首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Thyroid function ultimately depends on appropriate iodine supply to the gland. There is a complex series of checks and balances that the thyroid uses to control the orderly utilization of iodine for hormone synthesis. The aim of our study is to evaluate the mechanism underlying the effect of iodine excess on thyroid hormone metabolism. Based on the successful establishment of animal models of normal-iodine (NI) and different degrees of high-iodine (HI) intake in Wistar rats, the content of monoiodotyrosine (MIT), diiodotyrosine (DIT), T4, and T3 in thyroid tissues, the activity of thyroidal type 1 deiodinase (D1) and its (Dio1) mRNA expression level were measured. Results showed that, in the case of iodine excess, the biosynthesis of both MIT and DIT, especially DIT, was increased. There was an obvious tendency of decreasing in MIT/DIT ratio with increased doses of iodine intake. In addition, iodine excess greatly inhibited thyroidal D1 activity and mRNA expression. T3 was greatly lower in the HI group, while there was no significant difference of T4 compared with NI group. The T3/T4 ratio was decreased in HI groups, antiparalleled with increased doses of iodine intakes. In conclusion, the increased biosyntheses of DIT relative to MIT and the inhibition of thyroidal Dio1 mRNA expression and D1 activity may be taken as an effective way to protect an organism from impairment caused by too much T3. These observations provide new insights into the cellular regulation mechanism of thyroid hormones under physiological and pathological conditions.  相似文献   

2.
The aim of this study was to illustrate the combined effect of excess iodine and high-fat diet on lipid metabolism and its potential molecular mechanism. Sixty Balb/c mice were randomly allocated to three control groups or three excess iodine groups and fed with a high-fat diet in the absence or presence of 1,200 μg/L iodine for 1, 3, or 6 months, respectively. Serum lipid parameters and serum thyroid hormones were measured. Expressions of scavenger receptor class B type-I (SR-BI) and low density lipoproteins receptor (LDLr) mRNA and protein in liver were detected. Thyroid histology and liver type 1 iodothyronine deiodinase activity were analyzed. At the end of 3 and 6 months, compared with control, serum TC, TG, and LDL-C in excess iodine group were significantly lower (p < 0.05). LDLr expression in liver was increased significantly (p < 0.05) and parallel to the change of serum TC and TG. TT3 and TT4 levels in serum were elevated and TSH decreased significantly (p < 0.05). Liver type I iodothyronine deiodinase activity was significantly higher (p < 0.05) than control at the end of 6 months. Moreover, a time course damage effect of excess iodine combined with high-fat diet on thyroid glands was observed. The present findings demonstrated that excess iodine combined with high-fat diet could cause damage to thyroid glands and lead to thyroid hormone disorder. Those in turn caused the upregulation of hepatic LDLr gene, which resulted in the disorder in serum lipids.  相似文献   

3.
This study aimed to compare the effect of excess iodine and herbs with excess iodine on treating iodine deficiency-induced goiter from the perspective of oxidative stress and to measure selenium values in Chinese herbs. One hundred twenty 4-week-old Wistar rats were selected and randomly divided into four groups after inducing iodine-deficiency goiter: normal control group (NC), model control group (MC), iodine excess group (IE), and herbs with iodine excess group (HIE). The activities of oxidative enzymes and levels of oxidative products were measured using biochemical tests. The expression of 4-hydroxynonenal (4-HNE) in the thyroid was detected by immunohistochemistry and the expression of peroxiredoxin 5 (PRDX5) by the Western blot and immunohistochemistry. Selenium values in iodine-excessive herbs were measured by hydride generation-atomic fluorescence spectrometry. The herbs with iodine excess were tested to contain rich selenium. The activities of superoxide dismutase (SOD) and PRDX5 increased markedly, and the values of malondialdehyde (MDA) and 4-HNE decreased significantly in the HIE group. In conclusion, compared with excess iodine, herbs with excess iodine damaged thyroid follicular cells less, which may be related to the increase of antioxidant capacity and rich selenium values in iodine-excessive herbs.  相似文献   

