首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an impurity in certain batches of illicit heroin substitutes, is known to cause parkinsonian symptoms and degeneration of the nigrostriatal cells in drug abusers and primates. Neurotoxicity depends on oxidation of MPTP by monoamine oxidase in brain cells to the dihydropyridinium form, which is further oxidized to N-methyl-4-phenylpyridinium (MPP+), the 4-electron oxidation product. The latter is widely believed to be the compound responsible for neuronal destruction and the NADH dehydrogenase of the inner membrane has been postulated to be its target. This enzyme is inhibited, however, only at very high concentrations of MPP+, while the steady-state concentration of MPP+ in the nigrostriatal cells of MPTP-treated animals is several orders of magnitude lower. This paradox has now been resolved by the discovery of an energized uptake system for MPP+ in mitochondria which rapidly concentrates MPP+ to very high concentrations in the mitochondria at micromolar external concentrations. The process is dependent on the electrical gradient of the membrane, has a Km of about 5 mM, and is completely blocked by respiratory inhibitors and uncouplers.  相似文献   

2.
Active uptake of MPP+, a metabolite of MPTP, by brain synaptosomes   总被引:20,自引:0,他引:20  
Mouse brain synaptosomal preparations were used to study uptake of N-methyl-4-phenylpyridine (MPP+), a metabolite of the neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). The uptake of [3H]-MPP+ by striatal synaptosomes was approximately 25 X greater than that of [3H]-MPTP, with a KM of 0.48 microM and a Vmax of 5.3 nmoles/g tissue/min. Uptake was Na+ dependent and inhibited by ouabain, cocaine and dopamine (Ki 0.12 microM). Synaptosomes prepared from the corpus striatum accumulated [3H]-MPP+ at a rate 5-10 times higher than preparations from other brain regions. This selective uptake of MPP+ may contribute to the specificity of the toxic effects of MPTP on nigrostriatal dopaminergic neurons.  相似文献   

3.
The oxidation of NAD+-linked substrates by rat brain mitochondria is completely inhibited by pre-incubation with 0.5 mM N-methyl-4-phenylpyridine (MPP+). The effect is dependent on the integrity of the mitochondria because far higher concentrations of MPP+ are required to inhibit NADH oxidation in inverted mitochondria or isolated inner membrane preparations. The reason for this difference in behavior has been traced to a novel system for the uptake of MPP+ into mitochondria against a concentration gradient. The uptake system is energized by the transmembrane potential, as shown by the fact that valinomycin plus K+, which collapses this gradient, abolishes MPP+ uptake, while agents which collapse the proton gradient have no effect on the process. If an uncoupler is added to mitochondria preloaded with MPP+, efflux of the latter occurs with the concentration gradient. The uptake system has been studied in liver, whole brain, cortex, and midbrain preparations from rats. It may be readily distinguished from the synaptic dopamine reuptake system, since the former is blocked by uncouplers and respiratory inhibitors, but not by dopamine or mazindol, whereas the synaptic system is blocked by mazindol and competitively inhibited by dopamine but is not affected by respiratory inhibitors or uncouplers. Energy-driven uptake of MPP+ by brain mitochondria may be a crucial step in the complex sequence of events leading to the neurotoxic actions of its precursor, MPTP.  相似文献   

