首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparison has been made between the ribosomal proteins phosphorylated in intact cells and proteins isolated from ribosomal subunits after modification in vitro by purified protein kinases and [gamma-32P]ATP. When intact reticulocytes were incubated for 2 h in a nutritional medium containing radioactive inorganic phosphate, one phosphorylated protein was identified as a 40S ribosomal component using two-dimensional polyacrylamide gel electrophoresis followed by electrophoresis in a third step containing sodium dodecyl sulfate. This protein, containing 99% of the total radioactivity associated with ribosomal proteins as observed by two-dimensional electrophoresis, is found in a nonphosphorylated form in addition to several phosphorylated states. These states differ by the number of phosphoryl group attached to the protein. The same 40S protein is modified in vitro by the three cAMP-regulated protein kinases from rabbit reticulocytes. Two additional proteins associated with the 40S subunit are phosphorylated in situ. These proteins migrate as a symmetrical doublet, and contain less than 1% of the radioactive phosphate in the 40S subunit. A number of phosphorylated proteins associated with 60S subunits are observed by disc gel electrophoresis after incubation of whole cells with labeled phosphate. These proteins do not migrate with previously identified ribosomal proteins and are not present in sufficient amounts to be identified as ribosomal structural proteins. Proteins in the large subunit are modified in vitro by cAMP-regulated protein kinases and ATP, and these modified proteins migrate with known ribosomal proteins. However, this phosphorylation has not been shown to occur in intact cells.  相似文献   

2.
Phosphorylation of ribosomal proteins in vivo was studied in exponentially growing and starved cells of the ciliated protozoan, Tetrahymena pyriformis. No phosphorylation of ribosomal proteins could be demonstrated in cells growing exponentially in complex nutrient media. However, when Tetrahymena cells were transferred into a non-nutrient medium, pronounced phosphorylation of a single ribosomal protein was observed. During two-dimensional polyacrylamide gel electrophoresis the phosphorylated ribosomal protein migrated in a manner virtually identical to that of the phosphorylated ribosomal protein S6 of rat liver. The phosphorylated ribosomal protein has a molecular weight of 38000 as estimated by dodecylsulfate polyacrylamide gel electrophoresis. Thus, the phosphorylated ribosomal protein found in starved Tetrahymena is apparently homologous with the ribosomal protein which is predominantly phosphorylated in higher eukaryotes. When phosphorylated ribosomes were dissociated by treatment with high concentration of KCl, the phosphorylated protein was found only on the small subunit. If dissociation was achieved by dialysis against a buffer low in MgCl2, the phosphorylated protein was distributed almost equally between the two subunits. This indicates that the phosphorylated ribosomal protein is located at the interface between the two subunits.  相似文献   

3.
Proteins were isolated from the 40S ribosomal subunits of baby-hamster kidney fibroblasts and subjected to two-dimensional gel electrophoresis. When the cells were pretreated with cyclic AMP or 2-deoxyglucose a more basic derivative of ribosomal protein S3 or S3a was often observed, apparently similar to that previously reported to occur early in liver generation. This derivative was not a dephosphorylated form of protein S3, which protein does not appear to be phosphorylated in normal cells; nor did it correspond to the proteolytic fragment, S3b. It appears to be an oxidation product of protein S3 or S3a, as it can be eliminated by thorough reduction of the ribosomal protein before electrophoresis. In contrast with previous results with Krebs II ascites cells, starvation of baby-hamster kidney fibroblasts of glucose did not cause extensive phosphorylation of ribosomal protein S3.  相似文献   

4.
Ribosomal proteins of HeLa cells   总被引:2,自引:0,他引:2  
Ribosomal proteins from HeLa cells were analyzed by two-dimensional polyacrylamide gel electrophoresis (Kaltschmidt-Wittmann) and dodecylsulfate polyacrylamide gel electrophoresis (Laemmli). 35 proteins are associated with the small ribosomal subunit and 47 proteins with the large ribosomal subunit. The HeLa ribosomal proteins S6, S32, L40b,c, L41 and L42 are phosphorylated in vivo and in vitro. Minor differences between HeLa and rat liver ribosomal proteins were revealed by their direct coelectrophoresis.  相似文献   