4.
Thyroid hormone receptor (TR) agonists have been proposed as therapeutic agents to treat non-alcoholic fatty liver disease (NAFLD) and insulin resistance. We investigated the ability of the TR agonists GC-1 and KB2115 to reduce hepatic steatosis in ob/ob mice. Both compounds markedly reduced hepatic triglyceride levels and ameliorated hepatic steatosis. However, the amelioration of fatty liver was not sufficient to improve insulin sensitivity in these mice and reductions in hepatic triglycerides did not correlate with improvements in insulin sensitivity or glycemic control. Instead, the effects of TR activation on glycemia varied widely and were found to depend upon the time of treatment as well as the compound and dosage used. Lower doses of GC-1 were found to further impair glycemic control, while a higher dose of the same compound resulted in substantially improved glucose tolerance and insulin sensitivity, despite all doses being equally effective at reducing hepatic triglyceride levels. Improvements in glycemic control and insulin sensitivity were observed only in treatments that also increased body temperature, suggesting that the induction of thermogenesis may play a role in mediating these beneficial effects. These data illustrate that the relationship between TR activation and insulin sensitivity is complex and suggests that although TR agonists may have value in treating NAFLD, their effect on insulin sensitivity must also be considered.  相似文献   

5.
Metabolic syndrome represents a collection of abnormalities that includes fatty liver, and it currently affects one-third of the United States population and has become a major health concern worldwide. Fructose intake, primarily from added sugars in soft drinks, can induce fatty liver in animals and is epidemiologically associated with nonalcoholic fatty liver disease in humans. Fructose is considered lipogenic due to its ability to generate triglycerides as a direct consequence of the metabolism of the fructose molecule. Here, we show that fructose also stimulates triglyceride synthesis via a purine-degrading pathway that is triggered from the rapid phosphorylation of fructose by fructokinase. Generated AMP enters into the purine degradation pathway through the activation of AMP deaminase resulting in uric acid production and the generation of mitochondrial oxidants. Mitochondrial oxidative stress results in the inhibition of aconitase in the Krebs cycle, resulting in the accumulation of citrate and the stimulation of ATP citrate lyase and fatty-acid synthase leading to de novo lipogeneis. These studies provide new insights into the pathogenesis of hepatic fat accumulation under normal and diseased states.  相似文献   

6.
Mitochondrial oxidative stress is considered as a key accelerator of fibrosis in various organs including the liver. However, the production of oxidative stress and progression of liver fibrosis may merely represent the independent consequences of hepatocellular injury caused by the primary disease. Because of a lack of appropriate experimental models to evaluate the sole effects of oxidative stress, it is virtually unknown whether this stress is causatively linked to the progression of liver fibrosis. Here, we examined the direct effects of mitochondrial reactive oxygen species (ROS) on the progression of high fat/calorie diet-induced steatohepatitis using Tet-mev-1 mice, in which a mutated succinate dehydrogenase transgene impairs the mitochondrial electron transport and generates an excess amount of ROS in response to doxycycline administration. Wild type and Tet-mev-1 mice that had been continuously given doxycycline-containing water were subsequently fed either normal chow or a cholesterol-free high-fat/high-sucrose diet for 4 months at approximately 1 or 2 years of age. Histopathological examinations indicated that neither the mitochondrial ROS induced in Tet-mev-1 mice nor the feeding of wild type animals with high-fat/high-sucrose diet alone caused significant liver fibrosis. Only when the Tet-mev-1 mice were fed a high-fat/high-sucrose diet, it induced lipid peroxidation in hepatocytes and enhanced hepatic CC chemokine expression. These events were accompanied by increased infiltration of CCR5-positive cells and activation of myofibroblasts, resulting in extensive liver fibrosis. Interestingly, this combinatorial effect of mitochondrial ROS and excess fat/calorie intake on liver fibrosis was observed only in 2-year-old Tet-mev-1 mice, not in the 1-year-old animals. Collectively, these results indicate that mitochondrial ROS in combination with excess fat/calorie intake accelerates liver fibrosis by enhancing CC chemokine production in aged animals. We have provided a good experimental model to explore how high fat/calorie intake increases the susceptibility to nonalcoholic steatohepatitis in aged individuals who have impaired mitochondrial adaptation.  相似文献   

7.
肝脂肪变性是长期饮酒、肥胖、药物中毒等致脂肪肝形成过程中重要的中间阶段,严 重的脂肪堆积会导致肝细胞坏死或肝硬化,但是有关肝脂肪变性的分子机理目前仍不十分清 楚.本实验利用四氯化碳建立大鼠肝脂肪变性模型,四氯化碳处理组较对照组肝脏丙二醛含 量增加68%,内质网应激标志蛋白GRP78 mRNA水平和蛋白质水平表达均明显增加;人肝癌细胞株HepG2体外培养中,加入四氯化碳处理后内质网发生应激,并导致SREBP-1表达增加且活化.结果表明,四氯化碳导致的肝脂肪变性与肝细胞的氧化损伤和内质网应激有关,其分子机理可能为内质网应激发生后促进SREBP-1转录因子的表达与活化,SREBP-1在细胞核内参与生脂相关酶如HMG CoA 还原酶等基因的诱导表达,生脂相关酶含量的增加进一步使肝细胞甘油三酯、胆固醇合成增加,脂质的异常堆积导致了肝脂肪变性的发生.  相似文献   