4.
Wu WR  Zhu ZT  Zhu XZ 《Life sciences》2000,67(3):241-250
The present studies investigated the effects of L-deprenyl, 1-methyl-4-phenylpyridinium ion (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the efflux of dopamine and its metabolites in microdialysates of striatum and nucleus accumbens in rats. L-Deprenyl or L-amphetamine perfusion into striatum had no effects on basal dopamine efflux, though L-deprenyl reduced the basal efflux of dihydroxyphenylacetic acid and homovanillic acid. MPP+ or MPTP perfusion into striatum significantly increased the dopamine efflux, and the action of MPTP was more potent than that of MPP+. Pretreatment with L-deprenyl antagonized the actions of MPP+ and MPTP. The striatal dopamine efflux of rats was gradually restored by itself after the overflow caused by 2-h perfusion of the dopaminergic neurotoxins, while L-deprenyl could not accelerate the recovery. Perfusion with L-deprenyl or L-amphetamine, but not pargyline, into nucleus accumbens increased the dopamine efflux in a dose-dependent fashion, which could be antagonized by haloperidol pretreatment. MPP+ or MPTP perfusion into nucleus accumbens also increased the dopamine efflux, and the action of MPTP was also more potent than that of MPP+. Pretreatment with L-deprenyl could not antagonize the actions of MPP+ and MPTP. These findings suggest that L-deprenyl, MPP+ and MPTP induce differential effects on nigrostriatal and mesolimbic dopaminergic pathways in vivo. L-Deprenyl has neuroprotective rather than neurorestorative action against MPP+- and MPTP-induced dopamine overflow from striatum. Further, L-deprenyl-induced dopamine overflow from nucleus accumbens may explain the amphetamine-like reinforcing property of L-deprenyl.  相似文献   

5.
A simple and sensitive assay procedure for the quantitation of N-methyl-4-phenylpyridinium ion (MPP+), a neurotoxin, was devised using its fluorescence and high-performance liquid chromatography (HPLC). The fluorescence intensity of MPP+ was several thousand times more than that of N-methyl-1,2,3,6-tetrahydropyridine (MPTP), a metabolic precursor of MPP+. This method was found to be sensitive enough to measure less than 10 pmol MPP+ without using HPLC and 10 fmol using HPLC. The oxidation of MPTP by monoamine oxidase in human brain synaptosomal mitochondria was examined by this assay method. This fluorometric-HPLC method should have broad application in the study of the neurotoxin MPP+.  相似文献   

6.
MPP(+)-induced mitochondrial dysfunction is potentiated by dopamine   总被引:2,自引:0,他引:2  
MPP(+), the major metabolite of the Parkinsonism-inducing compound MPTP, responsible for the destruction of the nigrostriatal pathway in primates and rodents, has been assayed in isolated rat liver mitochondria in the presence of physiological concentrations of dopamine or analogous concentrations of melanin-dopamine. 5 microM MPP(+) in the presence of 70 microM dopamine or melanin-dopamine, but not alone, decreased the heat production and oxygen consumption of a mitochondrial suspension activated with succinate and ADP. Both dopamine and oxidized dopamine plus MPP(+) also decreased the mitochondrial reductive power measured with MTT. Mitochondrial swelling was observed, associated with an increase in membrane mitochondrial potential, as a synergistic effect between low concentrations of MPP(+) and dopamine. It is suggested that cytosolic dopamine, by itself or via its autooxidation products, may play a relevant role in the mitochondrial toxicity of MPP(+). A failure in the regulation of the storage/release of dopamine could aggravate a mitochondrial damage and trigger the neurodegenerative process underlying MPTP toxicity and Parkinson's disease.  相似文献   

7.
The metabolism of the selective nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been studied in rat brain mitochondrial incubation mixtures. The 1-methyl-4-phenylpyridinium species MPP+ has been characterized by chemical ionization mass spectral and 1H NMR analysis. Evidence also was obtained for the formation of an intermediate product which, with the aid of deuterium incorporation studies, was tentatively identified as the alpha-carbon oxidation product, the 1-methyl-4-phenyl-2,3-dihydropyridinium species MPDP+. Comparison of the diode array UV spectrum of this metabolite with that of the synthetic perchlorate salt of MPDP+ confirmed this assignment. The oxidation of MPTP to MPDP+ but not of MPDP+ to MPP+ is completely inhibited by 10(-7) M pargyline. MPDP+, on the other hand, is unstable and rapidly undergoes disproportionation to MPTP and MPP+. Based on these results, we speculate that the neurotoxicity of MPTP is mediated by its intraneuronal oxidation to MPDP+, a reaction which appears to be catalyzed by MAO. The interactions of MPDP+ and/or MPP+ with dopamine, a readily oxidizable compound present in high concentration in the nigrostriatum, to form neurotoxic species may account for the selective toxic properties of the parent drug.  相似文献   

