首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AS52 cells are Chinese hamster ovary (CHO) cells that carry a single functional copy of the bacterial gpt gene and allow the isolation of 6-thioguanine-resistant (6TGr)mutants arising from mutation at the chromosally integrated gpt locus. The gpt locus in AS52 cells is extremely stable, giving rise to 6TGr mutants at frequencies comparable to the endogenous CHO hprt locus. In this study, we describe the spectrum of spontaneous mutations observed in AS52 cells by Southern blot and DNA sequence analyses. Using the polymerase chain reaction (PCR) and the Thermus aquaticus (Taq) polymerase, we have enzymatically amplified 6TGr mutant gpt sequences in vitro. The PCR product was then sequenced without further cloning manipulations to directly identify gpt structural gene mutations. Deletions predominant among the 62 spontaneous 6TGr-AS52 mutant clones analyzed in this study. Of these, 79% (49/62) of the mutations were identified as deletions either by Southern blotting, PCR amplification or DNA sequence analysis. Among these deletions is a predominant 3-base deletion that was observed in 31% (19/62) of the mutants. These data provide a basis for future comparisons of induced point mutational spectra derived in the AS52 cell line, and demonstrate the utility of PCR in the generation of DNA sequence spectra derived from chromosomally integrated mammalian loci.  相似文献   

2.
Constant denaturant electrophoresis is a DNA separation technique based on the principle of cooperative melting equilibrium. DNA sequences with distinct high and low melting domains can be utilized to separate and identify molecules differing by only one base pair in the lower melting domain. Combined with capillary gel electrophoresis and when coupled with high fidelity DNA amplification, this approach can detect mutants at a fraction of 10−6. Modifications to the capillary elecctrophoretic system have also increased DNA loading capacity which allows for analysis of rare mutations in a large, heterogeneous population such as DNA samples derived from human tissues. Employment of this technology has determined the first mutational spectrum in human cells and tissues in a mitochondrial sequence without phenotypic selection of mutants.  相似文献   

3.
T-cell receptor (Ti) gene restriction fragment patterns (RFPs) were determined by Southern blots of genomic DNA obtained from T-lymphocyte colonies isolated from a single normal individual. 4 wild-type colonies and 11 in vivo derived 6-thioguanine-resistant mutant colonies with previously characterized hprt gene structural alterations were studied. Among the hprt mutants, 10 of the 11 showed unique Ti RFPs indicating their origins in different in vivo progenitors. Unique Ti RFPs were also seen among the wild-type T-cell colonies. One, however, shared its Ti RFP with a mutant. These results suggest that mutation in vivo of the hprt gene in human T-lymphocytes occurred after thymic maturation and that the 11 recovered hprt mutants probably resulted from 11 independent mutational events.  相似文献   

4.
The point mutational spectrum over nearly any 75- to 250-bp DNA sequence isolated from cells, tissues or large populations may be discovered using denaturing capillary electrophoresis (DCE). A modification of the standard DCE method that uses cycling temperature (e.g., +/-5 degrees C), CyDCE, permits optimal resolution of mutant sequences using computer-defined target sequences without preliminary optimization experiments. The protocol consists of three steps: computer design of target sequence including polymerase chain reaction (PCR) primers, high-fidelity DNA amplification by PCR and mutant sequence separation by CyDCE and takes about 6 h. DCE and CyDCE have been used to define quantitative point mutational spectra relating to errors of DNA polymerases, human cells in development and carcinogenesis, common gene-disease associations and microbial populations. Detection limits are about 5 x 10(-3) (mutants copies/total copies) but can be as low as 10(-6) (mutants copies/total copies) when DCE is used in combination with fraction collection for mutant enrichment. No other technological approach for unknown mutant detection and enumeration offers the sensitivity, generality and efficiency of the approach described herein.  相似文献   

