首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, an up‐converting phosphor technology‐based lateral‐flow (UPT‐LF) assay was developed to detect severe fever with thrombocytopenia syndrome virus (SFTSV) total antibodies rapidly and specifically. SFTSV recombinant N protein (SFTSV‐rNP) was coated on analytical membrane for sample capture, up‐converting phosphor (UCP) particles were used as the reporter, the luminescence emitted by UCP particles was converted to a measurable signal by a biosensor. The performance of UPT‐LF assay was evaluated by testing 302 field serum samples by ELISA (enzyme‐linked immunosorbent assay), Western blotting and UPT‐LF assay. UPT‐LF assay exhibited a lower detection limit than ELISA, and a satisfied level of agreement was exhibited by Kappa statistics (Kappa coefficient = 0.938). Considering Western blotting as the reference for comparison, the sensitivity and specificity of UPT‐LF assay could reach 98.31% and 100%. UPT‐LF assay showed no specific reaction with hantavirus total serum antibodies, which avoids the misdiagnosis of SFTSV from hantavirus that could cause similar clinical symptoms. UPT‐LF assay was able to achieve acceptable results within 15 min and needed only 10 μL sample for each test. As a whole, UPT‐LF assay is a candidate method for on‐site surveillance of SFTSV total antibodies owing to its excellent sensitivity, specificity, stability, easy operation and for being less time consuming.  相似文献   

2.
Up-converting phosphor reporters for nucleic acid microarrays   总被引:9,自引:0,他引:9  
An important application of robotically spotted DNA microarrays is the monitoring of RNA expression levels. A clear limitation of this technology is the relatively large amount of RNA that is required per hybridization as a result of low hybridization efficiency and limiting detection sensitivity provided by conventional fluorescent reporters. We have used a recently introduced luminescent reporter technology, called UPT (up-converting phosphor technology). Down-converting phosphors have been applied before to detect nucleic acids on filters using time-resolved fluorometry. The unique feature of the phosphor particles (size 0.4 microm) used here is that they emit visible light when illuminated with infrared (IR) light (980 nm) as a result of a phenomenon called up-conversion. Because neither support material of microarrays nor biomolecules possess up-conversion properties, an enhanced image contrast is expected when these nonfading phosphor particles are applied to detect nucleic acid hybrids on microarrays. Comparison of the UPT reporter to cyanin 5 (Cy5) in a low-complexity model system showed a two order of maginitude linear relationship between phosphor luminescence and target concentration and resulted in an excellent correlation between the two reporter systems for variable target concentrations (R2 = 0.95). However, UPT proved to be superior in sensitivity, even though a wide-field microscope equipped with a xenon lamp was used. This higher sensitivity was demonstrated by complementary DNA (cDNA) microarray hybridizations using cDNAs for housekeeping genes as probes and complex cDNA as target. These results suggest that a UPT reporter technology in combination with a dedicated IR laser array-scanner holds significant promise for various microarray applications.  相似文献   

3.
上转磷光技术在快速生物分析中的应用   总被引:10,自引:0,他引:10  
上转磷光技术 (UPT)是基于上转磷光材料 (UCP)而发展起来的一种新型标记技术。UCP是由几种稀土金属元素掺杂于某些晶体的晶格中构成的纳米级颗粒。由于独特的结构 ,UCP可由红外光激发而发射可见光———上转磷光。这种特殊性质使UCP作为标记物在生物分析中 ,以无本底干扰、无淬灭、适于多重分析和定量分析等显著优势 ,从本质上有别于传统标记物。UCP将在快速免疫分析、微点阵、高通量药物筛选、基因组学研究、外科手术组织成像、食品环境检测以及生化战防御等多方面得到广泛地应用。  相似文献   

4.
5.
Chitosan, a naturally occurring biopolymer, was used as a scaffold for the covalent binding of single-stranded DNA oligonucleotide probes in a fluorescence-based nucleic acid hybridization assay. Chitosan's pH dependent chemical and electrostatic properties enable its deposition on electrodes and metal surfaces, as well as on the bottom of microtiter plates. A combinatorial 96-well microtiter plate format was used to optimize chemistries and reaction conditions leading to hybridization experiments. We found the coupling of oligonucleotides using relatively common glutaraldehyde chemistry was quite robust. Our hybridization results for complementary ssDNA oligonucleotides (E. coli dnaK sequences) demonstrated linear fluorescence intensity with concentration of E. coli dnaK-specific oligonucleotide from 0.73 microM to 6.6 microM. Moreover, hybridization assays were specific as there was minimal fluorescence associated with noncomplementary groEL oligonucleotide. Finally, these results demonstrate the portability of a DNA hybridization assay based on covalent coupling to chitosan, which, in turn, can be deposited onto various surfaces. More arduous surface preparation techniques involving silanizing agents and hazardous washing reagents are eliminated using this technique.  相似文献   