8.
It is known that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which induces Parkinson's-like disease in primates and humans, depletes hepatocytes of ATP and subsequently causes cell death. Incubation of rat liver mitochondria with MPTP and 1-methyl-4-phenyl pyridinium ion (MPP+) significantly inhibited incorporation of 32Pi into ATP.MPTP and MPP+ inhibited the development of membrane potential and pH gradient in energized rat liver mitochondria, suggesting that reduction of the proton motive force may have reduced ATP synthesis. Since deprenyl, an inhibitor of monoamine oxidase, prevented the formation of MPP+ and inhibited the decrease in membrane potential caused by MPTP, but not that caused by MPP+, these effects of MPTP, as well as cell death, probably were mediated by MPP+. This mechanism may play a role in the specific loss of dopaminergic neurons resulting in MPTP-induced Parkinson's disease.  相似文献   

9.
1-methyl-4-phenylpyridine (MPP+), a major product of the oxidation of the neurotoxic amine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been postulated to be the compound responsible for destruction of nigrostriatal neurons in man and primates and for inhibition of mitochondrial NADH oxidation which leads to cell death. We have confirmed that 0.5 mM MPP+ inhibits extensively the oxidation of NAD+-linked substrates in intact liver mitochondria in State 3 and after uncoupling, while succinate oxidation is unaffected. However, in inverted mitochondria, inner membrane preparations, and Complex I NADH oxidation is not significantly affected at this concentration of MPP+, nor are malate and glutamate dehydrogenases or the carriers of these substrates inhibited. We report here the discovery of an uptake system for MPP+ in mitochondria which is greatly potentiated by the presence of malate plus glutamate and inhibited by respiratory inhibitors, suggesting an energy-dependent carrier. A 40-fold concentration of MPP+ in the mitochondria occurs in ten minutes. This might account for the inhibition of malate and glutamate oxidation in intact mitochondria.  相似文献   

10.
An experimental rat model of Parkinson's disease was established by injecting rats directly in the striatum with the neurotoxic agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In order to study the action mechanism of this neurotoxic agent, MPTP and its main metabolite 1-methyl-4-phenylpyridinium (MPP+) were also added to suspensions of pyruvate/malate-supplemented nonsynaptic brain mitochondria, and the rates of hydrogen peroxide and ATP production were measured. Intrastriatal administration of MPTP produced a pronounced decrease in striatal dopamine levels (p < 0.005) and a strong increase in 3,4-hydroxiphenylacetic acid/dopamine ratio (an indicator of dopamine catabolism; p < 0.005) in relation to controls, as evaluated by in situ microdialysis. MPTP addition to rat brain mitochondria increased hydrogen peroxide production by 90%, from 1.37+/-0.35 to 2.59+/-0.48 nanomoles of H2O2/minute . mg of protein (p < 0.01). The metabolite MPP+ produced a marked decrease on the rate of ATP production of brain mitochondria (p < 0.005). These findings support the mitochondria-oxidative stress-energy failure hypothesis of MPTP-induced brain neurotoxicity.  相似文献   

11.
4-Phenyl-N-methylpyridinium (MPP+), the oxidation product of the neurotoxic amine MPTP, is considerably more inhibitory to the oxidation of NAD+-linked substrates in intact mitochondria in State 3 than is 4-phenylpyridine. On adding uncouplers, the inhibition by MPP+ progressively diminishes, while the effect of 4-phenylpyridine remains. This is in accord with the fact that MPP+ is rapidly concentrated in the mitochondria by an energy-dependent process, while 4-phenylpyridine seems to enter passively with the concentration gradient. Collapse of the electrical gradient after addition of uncouplers thus leaves the inhibition by 4-phenylpyridine unaffected but causes efflux of MPP+ from the mitochondria and a reversal of its inhibitory action. In isolated inner membranes the inhibition of NADH oxidation via the respiratory chain by 4-phenylpyridine is much greater than by MPP+. MPTP and 4-phenyl-N-methylpyridinone also inhibit more than MPP+, whereas N-methylpyridinium has relatively little effect. The block is not at the point of entry of electrons into the flavoprotein since the NADH-ferricyanide activity is not inhibited by MPP+ at Vmax.  相似文献   