5.
D Becker-Ursic  J Davies 《Biochemistry》1976,15(11):2289-2296
From the high salt wash of the ribosomes of the yeast Saccharomyces cerevisiae, three protein kinases have been isolated and separated by DEAE-cellulose chromatography. The three kinases differ in their abilities to phosphorylate substrates such as histones (calf thymus), casein, and S. cerevisiae ribosomes; two of the kinases showed increased activity in the presence of cyclic adenosine 3',5'-monophosphate when histones and 40S ribosomal subunits were used as substrates. The protein kinases catalyzed phosphorylation of certain proteins of the 40S and 60S ribosomal subunits, and 80S ribosomes in vitro. Nine proteins of the 80S ribosome, seven proteins of the 40S subunit, and eleven of the 60S subunit were phosphorylated; different proteins were modified to various extents when different kinases were used. We have identified several proteins of 40S and 60S ribosomal subunits which are not available to the kinases in the 80S particles. Ribosomes isolated from S. cerevisiae cells growing in logarithmic phase of growth were found to contain a number of phosphorylated proteins. Studies by two-dimensional polyacrylamide gel electrophoresis indicated that the ribosomal proteins phosphorylated in vivo correspond with those phosphorylated in vitro. The relationship of in vivo phsophorylation of ribosomes to the growth and physiology of S. cerevisiae is not known.  相似文献   

6.
We examined the ability of protein kinase activities from BHK (baby-hamster kidney) cells infected with pseudorabies virus to catalyse the phosphorylation of ribosomal protein S6 in vitro. When the cytosol from infected cells was fractionated on DEAE-cellulose, 40S ribosomal protein kinase activity was found associated with the two isoforms of the cyclic AMP-dependent protein kinase, protein kinase C and a protein kinase (ViPK, virus-induced protein kinase) only detected in infected cells. The phosphorylation of ribosomal protein by ViPK was of particular interest because the appearance of the protein kinase and the increase in the phosphorylation of protein S6 in infected cells shared a similar time course. At moderate concentrations of KCl the major ribosomal substrate for ViPK was ribosomal protein S7, a protein not found to be phosphorylated in vivo. However, at 600 mM-KCl, or in the presence of 5-10 mM-spermine at 60-150 mM-KCl, the phosphorylation of ribosomal protein S7 was suppressed and ribosomal protein S6 became the major substrate. The maximum stoichiometry of phosphorylation obtained under the latter conditions was 1-2 mol of phosphate/mol of S6, and only mono- and di-phosphorylated forms of S6 were detected on two-dimensional gel electrophoresis. As the infection of BHK cells by pseudorabies virus results in the appearance of phosphorylated species of S6 containing up to 5 mol of phosphate/mol of S6 protein, it appears unlikely that ViPK alone can be responsible for the multiple phosphorylation seen in vivo. Nevertheless, tryptic phosphopeptide analysis did indicate that in vitro ViPK catalysed the phosphorylation of at least one of the sites on ribosomal protein S6 phosphorylated in vivo, so that a contributory role for the enzyme in the phosphorylation in vivo cannot be excluded.  相似文献   

7.
Phosphorylation of the ribosomal proteins by the extra-ribosomal protein kinase was investigated "in situ" and with purified 40 S or 60 S ribosomal proteins from cryptobiotic embryos of Artemia sp. Ribosomal proteins that were most readily phosphorylated in 80 S ribosomes included S6 and S8 of the 40 S subunit and proteins L9, L13 and L18 of the 60 S subunit. Several additional polypeptides were phosphorylated when purified 40 S or 60 S ribosomal proteins were separately incubated in the reconstituted system. The possible functions of ribosomal phosphorylation in protein synthesis will be discussed.  相似文献   