6.
Many DNA-probe assays utilize oligonucleotide-coated microparticles for capture of complementary nucleic acids from solution. During development of these assays, as well as in other particle-based nucleic acid applications, it is useful to know both the amount of duplex formation expected under various experimental conditions and the coating density of the capture oligonucleotide on the particle surface. We examined the simplest form of a DNA-probe microparticle assay: hybridization of a particle-bound capture oligonucleotide to its solution-phase complement. Fluorescein-labeled solution-phase oligonucleotide was hybridized to varying amounts of particles, and the amount of labeled oligonucleotide remaining in solution at equilibrium was measured. We present a simple two-state, all-or-none model for bimolecular hybridization of non-self-complementary sequences that can be used to calculate the equilibrium dissociation constant ( Kd ) from hybridization data. With experimental conditions where both the Kd value and the concentration of capture probe in the reaction are small relative to the concentration of labeled complementary oligonucleotide in the reaction, density of the capture probe on the particle's surface can also be determined. Kd values for particle-based hybridization were different from those obtained from solution-phase thermodynamic parameters. At higher temperatures, hybridization on particles was more efficient than hybridization in solution.  相似文献   

7.
There is no methodology for the estimation of the dynamic features of large-molecular-weight RNAs in homogeneous physiological media. In this report, a luminescence anisotropy-based method using a long-lifetime luminescent oligonucleotide probe for the estimation of the dynamic features of large-molecular-weight RNA is described. As a luminescent probe, Ru(II) complex-labeled oligonucleotides, which have a complementary sequence to the single-stranded regions of Escherichia coli 16S rRNA, were synthesized. After the hybridization of the probe to single-stranded regions of 16S rRNA, the segmental motions of the regions were evaluated by time-resolved luminescence anisotropy analysis. In 16S rRNA, the L2 site (323-332 nt) was found to be the most flexible among the seven sites chosen. From a comparison between the hybridization kinetics of oligonucleotides to these single-stranded regions and the rotational correlation times, it was suggested that the flexibility of the single-stranded region was closely correlated with the hybridization kinetics. Furthermore, results of the luminescence lifetime measurement and luminescence quenching experiments suggested that the highly flexible region was located on the surface of the 16S rRNA and that the less flexible region was located in the depths of 16S rRNA.  相似文献   

8.
Polyacrylamide supports, in a range of pore sizes, were investigated as nucleic acid affinity matrices for the detection of target DNA or RNA sequences using a sandwich hybridization format. Bromoacetyl and thiol oligonucleotide derivatives were covalently linked to sulfhydryl- and bromoacetyl-polyacrylamide supports with greater than 95% end-attachment efficiencies. These polyacrylamide-oligonucleotide supports were further derivatized with anionic residues to provide multi-functional supports which show low non-specific binding for non-complementary nucleic acids. While all the polyacrylamide-oligonucleotide supports capture complementary oligonucleotides with high affinity, the pore size was found to be a critical parameter in sandwich hybridization reactions. The superior hybridization characteristics of the Trisacryl support was ascribed to a combination of its macroporous nature, hydrophilicity and the terminal attachment of its capture oligonucleotides.  相似文献   

9.
Up-Converting Phosphor Technology (UPT) is based on lanthanide-containing, submicrometer-sized, ceramic particles that can absorb infrared light and emit visible light. Biological matrices do not up-convert; hence, there is no contribution to test background from sample autofluorescence. Up-converting phosphors do not photobleach and are inert to common assay interferants such as hemoglobin. A reader called UPlink has been developed to interrogate lateral flow test strips that utilize UPT labels. The reader contains a miniaturized, 1-W, infrared laser with peak emission at 980 nm. Preliminary assays that use up-converting phosphor labels, including tests for a drugs of abuse panel and Escherichia coli O157:H7, have been developed. In a "sandwich" assay format, 10(3) org/mL E. coli O157:H7 organisms were detectable in a negative control background of 10(9) other organisms per milliliter of culture medium. Coefficients of variation in concentrations tested from 0 to 10(7) org/mL were all < or =10%. In a competitive inhibition assay format, a multiplexed test simultaneously detected amphetamine, methamphetamine, phencyclidine, and opiates in saliva. For all assays, the percent displacement at 10 ng/mL was > or =40% demonstrating performance comparable with lab-based, commercially available EIAs. All assays were complete in 10 min. The development of rapid tests using UPT creates new applications for on-site testing with sensitivity not available using other label technologies.  相似文献   