12.
The acute effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium ion (MPP+) on mouse locomotor activity and striatal dopamine (DA) and 5-hydroxytryptamine (5-HT) levels were investigated. A single dose of either MPTP (10-30 mg/kg, i.p.) or MPP+ (5-20 ug/mouse, i.c.v.) decreased locomotor activity 10-40 min after injection: this locomotor effect was significantly suppressed by either pretreatment with nomifensine or 1-deprenyl alone, or by the combination of desmethylimipramine and 6-hydroxydopamine. Pretreatment with clorgyline did not suppress this behavior and a single dose of haloperidol enhanced the effect. The striatal levels of DA, 3-methoxytyramine and 5-HT increased in parallel with the decrease in locomotor activity caused by MPTP or MPP+. In contrast, levels of 3,4-dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindoleacetic acid were decreased by injection of either MPTP or MPP+. Possible mechanism(s) of the behavioral and biochemical changes caused by the acute actions of MPTP and MPP+ with respect to their neurotoxic effects on the nigrostriatal DA system are discussed.  相似文献   

13.
In this investigation, microdialysis has been used to study the effects of 1-methyl-4-phenylpyridinium (MPP+), an inhibitor of mitochondrial complex I and alpha-ketoglutarate dehydrogenase and the active metabolite of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), on extracellular concentrations of glutathione (GSH) and cysteine (CySH) in the rat striatum and substantia nigra (SN). During perfusion of a neurotoxic concentration of MPP+ (2.5 mM) into the rat striatum or SN, extracellular concentrations of GSH and CySH remain at basal levels (both approximately 2 microM). However, when the perfusion is discontinued, a massive but transient release of GSH occurs, peaking at 5,000% of basal levels in the striatum and 2,000% of basal levels in the SN. The release of GSH is followed by a slightly delayed and smaller elevation of extracellular concentrations of CySH that can be blocked by the gamma-glutamyl transpeptidase (gamma-GT) inhibitor acivicin. Low-molecular-weight iron and extracellular hydroxyl radical (OH*) have been implicated as participants in the mechanism underlying the dopaminergic neurotoxicity of MPTP/MPP+. During perfusion of Fe2+ (OH*) into the rat striatum and SN, extracellular levels of GSH also remain at basal levels. When perfusions of Fe2+ are discontinued, a massive transient release of GSH occurs followed by a delayed, small, but progressive elevation of extracellular CySH level that again can be blocked by acivicin. Previous investigators have noted that extracellular concentrations of the excitatory/excitotoxic amino acid glutamate increase dramatically when perfusions of neurotoxic concentrations of MPP+ are discontinued. This observation and the fact that MPTP/MPP+ causes the loss of nigrostriatal GSH without corresponding increases of glutathione disulfide (GSSG) and the results of the present investigation suggest that the release and gamma-GT/dipeptidase-mediated hydrolysis of GSH to glutamate, glycine, and CySH may be important factors involved with the degeneration of dopamine neurons. It is interesting that a very early event in the pathogenesis of Parkinson's disease is a massive loss of GSH in the SN pars compacta that is not accompanied by corresponding increases of GSSG levels. Based on the results of this and prior investigations, a new hypothesis is proposed that might contribute to an understanding of the mechanisms that underlie the degeneration of dopamine neurons evoked by MPTP/MPP+, other agents that impair neuronal energy metabolism, and Parkinson's disease.  相似文献   

14.
M Naoi  T Takahashi  T Nagatsu 《Life sciences》1987,41(24):2655-2661
The uptake and metabolism of a neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were examined in a rat pheochromocytoma cell line, PC12h. These cells which contain only type A monoamine oxidase (MAO-A) oxidize MPTP into N-methyl-4-phenylpyridinium ion (MPP+). By kinetic analysis, the apparent Km value and the maximal velocity of the MPP+ production are 70.4 +/- 6.5 microM and 38.3 +/- 10.0 pmol/min/mg protein, respectively. After 7 days of culture in the presence of MPTP, the cells could oxidize from 25 to 50% of the MPTP added to the culture medium and could accumulate MPP+. The intracellular concentrations of MPTP were almost the same after 7 days of culture in the presence of MPTP from 10 nM to 100 microM. The cells could survive 7 days after exposure to up to 100 microM MPTP. Tyrosine hydroxylase (TH) and MAO activity were not affected by the presence of MPTP. Dopamine (DA) concentrations and a nonspecific enzyme, beta-galactosidase activity in the cells were not affected by the addition of MPTP. These data show that the uptake and oxidative conversion of MPTP take place in the cells having MAO-A alone, and that the neurotoxicity of MPP+ may not be due directly to its storage in subcellular compartments.  相似文献   