8.
Protein-protein cross-linking was used to examine the spatial arrangement of proteins within the 40 S ribosomal subunits of Saccharomyces cerevisiae. Purified ribosomal subunits were treated with either 2-iminothiolane or dimethyl 3,3'-dithiobispropionimidate under conditions such that the ribosomal particle was intact and that formation of 40 S subunit dimers was minimized. Proteins were extracted from the treated subunits and fractionated on Sephadex G-150 or by acid-urea-polyacrylamide gel electrophoresis. Cross-linked proteins in these fractions were analyzed by two-dimensional diagonal sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Constituent members of cross-linked pairs were radiolabeled with 125I and identified by two-dimensional gel electrophoresis and comparison with nonradioactive ribosomal protein markers. Forty-two pairs involving 25 of the 32 40 S subunit proteins were identified. Many proteins were detected in several cross-linked dimers. These proteins with multiple cross-links form foci for the construction of a schematic model of the spatial arrangement of proteins within the 40 S subunit.  相似文献   

9.
Ribosomal protein phosphorylation was investigated in isolated ribosomal subunits and polyribosomes from rat cerebral cortex in the presence of [gamma-32P]ATP and purified catalytic subunit of cyclic AMP-dependent protein kinase from the same tissue. Ribosomal proteins that were most readily phosphorylated in isolated cerebral ribosomal subunits included proteins S2, S3a, S6 and S10 of the 40 S subunit and proteins L6, L13, L14, L19 and L29 of the 60 S subunit. These proteins were also phosphorylated in cellular preparations of rat cerebral cortex in situ or in vitro [Roberts & Ashby (1978) J. Biol. Chem. 253, 288-296; Roberts & Morelos (1979) Biochem. J. 184, 233-244]. However, several additional ribosomal proteins were phosphorylated when isolated 40 S or 60 S subunits were separately incubated in the reconstituted system. Analogous results were obtained with an equimolar mixture of cerebral 40 S and 60 S subunits under comparable conditions. In contrast, extensive exposure of purified cerebral polyribosomes to the catalytic subunit resulted in phosphorylation of only those ribosomal proteins of the 40 S subunit that were most highly labelled after the administration of [32P]Pi in vivo: proteins S2, S6 and S10. Ribosomal proteins of 60 S subunits that were readily phosphorylated in isolated cerebral polyribosomes included proteins L6, L13 and L29. These results indicate that polyribosome formation markedly decreases the number of ribosomal protein sites available for phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase. Moreover, the findings suggest that, of the ribosomal protein phosphorylations observed in rat cerebral cortex in vivo, proteins S2, S6, S10, L6, L13 and L29 can be phosphorylated in polyribosomes, whereas proteins S3a, S5, L14 and L19 may become phosphorylated only in free ribosomal subunits.  相似文献   

10.
1. Ribosomes from cells of the genera Trichomonas and Tritrichomonas have been isolated and characterized. The ribosomes from each organism had a sedimentation coefficient of 70S in calibrated sucrose gradients and the subunits sedimented as 50S and 30S particles under the same conditions. 2. The major ribosomal RNAs from each species were identical in size to prokaryotic ribosomal RNAs when examined by denaturing gel electrophoresis. The ribosomes contained both 5.8S and 5S RNAs. 3. The ribosomal proteins were compared by the methods of two-dimensional gel electrophoresis and reversed phase HPLC. Electrophoresis of the ribosomal proteins in two different gel systems indicated the presence of 56 proteins in T. gallinae, 40 in T. bactrachorum and 45 in the Tritrichomonas sp. The protein molecular mass range was 8.5-40 kDa. 4. The HPLC analysis confirmed the protein number established by the gel methods. 5. Both methods of analysis revealed greater similarities between the ribosomal proteins of the 2 Tritrichomonas sp. than between those of the more distantly related T. gallinae and T. bactrachorum.  相似文献   