8.
为了探讨植物提取物槲皮素对负重游泳小鼠的能量代谢和氧化应激的影响,本研究将45只SPF级雄性昆明小鼠随机分为正常对照组、游泳组和槲皮素组,每组15只。槲皮素组小鼠喂养2 g/kg的槲皮素饲料,其他组小鼠喂养标准饲料,共喂养14 d。然后将游泳组和槲皮素组小鼠按照体重的3%进行负重游泳1 h,测定各组小鼠的血糖、乳酸、尿素氮、游离脂肪酸、琥珀酸脱氢酶、三磷酸腺苷、丙二醛、谷胱甘肽过氧化物酶和总抗氧化活性。结果显示,负重游泳后,槲皮素组血清乳酸和尿素氮水平显著低于游泳组,并且槲皮素组游离脂肪酸水平显著高于游泳组。负重游泳后,游泳组小鼠的肝脏和肌肉组织中的琥珀酸脱氢酶含量均显著降低,槲皮素组小鼠游泳后未见明显降低。负重游泳后,游泳组小鼠肌肉组织中的ATP酶活性显著降低,槲皮素组小鼠游泳后未见明显降低。负重游泳后,槲皮素组的丙二醛含量显著低于游泳组。游泳组和槲皮素组小鼠负重游泳后的谷胱甘肽过氧化物酶含量均显著降低,槲皮素组小鼠的谷胱甘肽过氧化物酶含量未见明显降低。游泳组小鼠血清总抗氧化活性显著低于对照组,而槲皮素组与对照组无显著差异。本研究初步表明,槲皮素可调节负重游泳小鼠的能量代谢来起到抗疲劳作用,主要机制与增加脂肪动员、抑制蛋白质分解和加强三羧酸循环有关。另外,槲皮素可通过抑制脂质过氧化、清除超氧阴离子自由基来防止运动过程中的氧化应激损伤。  相似文献   

9.
10.
Alcoholic liver disease (ALD) has become an important liver disease hazard to public and personal health. Oxidative stress is believed to be responsible for the pathological changes in ALD. Previous studies have showed that insulin, a classic regulator of glucose metabolism, has significant anti-oxidative function and plays an important role in maintaining the redox balance. For addressing the effects and mechanisms of insulin pre-administration on ethanol-induced liver oxidative injury, we investigated histopathology, inflammatory factors, apoptosis, mitochondrial dysfunction, oxidative stress, antioxidant defense system, ethanol metabolic enzymes and lipid disorder in liver of ethanol-exposed mice pretreatment with insulin or not. There are several novel findings in our study. First, we found insulin pre-administration alleviated acute ethanol exposure-induced liver injury and inflammation reflected by the decrease of serum AST and ALT activities, the improvement of pathological alteration and the inhibition of TNF-α and IL-6 expressions. Second, insulin pre-administration could significantly reduce apoptosis and ameliorate mitochondrial dysfunction in liver of mice exposed to ethanol, supporting by decreasing caspases-3 activities and the ratio of Bax/Bcl-2, increasing mitochondrial viability and mitochondrial oxygen consumption, inhibition of the decline of ATP levels and mitochondrial ROS accumulation. Third, insulin pre-administration prevented ethanol-mediated oxidative stress and enhance antioxidant defense system, which is evaluated by the decline of MDA levels and the rise of GSH/GSSG, the up-regulations of antioxidant enzymes CAT, SOD, GR through Nrf-2 dependent pathway. Forth, the modification of ethanol metabolism pathway such as the inhibition of CYP2E1, the activation of ALDH might be involved in the anti-oxidative and protective effects exerted by insulin pre-administration against acute ethanol exposure in mice. Finally, insulin pre-administration deteriorated hepatic steatosis in mice exposed to ethanol might be through SRBEP-1c activation. In summary, these results indicated that insulin pre-administration effectively alleviated liver oxidative injury through anti-inflammatory, anti-oxidative and anti-apoptotic activities but also deteriorated hepatic steatosis through SRBEP-1c activation in mice exposed to ethanol. Our study provided novel insight about the effects and mechanisms of insulin on ethanol-induced liver injury.  相似文献   

11.
12.
Cho  Sung-Hee  Chai  Jung Hoon  Chang  Sung-Youn  Kim  Soon Ae 《Neurochemical research》2020,45(9):2044-2051
Neurochemical Research - Valproic acid (VPA), an antiepileptic and mood stabilizer, modulates neurotransmission and gene expression by inhibiting histone deacetylase activity. It is reported that...  相似文献   

13.

