order in native sarcoplasmic reticulum and its lipid extract showed that the introduction of protein is accompanied by a slight increase in lipid order. Reconstitution of Ca2+-ATPase from sarcoplasmic reticulum with dipalmitoylphosphatidylcholine (lipid/protein ratio 30:1), reveals a perturbed lipid melting event broadened and reduced in midpoint temperature from multilamellar lipid vesicles. The onset of melting (27–28°C) correlates well with the onset of ATPase activity and confirms a suggestion (Hesketh, T.R., Smith G.A., Houslay M.D., McGill, K.A., Birdsall, N.J.M., Metcalfe, J.C. and Warren, G.B. (1976) Biochemistry 15, 4145–4151) that a liquid crystalline environment is a requirement for optimal protein function. Finally, Ca2+-ATPase has been reconstituted into binary lipid mixtures of DOPC and acyl-chain perdeuterated DPPC. The effect of protein on the structure and melting behavior of each lipid component was monitored. The protein appears to preferentially interact with the DOPC component.  相似文献   

17.
The detergent-soluble globular dimer of acetylcholinesterase from Torpedo californica was reconstituted through dialysis into preformed egg phosphatidylcholine vesicles. The formation of the enzyme-lipid complexes depended on the ionic strength of the dialysis buffer as well as the molar lipid/protein ratio (R). The enzyme was unstable at I less than 0.05; increasing the ionic strength increased the size of the complex. A too low R value (e.g. 1000) would promote self-aggregation of the enzyme and produce heterogeneous complexes, especially at high I values. On the other hand, a too high R value (e.g. greater than 5000) favored the formation of large enzyme-lipid complexes; their solutions were too turbid for optical studies. The enzyme reconstituted at I = 0.07 and R = 4000 gave a clear solution and showed no artifacts due to light scattering. The conformation based on circular dichroism and enzymatic activity of the detergent-soluble enzyme were unchanged upon reconstitution. The reconstituted enzyme in lipid vesicles seemed to be slightly more stable against thermal denaturation than the protein in sodium cholate solution.  相似文献   

18.
Mixtures of cationic lipids and unsaturated phosphatidylethanolamine are used extensively for the intracellular delivery of plasmids and antisense oligodeoxynucleotides (ODN) in vitro. However, the mechanism by which cytoplasmic delivery of these large molecules is achieved remains unclear. The common hypothesis is that phosphatidylethanolamine promotes fusion of lipid/DNA particles with endosomal membranes, but this is inconsistent with several reports that have failed to correlate the fusogenic activity of a wide variety of lipid/DNA particles, measured by lipid mixing techniques, with their transfection activity. To address this issue further we have conducted a detailed analysis of the lipid mixing and DNA transfer activity of two, physically similar but functionally different, lipid/DNA particles composed of equimolar dioleyldimethylammonium chloride (DODAC) and dioleoylphosphatidylethanolamine (DOPE) or dioleoylphosphatidylcholine (DOPC). In combination with DODAC both phospholipids form almost identical lipid/DNA particles, they are endocytosed by cells to the same extent and each undergoes equivalent lipid mixing with cell membranes after uptake. Despite this, DNA transfer is 10- to 100-fold more extensive for lipid/DNA particles containing DOPE. We conclude that lipid mixing between lipid-based delivery systems and endosomal membranes must occur for DNA transfer to occur. However, the potency of different lipid/DNA particles correlates better with the ability of the exogenous lipid to disrupt membrane integrity.  相似文献   

19.
Covalent attachment of methoxypoly(ethylene glycol) (MPEG) 5000 to the surface of unilamellar liposomes composed of egg phosphatidylcholine and dioleoylphosphatidylethanolamine (DOPE) (8:2) containing paramagnetic chelates, either entrapped within the interior volume of the liposomes, or associated with the membrane surface, had no effect upon the measured spin-lattice relaxation rates (1/T1) for water in these systems. 31P-NMR studies indicate no destabilization of dioleoylphosphatidylcholine (DOPC)/(DOPE) (1:1) vesicles following attachment of MPEG. However, in DOPC/DOPE (1:3) mixtures, covalent modification with MPEG results in a destabilization of multilamellar vesicles into smaller vesicular structures. These results indicate that covalent attachment of poly(ethylene glycol) to liposomal magnetic resonance agents may prove a useful method for increasing their utility as vascular MR agents by extending their lifetime in the circulation, without decreasing the relaxivity of paramagnetic species associated with the liposome, but that the presence of PEG covalently attached to the membrane surface may modify the polymorphic phase behavior of the lipid system to which it is covalently linked.  相似文献   

20.
We have probed the character of the observed phase separation in mixtures of phosphatidylcholines (PC) and/or phosphatidylethanolamines (PE) in the presence of CaCl2 solutions. Egg yolk phosphatidylethanolamine (EYPE) and a 1:1 molar ratio of dioleoylphosphatidylcholine/dioleoylphosphatidylethanolamine (DOPC/DOPE) were observed to undergo phase separation in CaCl2 solutions, as was previously observed for egg yolk phosphatidylcholine (EYPC) (L.J. Lis et al. Biochemistry, 20 (1981) 1771-1777). However, the mixed chain lipid, palmitoyloleoyl-PC, yielded only a single phase in water or CaCl2 solution. We hypothesize that two lipid species are necessary for the observed phase separation to occur, but that the separation itself is not a function of the individual lipid species, but of the mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号