首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of three types of amino acids on 45Ca2+ fluxes in rat pancreatic islets have been compared. Alanine, a non-insulinotropic neutral amino acid, transported with Na+, increased 45Ca2+ efflux in the presence or in the absence of extracellular Ca2+, but not in the absence of Na+. Its effects in Na+-solutions were practically abolished by 7 mM-glucose. Alanine slightly stimulated 45Ca2+ influx (5 min uptake) only when Na+ was present. Two insulinotropic cationic amino acids (arginine and lysine) triggered similar changes in 45Ca2+ efflux. They accelerated the efflux in the presence of Ca2+ and inhibited the efflux in a Ca2+-free medium, whether glucose was present or not. In an Na+-free Ca2+-medium, arginine and lysine markedly accelerated 45Ca2+ efflux, but this effect was suppressed by 7 mM-glucose. Arginine stimulated 45Ca2+ influx irrespective of the presence or absence of glucose and Na+. Leucine, a neutral insulinotropic amino acid well metabolized by islet cells, inhibited 45Ca2+ efflux from the islets in a Ca2+-free medium; this effect was potentiated by glutamine. In the presence of Ca2+ and Na+, leucine was ineffective alone, but triggered a marked increase in 45Ca2+ efflux when combined with glutamine. In an Na+-free Ca2+-medium, leucine accelerated 45Ca2+ efflux to the same extent with or without glutamine. Leucine also stimulated 45Ca2+ influx in the presence or in the absence of Na+, but its effects were potentiated by glutamine only in the presence of Na+. The results show that amino acids of various types cause distinct changes in 45Ca2+ fluxes in pancreatic islets. Certain of these changes involve an Na+-mediated mobilization of cellular Ca2+ from sequestering sites where glucose appears to exert an opposite effect.  相似文献   

2.
When aequorin-loaded glomerulosa cells were incubated in isotonic Na2+-free medium containing N-methyl-D-glucamine instead of NaCl, there was an increase in cytoplasmic free calcium concentration, [Ca2+] c, which was not observed when extracellular calcium concentration was reduced to 1 microM. Upon removal of extracellular sodium, there was nearly five-fold increase in fractional efflux ratio of calcium. The reduction of extracellular sodium resulted in a stimulation of calcium influx rate, the magnitude of which was dependent on extracellular sodium concentration. Similar stimulation of calcium influx was observed when extracellular sodium was replaced with lithium. Nitrendipine did not affect the calcium influx induced by the reduction of extracellular sodium while a derivative of amiloride 3',4'-dichlorobenzamil, which inhibits Na-Ca exchange, attenuated calcium influx observed in sodium-free medium. These results indicate that removal of extracellular sodium leads to an increase in [Ca2+] c by stimulating calcium influx and that calcium enters the cell via Na-Ca exchanger.  相似文献   

3.
The transport properties of the rabbit peritoneal polymorphonuclear leukocyte (PMN) plasma membrane to Na+, K+, and Ca2+ have been characterized. The use of a silicone oil centrifugation technique provided a rapid and reliable method for measuring ion fluxes in these cells. Na+ and K+ movements across PMN membranes were found to be rapid. The value for the unifirectional steady-state fluxes (in meq/liter cell X min) were of the order of 3.0 for Na+ and 7.4 for K+. Ouabian inhibited both K+ influx and Na+ efflux, the latter being also dependent on the presence of extracellular potassium. The rate constant (in min-1) for 45Ca influx was found to be .05 and that for 45Ca efflux .04. The synthetic chemotactic factor formyl-methionyl-leucyl-phenylalanine (FMLP) was found to affect the fluxes of Na+, K+, and Ca2+ at concentrations as low as 10(-10)M. FMLP induced a large and rapid increase in the permeability of the PMN plasma membrane to 22Na. Smaller and delayed enhancements of 42K influx and 22Na efflux were also noted. Some evidence that the latter findings are a consequence of the increased 22Na influx is presented. 45Ca influx and efflux were also stimulated by FMLP. In the presence of 0.25 mM extracellular calcium, FMLP induced an increase in the steady-state level of cell-associated 45Ca. In the presence of .01 mM extracellular calcium, however, a transient decrease in the steady-state level of cell-associated 45Ca was induced by FMLP. The curves relating the concentration of FMLP to its effects on cation fluxes are very similar to those found for its enhancement of migration.  相似文献   