Iodine is an important chemical for thyroid hormone synthesis. The association between iodine nutrition status and the risk of disease present U-shaped curve, as either low or high iodine nutrition status will increase the risk of thyroid diseases. Endoplasmic reticulum stress (ER stress), which can induce over expressions of inflammation factors, like monocyte chemo-attractant protein-1 (MCP-1), is related to the pathogenesis of thyroid disease. However, the correlations among iodine, MCP-1 and ER stress are not entirely clear during the pathogenesis of thyroid diseases. Present study aims to investigate how iodine nutrition status influences MCP-1 expression through P38/MAPK pathway as well as the roles of ER stress in this process. Human thyroid cells (Nthy-ori-3-1) was used as a cell model in this study. The expressions of p-P38, PERK, IRE1, ATF6, and MCP-1 were detected after the cells were treated with iodine at different concentrations with or without ER stress inhibitor (4-PBA) or P38/MAPK blocker (SB203580). The expressions of p-P38, PERK, IRE1, ATF6, and MCP-1 in Nthy-ori-3-1 cells treated with iodine at abnormal concentrations were all significantly higher than those in cells treated with iodine at normal concentration. However, addition of ER stress blocker, 4-PBA in the abnormal-iodine treated cells, decreased the expressions of p-P38, PERK, IRE1, ATF6, and MCP-1. Similarly, P38/MAPK activity inhibitor, SB203580, also decreased the expressions of p-P38 and MCP-1. Abnormal iodine nutrition status triggered ER stress and upregulated MCP-1 expression through P38/MAPK signaling pathway in thyrocyte.

  相似文献   

14.
Mutations of the monocarboxylate transporter 8 (MCT8) cause a severe X-linked intellectual deficit and neurological impairment. MCT8 is a specific thyroid hormone (T4 and T3) transporter and the patients also present unusual abnormalities in the serum profile of thyroid hormone concentrations due to altered secretion and metabolism of T4 and T3. Given the role of thyroid hormones in brain development, it is thought that the neurological impairment is due to restricted transport of thyroid hormones to the target neurons. In this work we have investigated cerebral metabolism in mice with Mct8 deficiency. Adult male mice were infused for 30 minutes with (1-13C) glucose and brain extracts prepared and analyzed by 13C nuclear magnetic resonance spectroscopy. Genetic inactivation of Mct8 resulted in increased oxidative metabolism as reflected by increased glutamate C4 enrichment, and of glutamatergic and GABAergic neurotransmissions as observed by the increases in glutamine C4 and GABA C2 enrichments, respectively. These changes were distinct to those produced by hypothyroidism or hyperthyroidism. Similar increments in glutamate C4 enrichment and GABAergic neurotransmission were observed in the combined inactivation of Mct8 and D2, indicating that the increased neurotransmission and metabolic activity were not due to increased production of cerebral T3 by the D2-encoded type 2 deiodinase. In conclusion, Mct8 deficiency has important metabolic consequences in the brain that could not be correlated with deficiency or excess of thyroid hormone supply to the brain during adulthood.  相似文献   

15.
In women, excess production of the male hormone, testosterone (T), is accompanied by insulin resistance. However, hyperandrogenemia is also associated with β-cell dysfunction and type 2 diabetes raising the possibility that androgen receptor (AR) activation predisposes to β-cell failure. Here, we tested the hypothesis that excess AR activation produces systemic oxidative stress thereby contributing to β-cell failure. We used normal female mice (CF) and mice with androgen resistance by testicular feminization (Tfm). These mice were exposed to androgen excess and a β-cell stress induced by streptozotocin (STZ). We find that following exposure to T, or the selective AR-agonist dehydrotestosterone (DHT), CF mice challenged with STZ, which are normally protected, are prone to β-cell failure and insulin-deficient diabetes. Conversely, T-induced predisposition to β-cell failure is abolished in Tfm mice. We do not observe any proapoptotic effect of DHT alone or in the presence of H2O2 in cultured mouse and human islets. However, we observe that exposure of CF mice to T or DHT provokes systemic oxidative stress, which is eliminated in Tfm mice. This work has significance for hyperandrogenic women; excess activation of AR by testosterone may provoke systemic oxidative stress. In the presence of a prior β-cell stress, this may predispose to β-cell failure.  相似文献   