11.
Proteins from the large and small subunits of Aedes albopictus (mosquito) cytoplasmic ribosomes were characterized by two-dimensional polyacrylamide gel electrophoresis. The small subunit contained 28-31 proteins ranging in molecular mass from 10 to 49 kDa. The large subunit contained 36-39 proteins that ranged in molecular mass from 11 to 53 kDa. The largest protein on the small subunit, S1, was the predominant phosphorylated ribosomal protein. Under long-term labelling conditions, L4 and L33 were also phosphorylated. Peptide mapping by partial proteolysis indicated that Ae. albopictus S1 may share partial amino acid homology with the phosphorylated ribosomal protein S6 from Drosophila melanogaster. Unlike Drosophila S6, however, Aedes S1 was not dephosphorylated during heat shock. Treatment of mosquito cells with the insect molting hormone 20-hydroxyecdysone did not affect phosphorylation of ribosomal proteins.  相似文献   

12.
A protein kinase specific for casein and acidic ribosomal proteins was isolated and partly characterized.It was found that the enzyme utilizes GTP and ATP as phosphoryl donors. Its affinity for ATP was considerably higher than for GTP with the km values of 7.6 × 10-6M and 5.5 × 10-5M, respectively.Two-dimensional acrylamide gel electrophoresis revealed the phosphorylation of the same ribosomal proteins with either of the [-32P] nucleotides used. It was also shown that one acidic protein (S1 or S2) of 40 S and two acidic proteins (L2 and L3) of 60 S ribosomal subunits were predominantly phosphorylated in vitro. The phosphorylated proteins: L2 and L3 seem to correspond to the proteins of L7 and L12 of E. coli ribosomes. The isolated kinase phosphorylated several basic ribosomal proteins though to a lower extent than the acidic ones.  相似文献   

13.
Phosphorylation of eukaryotic ribosomal proteins in vitro by essentially homogeneous preparations of cyclic AMP-dependent protein kinase catalytic subunit and cyclic GMP-dependent protein kinase was compared. Each protein kinase was added at a concentration of 30nM. Ribosomal proteins were identified by two-dimensional gel electrophoresis. Almost identical results were obtained when ribosomal subunits from HeLa or ascites-tumour cells were used. About 50-60% of the total radioactive phosphate incorporated into small-subunit ribosomal proteins by either kinase was associated with protein S6. In 90 min between 0.7 and 1.0 mol of phosphate/mol of protein S6 was incorporated by the catalytic subunit of cyclic AMP-dependent protein kinase. Of the other proteins, S3 and S7 from the small subunit and proteins L6, L18, L19 and L35 from the large subunit were predominantly phosphorylated by the cyclic AMP-dependent enzyme. Between 0.1 and 0.2 mol of phosphate was incorporated/mol of these phosphorylated proteins. With the exception of protein S7, the same proteins were also major substrates for the cyclic GMP-dependent protein kinase. Time courses of the phosphorylation of individual proteins from the small and large ribosomal subunits in the presence of either protein kinase suggested four types of phosphorylation reactions: (1) proteins S2, S10 and L5 were preferably phosphorylated by the cyclic GMP-dependent protein kinase; (2) proteins S3 and L6 were phosphorylated at very similar rates by either kinase; (3) proteins S7 and L29 were almost exclusively phosphorylated by the cyclic AMP-dependent protein kinase; (4) protein S6 and most of the other proteins were phosphorylated about two or three times faster by the cyclic AMP-dependent than by the cyclic GMP-dependent enzyme.  相似文献   