4.
Regulation of cytoplasmic free calcium concentration ([Ca2+)]i) is a key factor for maintenance of viability of cells, including oocytes. Indeed, during fertilization of an ovum, [Ca2+]i is known to undergo oscillations, but it is unknown how basal [Ca2+]i or calcium oscillations are regulated. In the present study we investigated the role of the plasma membrane in regulating [Ca2+]i of metaphase II-arrested mouse oocytes (ova). Ova were collected from B6C3F1 mice treated with eCG (10 IU) and hCG (5 IU), and intracellular calcium was determined by means of fura-2. Extracellular calcium flux across the zona pellucida was detected noninvasively by a calcium ion-selective, self-referencing microelectrode that was positioned by a computer-controlled micromanipulator. Under basal conditions ova exhibited a calcium net efflux of 20.6 +/- 5.2 fmol/cm2 per sec (n = 69). Treatment of ova with ethanol (7%) or thapsigargin (25 nM-2.5 microM) transiently increased intracellular calcium and stimulated calcium efflux that paralleled levels of [Ca2+]i. The presence of a Na+/Ca2+ exchanger was indicated by experiments employing both bepridil, an inhibitor of Na+/Ca2+ exchange, and sodium-depleted media. In the presence of bepridil, a net influx of calcium was revealed across the zona pellucida, which was reflected by an increase in the [Ca2+]i. In addition, replenishment of extracellular sodium to ova that had been incubated in sodium-depleted media induced a large calcium efflux, consistent with the actions of Na+/Ca2+ exchange. Sodium/calcium exchange in mouse ova may be an important mechanism that regulates [Ca2+]i.  相似文献   

5.
Ca2+-activated Na+ fluxes in human red cells. Amiloride sensitivity   总被引:4,自引:0,他引:4  
The effect of Ca2+ on the ouabain- and bumetanide-resistant Na+ fluxes in intact red cells was studied at relatively constant internal Ca2+, membrane potential, and cell volume. The red cell calcium concentration was modified using the ionophore A23187. In fresh red cells, the Na+ influx and efflux (1.2 +/- 0.13 and 0.26 +/- 0.07 mmol/liter cells x h, respectively) were not affected by amiloride (1 mM). When external Ca2+ was raised from 0 to 150 microM, in the presence of A23187, both the Na+ influx and efflux were stimulated (about 3.5-fold). The Ca2+-activated Na+ efflux and influx had an apparent Km for activation by Ca2+o of about 25 microM. The Ca2+-dependent Na+ transport was inhibited 30-60% by amiloride (ID50 = 17.3 +/- 8 microM). Amiloride, however, had no effect on the Ca2+-dependent K+ influx. The amiloride-sensitive (AS) transport pathway was a linear function of the Na+o concentration in the range from 0 to 75 mM. The Ca2+i activation seems to depend on the metabolic integrity of red cells. 1) It does not take place in ATP-depleted red cells; 2) ATP-repletion of ATP-depleted red cells fully restored AS Na influx; and 3) ATP-enrichment (ATP-red cells) enhanced the AS Na influx by about 100%. The Ca2+-activated AS Na+ influx was not affected by either DIDS or trifluoperazine. The present results indicate that in human erythrocytes an increase in internal Ca2+ activates on otherwise silent AS Na+-transport system, which is dependent on the metabolic integrity of the red cells.  相似文献   