16.
The accumulation of triglycerides (TG) in the liver, designated hepatic steatosis, is characteristically associated with obesity and insulin resistance, but it can also develop after fasting. Here, we show that fasting-induced hepatic steatosis is under genetic control in inbred mice. After a 24-h fast, C57BL/6J mice and SJL/J mice both lost more than 20% of body weight and ∼60% of total body TG. In C57BL/6J mice, TG accumulated in liver, producing frank steatosis. In striking contrast, SJL/J mice failed to accumulate any hepatic TG even though they lost nearly as much adipose tissue mass as the C57BL/6J mice. Mice from five other inbred strains developed fasting-induced steatosis like the C57BL/6J mice. Measurements of the uptake of free fatty acids (FA) in vivo and in vitro demonstrated that SJL/J mice were protected from steatosis because their heart and skeletal muscle took up and oxidized twice as much FA as compared with C57BL/6J mice. As a result of this muscle diversion, serum-free FA and ketone bodies rose much less after fasting in SJL/J mice as compared with C57BL/6J mice. When livers of SJL/J and C57BL/6J mice were perfused with similar concentrations of FA, the livers took up and esterified similar amounts. We conclude that SJL/J mice express one or more variant genes that lead to enhanced FA uptake and oxidation in muscle, thereby sparing the liver from FA overload in the fasting state.Liver and adipose tissue coordinate metabolic responses to oscillations in nutrient availability (1, 2). In the postprandial state, the liver secretes triglycerides (TG)4 into the blood in very low-density lipoproteins (VLDL). In adipose tissue, lipoprotein lipase hydrolyzes the TG, producing fatty acids (FA) and monoglycerides that enter fat cells for reesterification and storage as TG (1). The activity of adipose tissue lipoprotein lipase is enhanced by the postprandial rise in insulin. At the same time, insulin inhibits lipolysis of stored TG in fat cells, assuring that the TG will be retained in the cells (3).Under fasting conditions, insulin falls and the inhibitory effect of insulin on adipose tissue lipolysis is diminished. The released FA enters the blood and is used as an energy source in liver, heart, and skeletal muscle. In the liver, excess FA are either re-esterified into TG for intracellular storage or oxidized and secreted as ketone bodies, which become the main energy source for the brain. In skeletal muscle during fasting, FA are oxidized to CO2 (1, 2).We (46) and others (7) previously reported that livers of mice accumulate large amounts of TG after fasting for 6–24 h. In the current study, we screened 7 strains of inbred mice to study the genetic control of fasting-induced hepatic TG accumulation. Mice from 6 of 7 strains exhibited fasting-induced fatty liver. In the unique mouse strain (SJL/J), hepatic TG failed to accumulate after a 24-h fast even though the SJL/J mice lost amounts of body weight and adipose tissue that were similar to those of the other 6 strains. To trace the mechanism for the difference in hepatic TG accumulation, we conducted extensive comparisons of SJL/J mice and C57BL/6J mice. We provide evidence that mice from both strains release comparable amounts of FA from adipose tissue into blood after fasting. In the SJL/J mice, the bulk of these FA are taken up by muscle and oxidized. In C57BL/6J mice, FA uptake in muscle is comparatively low, and the excess FA are taken up by the liver where they are converted to TG. Thus, genetic control of muscle FA uptake determines the level of hepatic TG accumulation in fasted mice.  相似文献   

17.
Nonalcoholic fatty liver disease (NAFLD) is a chronic disorder, which is mainly considered a result of high-fat diet in humans. The clinical spectrum of NA  相似文献   