5.
Novel transgenic mice were developed in order to study the in vivo mutagenesis. The transgenic mice carried pCGK shuttle vector, which contained the Escherichia coli gpt gene as a mutational target, the kanamycin-resistant gene (Kanr) and cos region derived from bacteriophage lambda. The shuttle vector can be recovered from the transgenic mouse genome into the gpt-deficient E. coli by an in vitro packaging method and is selectable as a Kanr phenotype. Mutations induced at the gpt gene can be easily detected with a selective agent, 6-thioguanine (6-TG). In the previous study, the pCGK shuttle vector was incorporated into Chinese hamster CHL/IU cells and the resultant transgenic cell line was shown to be a useful system to study in vitro mutagenesis at the gpt gene. Therefore, an advantage of the shuttle vector is that in vivo mutational data obtained from the transgenic mouse can be compared with those of transgenic cell line in vitro. A transgenic CD-1 mouse line, designated as #128, that carried approximately 50 copies of pCGK shuttle vectors, was selected among 4 transgenic mouse lines. To investigate the sensitivity of the #128 line, the transgenic mice were treated with a single intraperitoneal injection of 250 mg/kg of N-ethyl-N-nitrosourea (ENU) or with 50 mg kg-1 day-1 of ENU for 5 consecutive days, and bone marrow, spleen and liver were dissected to investigate their mutational responses. The background mutant frequency was between 18x10(-6) and 75x10(-6) among all tissues tested. ENU induced significant increases in the mutant frequency above the background level in all three tissues at 14 days after single or 5-day treatment with the chemical. The increases in the mutant frequencies in bone marrow, spleen and liver were 6.4- to 6.8-fold, 3.0- to 5.6-fold and 3.0- to 3.3-fold, respectively. The shuttle vector DNA was recovered from the bone marrow of both spontaneous and ENU-treated mice and the gpt gene was amplified by polymerase chain reaction. The amplified DNA was subject to DNA sequence analysis. Out of 79 spontaneous and 52 ENU-induced mutants, the gpt gene could be amplified from 28 spontaneous and 46 ENU-induced mutants. DNA sequence analysis showed that predominant mutations were identified as A:T to T:A transversions (22 out of 46 sequenced mutants) and G:C to A:T transitions (9/46) in ENU-induced mutants, whereas G:C to T:A transversions (7 out of 28 sequenced mutants) were predominant in spontaneous mutants. These results demonstrate that this transgenic mouse, in combination with the transgenic CHL/IU cell line, is a useful system to study in vivo and in vitro mutational events at the same target gene.  相似文献   

6.
Knowledge of the kinds and numbers of nuclear point mutations in human tissues is essential to the understanding of the mutation mechanisms underlying genetic diseases. However, nuclear point mutant fractions in normal humans are so low that few methods exist to measure them. We have now developed a means to scan for point mutations in 100 bp nuclear single copy sequences at mutant fractions as low as 10–6. Beginning with about 108 human cells we first enrich for the desired nuclear sequence 10 000-fold from the genomic DNA by sequence-specific hybridization coupled with a biotin–streptavidin capture system. We next enrich for rare mutant sequences 100-fold against the wild-type sequence by wide bore constant denaturant capillary electrophoresis (CDCE). The mutant-enriched sample is subsequently amplified by high fidelity PCR using fluorescein-labeled primers. Amplified mutant sequences are further enriched via two rounds of CDCE coupled with high fidelity PCR. Individual mutants, seen as distinct peaks on CDCE, are then isolated and sequenced. We have tested this approach by measuring N-methyl-′-nitro-N-nitrosoguanidine (MNNG)-induced point mutations in a 121 bp sequence of the adenomatous polyposis coli gene (APC) in human lymphoblastoid MT1 cells. Twelve different MNNG-induced GC→AT transitions were reproducibly observed in MNNG-treated cells at mutant fractions between 2 × 10–6 and 9 × 10–6. The sensitivity of this approach was limited by the fidelity of Pfu DNA polymerase, which created 14 different GC→TA transversions at a mutant fraction equivalent to ~10–6 in the original samples. The approach described herein should be general for all DNA sequences suitable for CDCE analysis. Its sensitivity and capacity would permit detection of stem cell mutations in tissue sectors consisting of ~108 cells.  相似文献   