6.
Removing extracellular Na+ (Na+o) evoked a large increase in cytosolic free Ca2+ concentration ([Ca2+]i in human skin fibroblasts. Decreasing [Na+]o from 120 to 14 mM caused the half-maximal peak increase in [Ca2+]i. Removing Na+o strongly stimulated 45Ca2+ efflux and decreased total cell Ca2+ by about 40%. Bradykinin caused changes in [Ca2+]i, total Ca2+, and 45Ca2+ fluxes similar to those evoked by removing Na+o. Prior stimulation of the cells with bradykinin prevented Na+o removal from increasing [Ca2+]i and vice versa. Na+o removal rapidly increased [3H]inositol polyphosphate production. Loading the cells with Na+ had no effect on the increase in 45Ca2+ efflux produced by Na+o removal. Therefore, decreasing [Na+]o probably stimulates a "receptor(s)" which is sensitive to extracellular, not intracellular, Na+. Removing Na+o also mobilized intracellular Ca2+ in smooth muscle and endothelial cells cultured from human umbilical and dog coronary arteries, respectively.  相似文献   

7.
The influx and efflux of calcium (as 45Ca) and influx of sodium (as 24Na) were studied in internally dialyzed squid giant axons. The axons were poisoned with cyanide and ATP was omitted from the dialysis fluid. The internal ionized Ca2+ concentration ([Ca2+]i) was controlled with Ca-EGTA buffers. With [Ca2+]i greater than 0.5 muM, 45Ca efflux was largely dependent upon external Na and Ca. The Nao-dependent Ca efflux into Ca-free media appeared to saturate as [Ca2+]i was increased to 160 muM; the half-saturation concentration was about 8 muM Ca2+. In two experiments 24Na influx was measured; when [Ca2+]i was decreased from 160 muM to less than 0.5 muM, Na influx declined by about 5 pmoles/cm2 sec. The Nao-dependent Ca efflux averaged 1.6 pmoles/cm2 sec in axons with a [Ca2+]i of 160 muM, and was negligible in axons with a [Ca2+]i of less than 0.5 muM. Taken together, the Na influx and Ca efflux data may indicate that the fluxes are coupled with a stoichiometry of about 3 Na+-to-1 Ca2+. Ca efflux into Na-free media required the presence of both Ca and an alkali metal ion (but not Cs) in the external medium. Ca influx from Li-containing media was greatly reduced when [Ca2+]i was decreased from 160 to 0.23 muM, or when external Li was replaced by choline. These data provide evidence for a Ca-Ca exchange mechanism which is activated by certain alkali metal ions. The observations are consistent with a mobile carrier mechanism which can exchange Ca2+ ions from the axoplasm for either 3 Na+ ions, or one Ca2+ and an alkali metal ion (but not Cs) from the external medium. This mechanism may utilize energy from the Na electrochemical gradient to help extrude Ca against an electrochemical gradient.  相似文献   

8.
Replacing extracellular Na+ with choline transiently increased cytoplasmic free Ca2+ ([Ca2+]i) more than 5-fold in coronary endothelial cells. Removing external Na+ stimulated 45Ca2+ efflux approximately 4-fold and influx approximately 1.7-fold. The stimulation of efflux was independent of extracellular Ca2+ and the osmotic Na+ substitute. The release of stored Ca2+, rather than Ca2+ influx via Na(+)-Ca2+ exchange, probably causes the increase in [Ca2+]i and 45Ca2+ efflux. Cadmium or decreasing external, not intracellular, pH transiently increased [Ca2+]i. Cd2+ and some other divalent metals also stimulated 45Ca2+ efflux. The potency order of the metals that stimulated efflux was Cd2+ greater than CO2+ greater than Ni2+ greater than Fe2+ greater than Mn2+. Incubating the cells with Zn2+ prior to assaying efflux in the absence of Zn2+ strongly inhibited the stimulation of 45Ca2+ efflux by Cd2+, pH 6, and the removal of external Na+ without affecting the stimulation of efflux by ATP. These findings support the hypothesis that certain trace metals or decreasing external Na+ or pH trigger the release of stored Ca2+ by stimulating a cell surface "receptor."  相似文献   