15.
The mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity to isolated hepatocytes was studied. MPTP was more toxic to hepatocytes than its major metabolite, 1-methyl-4-phenylpyridine (MPP+); this may, in part, be explained by the lesser permeability of the hepatocyte plasma membrane to the cation compared to its parent compound, MPTP. Loss of cell viability was preceded by plasma membrane bleb formation and disturbance of intracellular Ca2+ homeostasis. MPTP caused a rapid depletion of the mitochondrial Ca2+ pool which was followed by a marked and sustained elevation of cytosolic free Ca2+ concentration. This increase of cytosolic Ca2+ level appeared to be associated with the impairment of the cell's Ca2+ extrusion system since the plasma membrane Ca2+-ATPase was markedly inhibited in MPTP-treated hepatocytes. Preincubation of hepatocytes with inhibitors of monoamine oxidase type B, but not A, protected the cells from MPTP-induced cytotoxicity. Moreover, the monoamine oxidase B inhibitor, pargyline, prevented the rise in cytosolic free Ca2+ concentration and partially protected the plasma membrane Ca2+-ATPase from inhibition by MPTP. As observed with MPTP, MPP+ caused an extensive loss of mitochondrial Ca2+ and significantly decreased the rate of Ca2+ efflux from hepatocytes. However, MPP+ was without effect on the plasma membrane Ca2+-ATPase. In conclusion, our studies demonstrate that MPTP caused a substantial elevation of cytosolic Ca2+ which preceded loss of cell viability and we propose that calcium ions are of major importance in the mechanism of MPTP- and MPP+-induced toxicity in hepatocytes.  相似文献   

16.
We demonstrate that injections of 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP), 1-methyl-4-phenyl-pyridinium ion (MPP+) and Paraquat (PQ+) produce in Rana Pipiens different behavioral, biochemical and skin pigmentation changes. MPTP causes in frogs the main symptoms of Parkinsonism (rigidity, akinesia and tremor) and it darkens the skin of animals. It also decreases brain and, less so, adrenal medulla dopamine. These effects are blocked by Pargyline. MPP+ causes the same symptoms but more rapidly. In contrast, skin pigmentation is clearly lightened. Brain and particularly adrenal dopamine reserves are nearly abolished. Pargyline increases these effects. Paraquat, in a cumulative fashion, eventually causes the same behavioral changes and a slight increase in pigmentation. It initially produces an increase in brain and adrenal dopamine concentrations, but later a significant dopamine concentration decrease. Pargyline potentiates these long term effects, blocks the dopamine increase, but reverses the PQ+ effect upon melanin, producing the same depigmentation as MPP+ alone.  相似文献   

17.
S P Bagchi 《Life sciences》1991,48(10):1007-1013
1-methyl-4-phenylpyridinium ion (MPP+) was tested for its effects upon dopamine level after incubating striatal synaptosomes in medium with and without reserpine. In the absence of reserpine, MPP+ enhanced the total incubation mixture dopamine level when tyrosine was present in the medium but that enhancing effect was considerably weaker when tyrosine was replaced by alpha methyl p-tyrosine. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) also had effects upon dopamine but likely due to MPP+, which was formed from MPTP by free mitochondrial MAO present in the tissue preparation. The incubation mixture dopamine level was drastically reduced by the addition of only reserpine and its presence in the medium markedly raised the ability of MPP+ to increase dopamine; the effects of MPTP in this medium were weaker than those of MPP+. Pargyline also raised dopamine levels under these conditions but only at concentrations much higher than those of MPP+. The particulate uptake of MPP+, at several medium concentrations, and the corresponding value of dopamine increase above the basal level were determined; the dopamine increase in p-moles was much greater than the p-moles of MPP+ uptake. These results indicate that, in the presence of reserpine, MPP+ has a potent action and that may lead to a release of intraneuronal free dopamine; this action is also likely to be independent of the countertransport from MPP+ uptake. The possibility of MPP+ being a potent inhibitor of intraneuronal MAO may have to be considered.  相似文献   