14.
Investigations were carried out on the phosphorylation of ribosomal proteins in vivo in cerebral cortices of immature rats. Two-dimensional electrophoresis revealed that the cerebral 40S subunit contained at least four ribosomal proteins which were phosphorylated in animals given [32P]orthophosphate intracisternally. These proteins exhibited electrophoretic properties similar to those of the constitutive basic proteins S2, S3a, S5 and S6. The cerebral 60S subunit contained several proteins that were phosphorylated in vivo, including three basic proteins with electrophoretic mobilities similar to those of ribosomal proteins L6, L14 and L19. Four other proteins associated with the 60S subunit that were more acidic were also phosphorylated. Phosphorylated congeners of 40S and 60S ribosomal proteins could often be detected in distinct protein-stained spots on two-dimensional electrophoretograms. The cerebral S6 protein consisted of at least five distinct species in different states of phosphorylation. Administration of N6O-2' dibutyryl cyclic AMP increased the proportion of the more phosphorylated congeners of the S6 protein, but appeared to have little or no effect on phosphorylation of other cerebral ribosomal proteins. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine also stimulated S6-protein phosphorylation; N2O2'-dibutyryl cyclic GMP had no effect on this process. These observations indicate that several ribosomal proteins of both subunits are normally phosphorylated in rat cerebral cortex in situ. The results also suggest that selective and specific alterations in the phosphorylation state of the S6 ribosomal protein of the cerebral 40S subunit may accompany the production of cyclic AMP during neural activation.  相似文献   

15.
In a previous publication the purification and properties of two protein kinases (KI and KII) from a soluble fraction of bovine corpus luteum and the stimulation of the latter fol. Chem. 248,494-501). We have now studied the effects oc cyclic AMP and luteinizing hormone on ribosomal protein phosphorylation of corpus luteum by protein kinase II. Protein kinase II catalyzed the phosphorylation of ribosomes by transfer of terminal phosphate of ATP to ribosomal proteinsmextraction with hot trichloroacetic acid and non-aqueous solvent revealed that about 80% of total radioactivity incorporated remain associated with the protein residue. Radioactivity was identified in the phosphoserine and phosphothreonine residues of polypeptides by high voltage paper electrophoresis; The extent of phosphorylation was stimulated by cyclic AMP but not by luteinizing hormonemat least 9 proteins of 80-S ribosomes and 12 proteins of the 60-S ribosomal subunit were phosphorylated in the presence of cyclic AMP as resolved by urea polyacrylamide gel electrophoresis. However, only one major and four minor bands were phosphorylated in the ase of 40-S ribosomal subunit under the influence of cyclic AMP. The ribosomal protein phosphorylation catalyzed by protein kinase II is regulated by cyclic AMP wherease luteinizing hormone has no effect on ribosome phosphorylation.  相似文献   

16.
(1) When rat liver 40 S ribosomal proteins in 6 M urea were were mixed with poly(U) at an appropriate ratio, a precipitate was formed which was also insoluble in the sample solution for two-dimensional acrylamide gel electrophoresis. Analyses by two-dimensional acrylamide gel electrophoresis showed that S7 and S10 proteins (according to our numbering system) had disappeared selectively from the fraction soluble in 6 M urea. These two proteins were present in the fraction insoluble in 6 M urea, and became soluble in the sample solution after treating it with RNase. The results suggest that S7 and S10 proteins have strong affinities for poly(U). When rat liver 40 S subunits were incubated with poly(U), similar results were obtained. (2) After incubation of 40 S subunits with [3H]poly(U) and then with unlabeled poly(U), UV irradiation cross-linked poly(U) to the protein moiety of the 40 S subunit. When the protein fraction insoluble in the sample solution for two-dimensional electrophoresis was prepared from 40 S subunits cross-linked to poly(U) and then subjected to two-dimensional acrylamide gel electrophoresis after RNase treatment, S7 and S10 proteins were detected on the gel. In addition to the S7 protein spot, a triangular area spreading from the spot to the origin contained radioactivity. The results suggest that poly(U) is cross-linked to S7 protein and oligo(U) fragments bound to S7 protein affect its electrophoretic mobility. (3) Ribosomal proteins were prepared from 40 S subunits cross-linked to carrier-free [3H]poly(U) and analyzed by three-dimensional acrylamide gel electrophoresis (Terao, K. & Ogata, K. (1975) Biochim. Biophys. Acta 402, 214--229) after RNase treatment. It was found that S7, S6, and S15 proteins are cross-linked to poly(U). From the results of the present and preceding experiments it is concluded that S7 is the poly(U)-binding protein. The possibility that other proteins in 40 S ribosomal subunits interact with poly(U) is discussed.  相似文献   