9.
Extracellular ATP is known to increase the membrane permeability of a variety of cells. Addition of ATP to human leukemic lymphocytes loaded with the Ca2+ indicator, fura-2, induced a rise in cytosolic Ca2+ concentration which was attenuated or absent in NaCl media compared with KCl, choline Cl, or NMG Cl media. In contrast, anti-immunoglobulin antibody gave similar Ca2+ transients in NaCl and KCl media. A half-maximal inhibition of peak ATP-induced Ca2+ response was observed at 10-16 mM extracellular Na+. Basal 45Ca2+ influx into lymphocytes was stimulated 9.6-fold by ATP added to cells in KCl media, but the effect of ATP was greatly reduced for cells in NaCl media. Hexamethylene amiloride blocked 74% of the ATP-stimulated Ca45 uptake of cells in KCl media. Flow cytometry measurements of fluo-3-loaded cells confirmed that the ATP-induced rise in cytosolic Ca2+ was inhibited either by extracellular Na+ or by addition of hexamethylene amiloride. Extracellular ATP stimulated 86Rb efflux from lymphocytes 10-fold and this increment was inhibited by the amiloride analogs in a rank order of potency 5-(N-methyl-N-isobutyl)amiloride greater than 5-(N,N-hexamethylene)amiloride greater than 5-(N-ethyl-N-isopropyl)amiloride greater than amiloride. ATP-induced 86Rb efflux showed a sigmoid dependence on the concentration of ATP and Hill analysis gave K1/2 of 90 and 130 microM and n values of 2.5 and 2.5 for KCl and NaCl media, respectively. However, the maximal ATP-induced 86Rb efflux was 3-fold greater in KCl than in NaCl media. Raising extracellular Na+ from 10 to 100 mM increased ATP-induced Na+ influx from a mean of 2.0 to 3.7 nEq/10(7) cells/min, suggesting either saturability or self-inhibition by Na+ of its own influx. These data suggest that ATP opens a receptor-operated ion channel which allows increased Ca2+ and Na+ influx and Rb+ efflux and these fluxes are inhibited by extracellular Na+ ions as well as by the amiloride analogs.  相似文献   

10.
The presence of a Na+/Ca2+ exchanger in bovine adrenal chromaffin cells was demonstrated by measuring the efflux of 45Ca2+ which had been preloaded into cells by a brief depolarization. The efflux of 45Ca2+ was dependent on extracellular Na+ (Na+o); 45Ca2+ efflux was significantly decreased by replacing Na+o with N-methylglucamine (NMG), or Li+. Replacement of Na+o by NMG increased the resting intracellular Ca2+ concentration ([Ca2+]i) of freshly isolated chromaffin cells. This could be reversed by adding Na+, suggesting that Na+/Ca2+ exchanger activity was involved in maintaining [Ca2+]i at its resting level. The initial rate of Na(+)-dependent [Ca2+]i recovery after Ca2+ loading by depolarization was dependent on the level of [Ca2+]i. There was an apparent linear relationship between the activity of the Na+/Ca2+ exchanger and [Ca2+]i both in the presence and absence of Na+o. When cells were treated with other stimuli, including 10 microM DMPP or 40 mM caffeine, the ability of the stimulated cells to decrease [Ca2+]i was significantly reduced upon replacing Na+o with NMG. Our data show that the Na+/Ca2+ exchanger is one of the major pathways for regulating [Ca2+]i in chromaffin cells in both resting and stimulated states.  相似文献   

11.
The objective of this study was to assess the contribution of Na+-Ca2+ exchange activity to Ca2+ efflux at various cytosolic Ca2+ concentrations ([Ca2+]i) in transfected Chinese hamster cells expressing the bovine cardiac Na+-Ca2+ exchanger. Ionomycin was added to fura-2 loaded cells and the resulting [Ca2+]i transient was monitored in Ca2+-free media with or without extracellular Na+. The presence of Na+ reduced both the amplitude and duration of the [Ca2+]i transient. Na+ had similar effects when the peak of the [Ca2+]i transient was buffered to 100 nM by cytosolic EGTA, or when Ca2+ was slowly released from internal stores with thapsigargin. Ca2+ efflux following ionomycin addition was directly measured with extracellular fura-2 and followed a biphasic time course (t(1/2) approximately = 10 s and 90s). The proportion of total efflux owing to the rapid phase was increased by Na+ and reduced by EGTA-loading. Na+ accelerated the initial rate of Ca2+ efflux by 65% in unloaded cells but only by 16% in EGTA-loaded cells. In both cases, the stimulation by Na+ was less than expected, given the pronounced effects of Na+ on the [Ca2+]i transient. We conclude that the exchanger contributes importantly to Ca2+ efflux activity at all [Ca2+]i values above 40 nM. We also suggest that Ca2+ efflux pathways may involve non-cytosolic or local routes of Ca2+ traffic.  相似文献   