10.
Luminescence reactions can be used to detect specific nucleic acid sequences hybridized with a nucleic probe. Different labels such as cytidine sulphone, fluorescein, and biotin can be incorporated into DNA or oligonucleotide molecules and detected by antibody or avidin conjugates coupled to glucose-6P dehydrogenase. On supports such as nitrocellulose filters, sensitivity is not greatly increased using luminescence, but detection is rapid and easy to perform using polaroid film. Moreover, hybridization can be performed with different labelled probes on the same sample. In solution, luminescence can be used to monitor sandwich reactions. The method is less sensitive than detection on filters but can easily be automated. The performance of these assays can be increased considerably by enzymatic amplification of the target catalysed by a thermostable polymerase.  相似文献   

11.
Electric chips for rapid detection and quantification of nucleic acids   总被引:4,自引:0,他引:4  
A silicon chip-based electric detector coupled to bead-based sandwich hybridization (BBSH) is presented as an approach to perform rapid analysis of specific nucleic acids. A microfluidic platform incorporating paramagnetic beads with immobilized capture probes is used for the bio-recognition steps. The protocol involves simultaneous sandwich hybridization of a single-stranded nucleic acid target with the capture probe on the beads and with a detection probe in the reaction solution, followed by enzyme labeling of the detection probe, enzymatic reaction, and finally, potentiometric measurement of the enzyme product at the chip surface. Anti-DIG-alkaline phosphatase conjugate was used for the enzyme labeling of the DIG-labeled detection probe. p-Aminophenol phosphate (pAPP) was used as a substrate. The enzyme reaction product, p-aminophenol (pAP), is oxidized at the anode of the chip to quinoneimine that is reduced back to pAP at the cathode. The cycling oxidation and reduction of these compounds result in a current producing a characteristic signal that can be related to the concentration of the analyte. The performance of the different steps in the assay was characterized using in vitro synthesized RNA oligonucleotides and then the instrument was used for analysis of 16S rRNA in Escherichia coli extract. The assay time depends on the sensitivity required. Artificial RNA target and 16S rRNA, in amounts ranging from 10(11) to 10(10) molecules, were assayed within 25 min and 4 h, respectively.  相似文献   

12.
Hybridization properties of immobilized nucleic acids.   总被引:9,自引:7,他引:2       下载免费PDF全文
The 5'-end attachment of oligonucleotides to dextran supports facilitates the study of the hybridization properties of an immobilized oligonucleotide system. The hybridization properties which were studied include: hybridization capacity and kinetics, hybridization-complex stability, and reagents influencing hybridization efficiency. Results of these experiments reveal that the hybridization efficiencies of support-bound oligonucleotides were 75-80% and 40-50% for single-stranded oligonucleotide targets and long double-stranded targets, respectively. These hybridization efficiencies are dependent upon prehybridizing the support-bound oligonucleotides with dextran sulfate. In addition, comparisons of the relative hybridization efficiencies of the support-bound oligonucleotide and nitrocellulose-based systems have been made which indicate a retention of 13-28% of target sequences on the filters and a detection efficiency of 8-20%.  相似文献   

13.
When capture oligonucleotides are tethered on planar surfaces, mass transport limitations influence the kinetics of solid-phase nucleic acid hybridizations. By diffusion theory, however, hybridization of oligonucleotides on microparticles should be reaction-rate limited. In an initial effort to understand the kinetics of microparticle hybridization reactions, we developed a fluorescence resonance energy transfer method for monitoring oligonucleotide hybridization on microparticles. Microparticles were coated with a fluoresceinated oligomer at surface densities of 20, 40, and 80% saturation, hybridized to a complementary oligonucleotide labeled with tetramethylrhodamine, and monitored over time for quenching of the fluorescein signal as hybridization occurred on the particle surface. Association rate constants were compared for microparticle-based hybridization and solution-phase hybridization. Rate constants for hybridizations on the particle surface were about an order of magnitude less than those for hybridization in solution, but decreasing the surface density of the capture oligonucleotide to 20% saturation improved particle hybridization rates. Although a bimolecular reaction model adequately described solution-phase hybridization kinetics, oligonucleotide hybridization on microparticles did not fit this model but exhibited biphasic reaction kinetics. Based on two different lines of reasoning, we argue that microparticle-based oligonucleotide hybridization was indeed reaction-rate limited in our system and not diffusion-rate limited.  相似文献   

14.
Magnetic nanoparticles prepared from an alkaline solution of divalent and trivalent iron ions could covalently bind protein via the activation ofN-ethyl-N-(3-dimethylaminopropyl) carbodiimide (EDC). Trypsin and avidin were taken as the model proteins for the formation of protein-nanoparticle conjugates. The immobilized yield of protein increased with molar ratio of EDC/nanoparticle. Higher concentrations of added protein could yield higher immobilized protein densities on the particles. In contrast to EDC, the yields of protein immobilization via the activation of cyanamide were relatively lower. Nanoparticles bound with avidin could attach a single-stranded DNA through the avidin-biotin interaction and hybridize with a DNA probe. The DNA hybridization was confirmed by fluorescence microscopy observations. Immobilized DNA on nanoparticles by this technique may have widespread applicability to the detection of specific nucleic acid sequence and targeting of DNA to particular cells.  相似文献   