7.
Structural alterations in the hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene in genomic DNA of adult rat-liver (ARL) epithelial cells that were mutated by alkylating and arylating mutagens were studied by restriction enzyme fragment pattern (RFP) analysis. ARL cells were mutated with the direct-acting alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or the activation-dependent arylating agents 7,12-dimethylbenz[a]anthracene (DMBA) and N-2-acetylaminofluorene (AAF). Alterations in the HPRT gene of at least 10 independent 6-thioguanine-resistant (TGr) clones mutated by each chemical were analyzed using 8 different restriction endonucleases; Hind III, EcoRI, BamHI, XbaI, Hae III, XhoI, MspI and PstI, and a full-length HPRT cDNA as a probe in molecular hybridization. Among the 10 MNNG-induced mutants, the RFPs obtained with most endonucleases displayed no changes, while an altered RFP was found in only one mutant using XbaI. None of the 10 DMBA-induced mutants displayed altered RFPs. Restriction analysis of the 10 AAF-induced mutants showed no abnormality in HPRT gene structure in most restriction digests, while altered RFPs were detected in one mutant using MspI and in two mutants with XbaI digestion. Overall, the studies reveal an absence of major DNA sequence changes in 26 of 30 induced mutants although the mutant phenotype of 4 of the TGr clones can be attributed to gross chromosomal changes or a point mutation at the restriction site. The absence of detectable alterations in the RFPs of the majority of the mutants is strongly suggestive of base substitution as the major molecular alteration underlying the mutant phenotype. The HPRT activity of 14 of 30 mutants was at least 5% of the wild-type level, which is consistent with a structural alteration in the gene product expressed as partial activity of the enzyme. Therefore, the data are interpreted as indicating that in the ARL cells, all 3 mutagens induced primarily localized alterations in base sequences in the HPRT gene together with a few mutations involving large sequence changes.  相似文献   

8.
The p53 tumor suppressor gene acquires missense mutations in over 50% of human cancers, and most of these mutations occur within the central core DNA binding domain. One structurally defined region of the core, the L1 loop (residues 112-124), is a mutational "cold spot" in which relatively few tumor-derived mutations have been identified. To further understand the L1 loop, we subjected this region to both alanine- and arginine-scanning mutagenesis and tested mutants for DNA binding in vitro. Select mutants were then analyzed for transactivation and cell cycle analysis in either transiently transfected cells or cells stably expressing wild-type and mutant proteins at regulatable physiological levels. We focused most extensively on two p53 L1 loop mutants, T123A and K120A. The T123A mutant p53 displayed significantly better DNA binding in vitro as well as stronger transactivation and apoptotic activity in vivo than wild-type p53, particularly toward its pro-apoptotic target AIP1. By contrast, K120A mutant p53, although capable of strong binding in vitro and wild-type levels of transactivation and apoptosis when transfected into cells, showed impaired activity when expressed at normal cellular levels. Our experiments indicate a weaker affinity for DNA in vivo by K120A p53 as the main reason for its defects in transactivation and apoptosis. Overall, our findings demonstrate an important, yet highly modular role for the L1 loop in the recognition of specific DNA sequences, target transactivation, and apoptotic signaling by p53.  相似文献   

9.
In this paper, the cloning and nucleotide sequence of the cDNA of the rat gene coding for hypoxanthine-guanine phosphoribosyltransferase (hprt) is reported. Knowledge of the cDNA sequence is needed, among other reasons, for the molecular analysis of hprt mutations occurring in rat cells, such as skin fibroblasts isolated according to the granuloma pouch assay. The rat hprt cDNA was synthesized and used as a template for in vitro amplification by PCR. For this purpose, oligonucleotide primers were used, the nucleotide sequences of which were based on mouse and hamster hprt cDNA sequences. Sequence analysis of 1146 bp of the amplified rat hprt cDNA showed a single open reading frame of 654 bp, encoding a protein of 218 amino acids. In the predicted rat hprt amino acid sequence, the proposed functional domains for 5'-phosphoribosyl-1-pyrophosphate (PRPP) and nucleotide binding in phosphoribosylating enzymes as well as a region near the carboxyl terminal part were highly conserved when compared with amino acid sequences of other mammalian hprt proteins. Analysis of hprt amino acid sequences of 727 independent hprt mutants from human, mouse, hamster and rat cells bearing single amino acid substitutions revealed that a large variety of amino acid changes were located in these highly conserved regions, suggesting that all 3 domains are important for proper catalytic activity. The suitability of the hprt gene as target for mutational analysis is demonstrated by the fact that amino acid changes in at least 151 of the 218 amino acid residues of the hprt protein result in a 6-thioguanine-resistant phenotype.  相似文献   

10.
Genetic analysis of X-ray-sensitive mutants of the CHO cell line   总被引:6,自引:0,他引:6  
P A Jeggo 《Mutation research》1985,146(3):265-270
The genetic diversity of 6 X-ray-sensitive (xrs) mutants of the CHO cell line has been investigated. Hybrids were constructed by fusing ouabain- and 6-thioguanine-resistant cells to ouabain- and 6-thioguanine-sensitive cells and selecting in HAT and ouabain medium. Hybrids were examined for ploidy and X-ray sensitivity. Crosses between xrs mutants and wild-type showed that each mutant was recessive. Crosses between different xrs mutants showed that all were in the same complementation group. Although all the mutants are primarily sensitive to ionizing radiation and bleomycin, and all have a defect in double-strand break rejoining, their cross-sensitivity to other DNA-damaging agents differed to some degree. One explanation is that this repair gene is involved in a pleiotropic response to DNA damage.  相似文献   