18.
[3H]MPP+ had lower Km and higher Vmax values for its accumulation in rat brain synaptosomes than did [3H]MPTP. The kinetic parameters favored the uptake of [3H]MPP+ in the striatum to that in hypothalamus, whereas they were equally favorable for the uptake of [3H]MPTP in both regions. Hypothalamic uptake of [3H]MPTP and [3H]MPP+ was inhibited by desipramine, imipramine, norepinephrine, and serotonin. Striatal uptake of [3H]MPP+ and [3H]MPTP was blocked by nomifensine and dopamine. These results support the concept that MPTP accumulates in serotonergic neurons where it is oxidized by monoamine oxidase B to MPP+, which is released and then is selectively accumulated in dopaminergic neurons via the dopamine uptake system.  相似文献   

19.
The neurotoxin N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) can induce degeneration of dopamine (DA) and other central monoamine neurons, leading to Parkinson's disease-like effects in man, monkey, and mouse. MPTP and other substituted phenylpiperidines related to synthetic analgesics including alphaprodine and meperidine were evaluated for potency vs. uptake of 0.1 microM tritiated DA, norepinephrine (NE), or serotonin (5HT) in synaptosomal preparations of mouse striatum or cerebral cortex. The most potent inhibitor of the uptake of 3H-DA was N-methyl-4-phenylpyridinium ion (MPP+; IC50 = 1 microM, Ki = 0.4 microM), a metabolite of MPTP; its effect was competitive and reversible. Other analogs of MPTP: the N-ethylindole AHR-1709, N,N-dimethyl-MPTP, and N-methyl-4-phenylpiperidine were all more potent than MPTP against 3H-DA uptake. N-dealkylation and N-propyl substitution, as well as pyridine ring substitution, decreased affinity for DA uptake while 3',4'-dihydroxyphenyl substitution increased potency and selectivity for catecholamine uptake, and quarternarization of the pyridine ring also increased potency against DA uptake. Active compounds showed higher potency against the uptake of NE than of DA. MPP+ was also more potent than MPTP in releasing endogenous DA from striatal synaptosomes (EC50 = 3 vs. 30 microM), but did not release the cytoplasmic markers tyrosine hydroxylase and lactate dehydrogenase (LDH). In contrast to MPTP, synthetic phenylpiperidine analgesics, their potential metabolites and the experimental neuroleptic agent AHR-1709 all failed to deplete striatal DA in vivo, even if active in vitro against DA uptake.  相似文献   

20.
The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium ion (MPP+) on activities of enzyme complexes in the electron transport system were studied using isolated mitochondrial preparations from C57BL/6J mouse brains. Both MPTP and MPP+ dose-dependently inhibited activity of NADH-ubiquinone oxidoreductase (EC 1.6.5.3). The inhibition was reversible. Preincubation of freeze-thawed mitochondria with MPTP or MPP+ had no effect on the inhibition; however, when nonfrozen mitochondria were used, NADH-ubiquinone oxidoreductase activity was reduced to 46% of that in the nonincubated sample after a 5-min preincubation with MPTP and to 77% of that in the nonincubated sample after a 5-min preincubation with MPP+. Kinetic analyses revealed that inhibition of MPTP was noncompetitive and that of MPP+ uncompetitive with respect to NADH. On the other hand, inhibition of MPTP was uncompetitive and that of MPP+ noncompetitive with respect to ubiquinone. Succinate-ubiquinone oxidoreductase (complex II), dihydroubiquinone-cytochrome c oxidoreductase (complex III), and ferrocytochrome c-oxygen oxidoreductase (EC 1.9.3.1) activities were either slightly inhibited or not inhibited by MPTP or MPP+. The significance of these findings is discussed in relation to the mechanism of MPTP-induced neuronal degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号