12.
The effect of anoxia and substrate removal on cytosolic free calcium (Ca2+i), cell calcium, ATP content, and calcium efflux was determined in cultured monkey kidney cells (LLC-MK2) exposed to 95% N2, 5% CO2 for 60 min. In the control period, the basal Ca2+i level was 70.8 +/- 9.4 nM. During 1 h of anoxia without substrate, ATP content decreased 70%, Ca2+i and calcium efflux increased 2.5-fold, while the total cell calcium did not change. When the cells were perfused again with O2 and 5 mM glucose, the ATP concentration, Ca2+i, and calcium efflux returned to control levels within 15-20 min. In the presence of 20 mM glucose, anoxia did not produce any change in ATP, in Ca2+i or in calcium efflux. An important source of calcium contributing to the rise in Ca2+i induced by anoxia appears to be extracellular because the rate of rise in Ca2+i is proportional to the extracellular calcium concentration, and because La3+ which blocks calcium influx greatly reduces the rise in Ca2+i. Mitochondria appear to control Ca2+i as well since the early rise in Ca2+i cannot be blocked by La3+ during the initial phase of anoxia, and since the mitochondrial inhibitor carbonyl cyanide p-trifluoromethoxyphenylhydrazone increases Ca2+i further during reoxygenation and slows the return of Ca2+i to control levels.  相似文献   

13.
We examined the effect of cGMP on Na+/Ca2+ exchange in rat aortic smooth muscle cells (VSMCs) in primary culture. The intracellular Ca2+ concentration [( Ca2+]i) was raised by adding ionomycin to VSMCs incubated at high extracellular pH (pH0) (pH0 = 8.8) and high extracellular Mg2+ (Mg2+0) (Mg2+0 = 20 mM), conditions that inhibit activity of the sarcolemmal Ca2+ pump. 45Ca2+ efflux observed under these conditions was mostly extracellular Na+ (Na+0)-dependent and thus presumably catalyzed by the Na+/Ca2+ exchanger. Brief treatment of VSMCs with 8-bromo-cGMP or atrial natriuretic peptide increased this Na+0-dependent 45Ca2+ efflux by about 50%. The 8-bromo-cGMP treatment did not significantly influence total cell Na+, membrane potential, and cell pH. Conversely, when VSMCs were loaded with Na+ and then exposed to a Na+0-free medium, the rate of 45Ca2+ uptake into VSMCs increased as cell Na+ increased. Prior treatment of VSMCs with 8-bromo-cGMP accelerated 45Ca2+ uptake by up to 60% without influencing Na+ loading itself. Treatment of VSMCs with 25 microM 2,5-di-(tert-butyl)-1,4-benzohydroquinone, an inhibitor of the sarcoplasmic reticulum Ca(2+)-ATPase, induced a transient elevation of [Ca2+]i. 8-Bromo-cGMP stimulated the rate of recovery phase of this Ca2+ transient measured in the high pHo/high Mg2+o medium. All these results indicate that cGMP stimulates Na+/Ca2+ exchange in VSMCs.  相似文献   

14.
Squid axons display a high activity of Na+/Ca2+ exchange which is largely increased by the presence of external K+, Li+, Rb+ and NH+4. In this work we have investigated whether this effect is associated with the cotransport of the monovalent cation along with Ca2+ ions. 86Rb+ influx and efflux have been measured in dialyzed squid axons during the activation (presence of Ca2+i) of Ca2+o/Na+i and Ca2+i/Ca2+o exchanges, while 86Rb+ uptake was determined in squid optic nerve membrane vesicles under equilibrium Ca2+/Ca2+ exchange conditions. Our results show that although K+o significantly increases Na+i-dependent Ca2+ influx (reverse Na+/Ca2+ exchange) and Rb+i stimulates Ca2+o-dependent Ca2+ efflux (Ca2+/Ca2+ exchange), no sizable transport of rubidium ions is coupled to calcium movement through the exchanger. Moreover, in the isolated membrane preparation no 86Rb+ uptake was associated with Ca2+/Ca2+ exchange. We conclude that in squid axons although monovalent cations activate the Na+/Ca2+ exchange they are not cotransported.  相似文献   