11.
We have developed a rapid method for unambiguous identification and mutant fraction determination of individual mutants in mixtures of DNA sequence variants each differing by one or a few nucleotides. This method has applications to such diverse areas as interpretation of mutational spectra, screening of populations for polymorphisms and identification of species in environmental mixtures. In our approach, a mixture of unknown sequences labeled with a fluorescent dye is combined with a set of predetermined sequences (standards) representing the variants to be assayed. Labeling the standards with another dye allows the two sets of variants to be measured independently. Using constant denaturing capillary electrophoresis, the sequence variants are separated as individual peaks on the basis of differential melting equilibria. The unknown sequence variants are initially identified based on co-migration with particular standards. This preliminary identification is verified by hybridization of the unknown variants with the co-migrating standards within the capillary. We demonstrate the use of capillary electrophoresis hybridization to dissect complex mutational spectra of human cells in culture.  相似文献   

12.
The mutational effects of ionising radiation at the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus were studied in human peripheral blood G(0) phase lymphocytes irradiated in vitro with gamma rays. The presence of radiation induced mutants was assessed by selecting the HPRT mutants every week on the basis of 6-thioguanine resistance up to 1 month after irradiation. A dose-related increase of 14.25x10(-6) mutants/Gy was measured after an expression time of 7 days. After 2 weeks from culture starting the fraction of clonable cells in irradiated and control cell populations decreased, limiting the measurements of mutant frequency. The mutational spectrum of the HPRT gene was determined by PCR analyses in a total of 99 mutant clones derived from irradiated lymphocytes. The independent origin of mutant clones carrying the same mutation was assessed by analysing the TCR gamma gene rearrangements. The results showed a dose-related increase of deletion mutants up to 3Gy, whereas point mutation frequency increased only up to 2Gy. Two preferentially deleted regions were identified; one involving the HPRT exon 3, and another one the 3'-terminal and the 3'-flanking region of the gene. One complex mutation involving a non-contiguous deletion of exons 2-5 and 7/8 was observed among the mutants isolated after 3Gy irradiation.  相似文献   

13.
A series of spontaneous and ethyl methanesulfonate-induced 6-thioguanine-resistant mutants were isolated in the CHO-10T5 cell line. This cell line was constructed by the introduction of a shuttle vector containing the Escherichia coli gpt gene into a hypoxanthine-guanine phosphoribosyltransferase deficient derivative of the Chinese hamster cell line CHO-K1. Shuttle vector sequences were recovered from many of the mutant cell lines by the COS cell fusion technique and the DNA base sequence of the gpt genes was determined whenever possible.

The base sequences were determined for gpt genes recovered from 29 spontaneous mutants. Of these 29 mutants, 9 have single base substitutions, 1 has a small duplication, 17 have simple deletions, 1 has a deletion with additional bases inserted at the deletion site, and 1 has no change in the gpt coding sequence. Many of the deletions were less than 20 basepairs in length and several occurred in a region previously observed to be a hotspot for spontaneous deletions. The generation of the deletion/insertion mutation may have involved a quasi-palindromic intermediate.

A total of 59 ethyl methansesulfonate-induced mutants were isolated and vector sequences were recovered from 50 mutants. All 50 mutants sequenced had single base substitutions and most (45) were G:C to A:T transitions. While there were no strong hotspots in this collection of mutations, the site distribution was obviously nonrandom. Many of the G:C to A:T transitions either produced a nonsense codon or occurred at glycine codons.  相似文献   