15.
An assay for the fluorescent detection of short oligonucleotide probe hybridization in miniaturized high-density array platforms is presented. It combines hybridization in solution with real-time fluorescent detection, which involves measurement of fluorescence increase by means of an induced fluorescence resonance energy transfer. The feasibility of this approach using DNA or RNA as a target, and short DNA- as well as LNA (locked nucleic acid)-modified oligonucleotides as probes is shown. The presented approach could potentially contribute to a significant increase in the throughput of large-scale genomic applications, such as oligofingerprinting and genotyping, and also reduce material consumption.  相似文献   

16.
N-(2-mercaptopropionyl)glycine (tiopronin) monolayer-protected silver particles were partially displaced by single-stranded oligonucleotides through ligand exchanges. The oligonucleotide-displaced particles could be hybridized with complementary fluorophore-labeled oligonucleotides. Both the oligonucleotide-displaced and hybridized particles could be aggregated by electrostatic interactions with salt in buffer solution, and the aggregates displayed enhanced luminescence from fluorophores. This result suggests the possible application of surface-enhanced fluorescence from metallic nanoparticle aggregation for DNA detection.  相似文献   

17.
Unlabeled helper oligonucleotides assisting a bead-based sandwich hybridization assay were tested for the optimal placement of the capture and detection probes. The target used was a full-length in vitro synthesized mRNA molecule. Helper probes complementary to regions adjacent to the binding site of the 5' end attached capture probe were found much more effective than helper probes targeting positions adjacent to the detection probe binding site. The difference is believed to be caused by a disruption of the RNA secondary structure in the area where the capture probe binds, thereby reducing structural interference from the bead. The use of additional helpers showed an additive effect. Using helpers at both sides of the capture and detection probes showed a 15- to 40-fold increase in hybridization efficiency depending on the target, thereby increasing the sensitivity of the hybridization assays. Using an electrical chip linked to the detection probe for the detection of p-aminophenol, which is produced by alkaline phosphatase, a detection limit of 2 x 10(-13) M mRNA molecules was reached without the use of a nucleic acid amplification step.  相似文献   

18.

Background

State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests.

Methodology and Principal Findings

The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique.

Conclusions and Significance

The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2), we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls and targets into a single assay and to perform the assay on simple and robust instrumentation is a prerequisite for the development of novel molecular point of care tests.  相似文献   

19.
An earlier reported laboratory assay, performed in The Netherlands, to diagnose Schistosoma infections by detection of the parasite antigen CAA in serum was converted to a more user-friendly format with dry reagents. The improved assay requires less equipment and allows storage and worldwide shipping at ambient temperature. Evaluation of the new assay format was carried out by local staff at Ampath Laboratories, South Africa. The lateral flow (LF) based assay utilized fluorescent ultrasensitive up-converting phosphor (UCP) reporter particles, to be read by a portable reader (UPlink) that was also provided to the laboratory. Over a period of 18 months, about 2000 clinical samples were analyzed prospectively in parallel with a routinely carried out CAA–ELISA. LF test results and ELISA data correlated very well at CAA concentrations above 300 pg/mL serum. At lower concentrations the UCP–LF test indicates a better performance than the ELISA. The UCP–LF strips can be stored as a permanent record as the UCP label does not fade. At the end of the 18 months testing period, LF strips were shipped back to The Netherlands where scan results obtained in South Africa were validated with different UCP scanning equipment including a novel, custom developed, small lightweight UCP strip reader (UCP-Quant), well suited for testing in low resource settings.  相似文献   

20.
We describe here a new method for highly efficient detection of microRNAs by northern blot analysis using LNA (locked nucleic acid)-modified oligonucleotides. In order to exploit the improved hybridization properties of LNA with their target RNA molecules, we designed several LNA-modified oligonucleotide probes for detection of different microRNAs in animals and plants. By modifying DNA oligonucleotides with LNAs using a design, in which every third nucleotide position was substituted by LNA, we could use the probes in northern blot analysis employing standard end-labelling techniques and hybridization conditions. The sensitivity in detecting mature microRNAs by northern blots was increased by at least 10-fold compared to DNA probes, while simultaneously being highly specific, as demonstrated by the use of different single and double mismatched LNA probes. Besides being highly efficient as northern probes, the same LNA-modified oligonucleotide probes would also be useful for miRNA in situ hybridization and miRNA expression profiling by LNA oligonucleotide microarrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号