15.
The preceding paper (Ciapa et al., 1984) provided biochemical and kinetic characterization of the Na+-K+ exchange in Paracentrotus lividus eggs. The present work is a study of the ionic events involved in the stimulation of the Na+-K+ transporter after fertilization. Fertilization in low Na+-external medium containing amiloride (0.1 mM) suppresses the stimulation of the net efflux of H+ and 86Rb uptake. Activation of eggs with the ionophore A23187 leads to stimulation of both Na+-H+ exchange and ouabain-sensitive 86Rb influx. When eggs were activated with A23187 in artificial seawater, 86Rb uptake and 24Na influx showed similar saturable kinetics with respect to the external Na+. A23187 treatment of eggs in Na+-free artificial seawater did not stimulate the Na+-K+ exchange until 10 mEq Na+ was added. Activation of eggs by NH4Cl (5 mM) stimulated 86Rb influx and Na+ exit; both fluxes were ouabain sensitive. Monensin increased cell Na+ of unfertilized eggs without any significant increase in intracellular pH: a condition in which 86Rb influx was not markedly stimulated. Addition of 10 mEq Na+ to unfertilized eggs in Na+-free artificial seawater stimulated 86Rb uptake but to a lower extent that did 10 mEq Na+ plus sperm. It is concluded that (1) the stimulation of the Na+-K+ pump at fertilization has an absolute requirement for the Na+-H+ exchange; (2) the alkalinization of eggs resulting from the acid efflux is a prerequisite for the enhancement of the Na+-K+ pump; (3) the amount of Na+ entering eggs at fertilization determines the intensity of the Na+-K+ exchange; (4) early events of fertilization such as exocytosis and calcium release which may be involved in the stimulation of the Na+-K+ pump must necessarily be coupled to cell alkalinization.  相似文献   

16.
Sodium and calcium movements in dog red blood cells   总被引:7,自引:5,他引:2       下载免费PDF全文
Determinants of 45Ca influx, 45Ca efflux, and 22Na efflux were examined in dog red blood cells. 45Ca influx is strongly influenced by the Na concentration on either side of the membrane, being stimulated by intracellular Na and inhibited by extracellular Na. A saturation curve is obtained when Ca influx is plotted as a function of medium Ca concentration. The maximum Ca influx is a function of pH (increasing with greater alkalinity) and cell volume (increasing with cell swelling). Quinidine strongly inhibits Ca influx. Efflux of 45Ca is stimulated by increasing concentrations of extracellular Na. 22Na efflux is stimulated by either Ca or Na in the medium, and the effects of the two ions are mutually exclusive rather than additive. Quinidine inhibits Ca-activated 22Na efflux. The results are considered in terms of a model for Ca-Na exchange, and it is concluded that the system shows many features of such a coupled ion transport system. However, the stoichiometric ratio between Ca influx and Ca-dependent Na efflux is highly variable under different experimental conditions. Because the Ca fluxes may reflect a combination of ATP-dependent, outward transport and Na-linked passive movements, the true stoichiometry of an exchanger may not be ascertainable in the absence of a specific Ca pump inhibitor. The meaning of these observations for Ca-dependent volume regulation by dog red blood cells is discussed.  相似文献   

17.
The effects of leucine- and methionine-enkephalin, opiate peptides, on Ca2+ efflux from cultured bovine adrenal chromaffin cells were examined. These enkephalins stimulated the efflux of 45Ca2+ from cells in a concentration-dependent manner (10(-8) M-10(-6) M). Leucine-enkephalin did not increase the intracellular free Ca2+ level, 45Ca2+ uptake, catecholamine secretion, cAMP level or cGMP level. The peptide-stimulated 45Ca2+ efflux was not inhibited by incubation in Ca2+-free medium, but was inhibited by incubation in Na+-free medium. These results indicate that enkephalins stimulate extracellular Na+-dependent 45Ca2+ efflux from cultured bovine adrenal chromaffin cells, probably by stimulating membrane Na+/Ca2+ exchange.  相似文献   