14.
Potassium bromate (KBrO(3)) induces DNA damage and tumors in mice and rats, but is a relatively weak mutagen in microbial assays and the in vitro mammalian Hprt assay. Concern that there may be a human health risk associated with bromate, a disinfectant by-product of ozonation, has accompanied the increasing use of ozonation as an alternative to chlorination for treatment of drinking water. In this study, we have evaluated the mutagenicity of KBrO(3) and sodium bromate (NaBrO(3)) in the Tk gene of mouse lymphoma cells. In contrast to the weak mutagenic activity seen in the previous studies, bromate induced a mutant frequency of over 100 x 10(-6) at 0.6mM with minimal cytotoxicity (70-80% survival) and over 1300 x 10(-6) at 3mM ( approximately 10% survival). The increase in the Tk mutant frequency was primarily due to the induction of small colony of Tk mutants. Loss of heterozygosity (LOH) analysis of 384 mutants from control and 2.7 mM KBrO(3)-treated cells showed that almost all (99%) bromate-induced mutants resulted from LOH, whereas in the control cultures 77% of the Tk mutants were LOH. Our results suggest that bromate is a potent mutagen in the Tk gene of mouse lymphoma cells, and the mechanism of action primarily involves LOH. The ability of the mouse lymphoma assay to detect a wider array of mutational events than the microbial or V79 Hprt assays may account for the potent mutagenic response.  相似文献   

15.
Analysis of point mutations induced by ultraviolet light in human cells   总被引:3,自引:0,他引:3  
Mutations induced in cultured human cells by 254-nm UV light were analyzed within exon 3 of the hypoxanthine guanine phosphoribosyl transferase (HPRT) gene. Five large independent cultures of human lymphoblastoid cells, line TK6, were exposed to 4 J/m2 of 254-nm UV light and mutants at the HPRT locus were selected en masse by 6-thioguanine (6TG) resistance. Exon 3 of the HPRT gene was amplified from the mutant cells by polymerase chain reaction (PCR) using modified T7 DNA polymerase. Denaturing gradient gel electrophoresis (DGGE) was used to separate the mutant sequences from the wild type as mutant/wild-type heteroduplexes. Individual mutant bands were isolated from the gel and the nature of the mutations was determined by direct sequencing. Eight predominant mutations were detected in the 184-bp exon 3 sequence. Of these, 3 transition, including 2 G-C to A-T and 1 A-T to G-C and 2 A-T to C-G transversions, appeared in all 5 UV-treated cultures but not in untreated cultures and were thus considered to be mutational hotspots. These observations are similar in nature to those previously reported in bacterial and rodent cells. A single G deletion, a tandem substitution of CpT for TpA, and a tandem triple substitution of GpGpA for ApApG were also observed but in only 2, 2 and 3 of the 5 UV-treated cultures, respectively. Numerical analysis of the mutant fractions of these 8 mutations indicated that each of them was distributed as a set of non-random and independent events, i.e., a mutational hotspot.  相似文献   

16.
A transgenic gpt+ Chinese hamster cell line (G12) was found to be susceptible to carcinogenic nickel-induced inactivation of gpt expression without mutagenesis or deletion of the transgene. Many nickel-induced 6-thioguanine-resistant variants spontaneously reverted to actively express gpt, as indicated by both reversion assays and direct enzyme measurements. Since reversion was enhanced in many of the nickel-induced variant cell lines following 24-h treatment with the demethylating agent 5-azacytidine, the involvement of DNA methylation in silencing gpt expression was suspected. This was confirmed by demonstrations of increased DNA methylation, as well as by evidence indicating condensed chromatin and heterochromatinization of the gpt integration site in 6-thioguanine-resistant cells. Upon reversion to active gpt expression, DNA methylation and condensation are lost. We propose that DNA condensation and methylation result in heterochromatinization of the gpt sequence with subsequent inheritance of the now silenced gene. This mechanism is supported by direct evidence showing that acute nickel treatment of cultured cells, and of isolated nuclei in vitro, can indeed facilitate gpt sequence-specific chromatin condensation. Epigenetic mechanisms have been implicated in the actions of some nonmutagenic carcinogens, and DNA methylation changes are now known to be important in carcinogenesis. This paper further supports the emerging theory that nickel is a human carcinogen that can alter gene expression by enhanced DNA methylation and compaction, rather than by mutagenic mechanisms.  相似文献   

17.
E Glick  K L Vigna  L A Loeb 《The EMBO journal》2001,20(24):7303-7312
Human DNA polymerase eta (hPol eta) is one of the newly identified Y-family of DNA polymerases. These polymerases synthesize past template lesions that are postulated to block replication fork progression. hPol eta accurately bypasses UV-associated cis-syn cyclobutane thymine dimers in vitro and contributes to normal resistance to sunlight-induced skin cancer. We describe here mutational analysis of motif II, a highly conserved sequence, recently reported to reside in the fingers domain and to form part of the active site in Y-family DNA polymerases. We used a yeast-based complementation system to isolate biologically active mutants created by random sequence mutagenesis, synthesized the mutant proteins in vitro and assessed their ability to bypass thymine dimers. The mutability of motif II in 210 active mutants has parallels with natural evolution and identifies Tyr52 and Ala54 as prime candidates for involvement in catalytic activity or bypass. We describe the ability of hPol eta S62G, a mutant polymerase with enhanced activity, to bypass five other site-specific lesions. Our results may serve as a prototype for studying other members of the Y-family DNA polymerases.  相似文献   