18.
目的:研究肾虚育精方对肾精亏虚小鼠模型生殖激素及氧化应激水平的影响。方法:选择6周龄雄性健康级SD小鼠60只纳入本次研究。根据随机数字法将小鼠分成3组,分别为观察组、模型组及对照组,每组各20只。观察组及模型组的小鼠通过"房劳和惊恐复合伤肾法"建立肾精亏虚模型,对照组小鼠不建模。建模完成后观察组小鼠每日给予肾虚育精方的浓缩液干预,模型组及对照组则予以等量的生理盐水灌胃。干预21d后对比各组小鼠睾丸组织有关指标,包括Johnsen 10级积分、生精小管的直径及生精上皮厚度,小鼠生殖激素水平,包括血清卵泡刺激素(FSH)及睾酮(TEST),氧化应激指标水平,包括丙二醛(MDA)、过氧化物歧化酶(SOD)及总抗氧化能力(T-AOC)。结果:对照组与观察组的Johnsen 10级积分高于模型组,生精小管的直径及生精上皮厚度大于模型组,差异均有统计学意义(P0.05);观察组的生精上皮厚度明显大于对照组,差异有统计学意义(P0.05)。对照组与观察组小鼠的FSH及TEST水平均明显高于模型组,差异均有统计学意义(均P0.05)。对照组与观察组的MDA和SOD水平明显低于模型组,T-AOC水平明显高于模型组,差异均有统计学意义(P0.05)。结论:肾虚育精方能够提升肾精亏虚小鼠模型的生殖激素水平,并降低氧化应激水平,可将肾虚育精方应用于临床治疗。  相似文献   

19.
Non-ionic contrast media (CM) can induce tissue kidney injury via activation of phagocytosis and oxidative stress, although the mechanisms of injury via neutrophils are not clear. We investigated the effects of CM on oxidative stress and Ca2+ concentrations in serum and neutrophils of humans. Ten migraine patients were used in the study. Serum and neutrophil samples from patients?? peripheral blood were obtained before (control) and 30?min after non-ionic (iopromide) CM injection. The neutrophils were incubated with non specific transient receptor potential 2 (TRPM2) channel blocker, 2-aminoethoxydiphenyl borate (2-APB), and voltage gated Ca2+ channel blockers, verapamil plus diltiazem. Serum and neutrophil lipid peroxidation, apoptosis and intracellular Ca2+ concentrations levels were higher in the CM group than in controls. The neutrophilic reduced glutathione (GSH) and glutathione peroxidase (GSH-Px) levels as well as serum vitamin E and ??-carotene concentrations were lower in the CM group than in controls. Neutrophil lipid peroxidation levels were lower in the CM+2-APB and CM+verapamil-diltiazem groups than in the CM group, although GSH, GSH-Px and intracellular Ca2+ values increased in the CM+2-APB and CM+verapamil-diltiazem groups. However, caspase-3, caspase-9, vitamin A and vitamin C values were unaltered by CM treatment. In conclusion, we observed that CM induced oxidative stress and Ca2+ influx by decreasing vitamin E, ??-carotene and Ca2+ release levels in human serum and neutrophils. However, we observed protective effects of Ca2+ channel blockers on Ca2+ influx in neutrophils.  相似文献   

20.
Hepatic Encephalopathy (HE) is one of the most common complications of acute liver diseases and is known to have profound influence on the brain. Most of the studies, available from the literature are pertaining to whole brain homogenates or mitochondria. Since brain is highly heterogeneous with functions localized in specific areas, the present study was aimed to assess the oxidative stress in different regions of brain-cerebral cortex, cerebellum and pons medulla during acute HE. Acute liver failure was induced in 3-month old adult male Wistar rats by intraperitoneal injection of thioacetamide (300 mg/kg body weight for two days), a well known hepatotoxin. Oxidative stress conditions were assessed by free radical production, lipid peroxidation, nitric oxide levels, GSH/GSSG ratio and antioxidant enzyme machinery in three distinct structures of rat brain-cerebral cortex, cerebellum and pons medulla. Results of the present study indicate a significant increase in malondialdehyde (MDA) levels, reactive oxygen species (ROS), total nitric oxide levels [(NO) estimated by measuring (nitrites + nitrates)] and a decrease in GSH/GSSG ratio in all the regions of brain. There was also a marked decrease in the activity of the antioxidant enzymes-glutathione peroxidase, glutathione reductase and catalase while the super oxide dismutase activity (SOD) increased. However, the present study also revealed that pons medulla and cerebral cortex were more susceptible to oxidative stress than cerebellum. The increased vulnerability to oxidative stress in pons medulla could be due to the increased NO levels and increased activity of SOD and decreased glutathione peroxidase and glutathione reductase activities. In summary, the present study revealed that oxidative stress prevails in different cerebral regions analyzed during thioacetamide-induced acute liver failure with more pronounced effects on pons medulla and cerebral cortex. Murthy Ch.R.K—Deceased while in service.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号