18.
Noninvasive, self-referencing calcium (Ca2+) electrodes were used to study the mechanisms by which 5-hydroxytryptamine (5-HT) affects net Ca2+ flux across the sarcolemma of myocytes from ventricular trabeculae (from a marine gastropod, Busycon canaliculatum). Treatment of isolated trabeculae with 5-HT causes a net Ca2+ efflux, which is 30% blocked by verapamil. These findings suggest that the efflux is in part the result of a previous Ca2+ influx through L-type Ca2+ channels and is due to a rapid Ca2+ extrusion mechanism inherent to the sarcolemma of these myocytes. 5-HT-induced net Ca2+ efflux is also reduced by about 40% by treatment with a sodium (Na+)-free, lithium (Li+)-substituted saline, which shuts down the Na-Ca exchanger during Ca2+ extrusion. Cyclopiazonic acid (CPA), an inhibitor of the sarcoplasmic reticulum (SR) Ca2+ ATPase, almost completely abolishes the 5-HT-induced net Ca2+ efflux, suggesting that the SR rather than the extracellular pool is the primary Ca2+ reservoir serving 5-HT-induced excitation.  相似文献   

19.
1. Sodium-free contractures were studied in myocardial strips from R. pipiens when extracellular sodium (Na+o) was replaced by choline chloride and extracellular free calcium (Ca2+o) was defined with EGTA-buffer. 2. Resting membrane potentials (RMP) were normal in sodium-free solutions with Ca2+o calculated below 1.0 x 10(-9) mol/l. 3. When Ca2+o was subsequently increased from zero to 1.0 x 10(-3) mol/l Na+-free contractures developed slowly with unchanged RMP even at maximum contracture, at which the intracellular ultrastructure is grossly altered. 4. The contractures developed significantly faster in the presence of 3 x 10(-6) mol/l ouabain. 5. In sodium-free solutions La3+ did not influence Ca2+-dependent contractures, apart from causing an increase in time to maximum contracture. 6. It is concluded that sarcolemmal integrity is maintained in frog myocardium treated initially with Na+/Ca2+-free solutions and then with Na+-free medium containing 1 mmol/l Ca2+. 7. Our experiments indicate that sodium-free, Ca2+o-dependent contractures are mediated by the Na+/Ca2+-exchange, operation at higher rates when Na+i is increased. La3+ (1 mmol/l) probably does not compete with Ca2+ at extracellular binding sites of the exchanger. 8. The Na+/Ca2+-exchange may under certain experimental conditions be able to increase Ca2+i to cytotoxic concentrations.  相似文献   

20.
J B Smith  T Zheng  R M Lyu 《Cell calcium》1989,10(3):125-134
Ionomycin (1 microM) produced a large spike in cytosolic free Ca2+ [( Ca2+]i). The ionophore had no effect on [Ca2+]i if the sarcoplasmic reticulum had previously been Ca2+ depleted by stimulating neurohormone receptors. Ionomycin markedly increased 45Ca2+ efflux and decreased total cell Ca2+ by 60 to 70% in 1 min. Replacing extracellular Na+ [( Na+]o) with choline or N-methyl-D-glucamine strongly inhibited the effects of ionomycin on 45Ca2+ efflux and total Ca2+. Ionomycin caused similar peak increases in [Ca2+]i in the presence and absence of [Na+]o, but the exponential fall from the peak was faster in the presence of [Na+]o. Dimethylbenzamil, a potent blocker of Na+/Ca2+ exchange in these cells, strongly inhibited the effects of ionomycin on 45Ca2+ efflux and total cell Ca2+. We conclude that the increase in cytosolic free Ca2+ produced by ionomycin may be sufficient to activate the plasma membrane Na+/Ca2+ exchanger which removes Ca2+ from the cytosol and helps restore basal [Ca2+]i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号