18.
We have determined the nucleotide sequences of 10 intragenic human HPRT gene deletion junctions isolated from thioguanine-resistant PSV811 Werner syndrome fibroblasts or from HL60 myeloid leukemia cells. Deletion junctions were located by fine structure blot hybridization mapping and then amplified with flanking oligonucleotide primer pairs for DNA sequence analysis. The junction region sequences from these 10 HPRT mutants contained 13 deletions ranging in size from 57 bp to 19.3 kb. Three DNA inversions of 711, 368, and 20 bp were associated with tandem deletions in two mutants. Each mutant contained the deletion of one or more HPRT exon, thus explaining the thioguanine-resistant cellular phenotype. Deletion junction and donor nucleotide sequence alignments suggest that all of these HPRT gene rearrangements were generated by the nonhomologous recombination of donor DNA duplexes that share little nucleotide sequence identity. This result is surprising, given the potential for homologous recombination between copies of repeated DNA sequences that constitute approximately a third of the human HPRT locus. No difference in deletion structure or complexity was observed between deletions isolated from Werner syndrome or from HL60 mutants. This suggests that the Werner syndrome deletion mutator uses deletion mutagenesis pathway(s) that are similar or identical to those used in other human somatic cells.  相似文献   

19.
The sequences of more than 600 frameshift mutations produced as a consequence of in vitro DNA replication on an oligonucleotide-primed, single-stranded DNA template by the Escherichia coli polymerase I enzyme (PolI) or its large fragment derivative (PolLF) were compared. Four categories of mutants were found: (1) single-base deletions, (2) base substitutions, (3) multiple-base deletions and (4) complex frameshift mutations that change both the base sequence and the number of bases in a concerted mutational process. The template sequence 5'-Py-T-G-3', previously identified as a PolLF hotspot for single-base deletions opposite G, is also a hotspot for PolI. A PolI-specific warm spot for single-base deletions was identified. Among base substitutions, transitions were more frequent than transversions. Transversions were mediated by (template)G.G, (template)G.A, and (template)C.T mispairs. Multiple-base deletions were found only after PolI replication. Although each of these deletions can be explained by a misalignment mediated by directly repeated DNA sequences, deletion frequencies were often different for repeats of the same length. Both PolI and PolLF produced many complex frameshift mutants. The new sequences at the mutant sites are exactly complementary to nearby DNA sequences in the newly synthesized DNA strand. In each case, palindromic complementarity could mediate the misalignment needed to initiate the mutational process. The misaligned DNA synthesis accounts for the nucleotide changes at the mutant site and for homology that could direct realignment of the DNA onto the template. Most of the complex mutant sequences could be initiated by either intramolecular misalignments involving fold-back structures in newly synthesized DNA or by strand-switching during strand-displacement synthesis. The striking differences between the specificities of complex frameshift mutations and multiple-base deletions by PolI and PolLF identify the existence of polymerase-specific determinants that influence the frequency and specificity of misalignment-mediated frameshifts and deletions.  相似文献   

20.
DNA polymerase I of Escherichia coli provides an excellent model for the study of template-directed enzymatic synthesis of DNA because it is a single subunit enzyme, it can be obtained in large quantities and the three-dimensional structure of the polymerizing domain (the Klenow fragment) has recently been determined (Ollis et al., 1985). One approach to assigning functions to particular portions of the structure is to correlate the altered enzymatic behavior of mutant forms of DNA polymerase I with the change in the primary sequence of the protein. Towards this end we have developed a rapid procedure for mapping any polA mutation to a region no larger than 300 base-pairs within the polA gene. Two series of polA deletion mutants with defined end-points were constructed in vitro and cloned into bacteriophage lambda. These phages can then be used to map precisely E. coli polA mutants. Twelve polA- alleles have been mapped in this way and for nine of them the nature of the mutational change has been determined by DNA sequence analysis. Two of the mutations, polA5 and polA6, which affect the enzyme-DNA interaction, provide evidence for the location of the DNA binding region on the polymerase three-dimensional structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号