17.
Crude ribosomes from Saccharomyces cerevisiae cultures were phosphorylated in vitro when incubated in the presence of [gamma-32P]ATP. Analysis of the ribosomal proteins with two-dimensional electrophoresis revealed that of the 29 proteins identified in the small subunit, only protein S6 was phosphorylated. Of the 37 proteins identified in the large subunit, one was highly phosphorylated (L3) and two only slightly phosphorylated (L11 and L14). The protein kinase activity associated with the ribosomes was extracted with 1 M KCl and was not dependent on adenosine 3':5'-monophosphate; it preferentially phosphorylated casein and phosvitin, but was less active on histones. Structural ribosomal proteins were also phosphorylated in vivo when the yeast cultures were incubated with [32P]orthophosphate; the radioactivity resistant to hydrolysis by hot perchloric acid was incorporated into the proteins of the two subunits. Radioactive phosphoserine was found by subjecting hydrolysates of ribosomal proteins to high-voltage electrophoresis. After two-dimensional electrophoresis, one poorly phosphorylated protein (S10) was identified in the small subunit. In the large subunit, one protein (L3) was highly labelled, and two proteins (L11 and L24) only slightly labelled.  相似文献   

18.
Complexes of purified 40S ribosomal subunits and initiation factor 3 from rabbit reticulocytes were crosslinked using the reversible protein crosslinking reagent, 2-iminothiolane, under conditions shown previously to lead to the formation of dimers between 40S proteins but not higher multimers. The activity of both the 40S subunits and initiation factor 3 was maintained. Protein crosslinked to the factor was purified by sucrose density gradient centrifugation following nuclease digestion of the ribosomal subunit: alternatively, the total protein was extracted from 40S: factor complexes. The protein obtained by either method was analyzed by two-dimensional diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Ribosomal proteins were found in multimeric complexes of high molecular weight due to their crosslinking to components of eIF3. Identification of the ribosomal proteins appearing below the diagonal was accomplished by elution, radioiodination, two-dimensional polyacrylamide/urea gel electrophoresis, and radioautography. Proteins S2, S3, S3a, S4, S5, S6, S8, S9, S11, S12, S14, S15, S16, S19, S24, S25, and S26 were identified. Because many of the proteins in this group form crosslinked dimers with each other, it was impossible to distinguish proteins directly crosslinked to eIF3 from those crosslinked indirectly through one bridging protein. The results nonetheless imply that the 40S ribosomal proteins identified are at or near the binding site for initiation factor 3.  相似文献   

19.
Bacillus stearothermophilus 50 S ribosomal subunits have been reconstituted from a mixture of purified RNA and protein components. The protein fraction of 50 S subunits was separated into 27 components by a combination of various methods including ion exchange and gel filtration chromatography. The individual proteins showed single bands in a variety of polyacrylamide gel electrophoresis systems, and nearly all showed single spots on two-dimensional polyacrylamide gels. The molecular weights of the proteins were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An equimolar mixture of the purified proteins was combined with 23 S RNA and 5 S RNA to reconstitute active 50 S subunits by the procedure of Nomura and Erdmann (Nomura, M., and Erdmann, V. A. (1970) Nature 226, 1214-1218). Reconstituted 52 S subunits containing purified proteins were slightly more active than subunits reconstituted with an unfractionated total protein extract in poly(U)-dependent polyphenylalanine synthesis and showed comparable activity in various assays for ribosomal function. The reconstitution proceeded more rapidly with the mixture of purified proteins than with the total protein extract. Reconstituted 50 S subunits containing purified proteins co-sedimented with native 50 S subunits on sucrose gradients and had a similar protein compsoition. Initial experiments on the roles of the individual proteins in ribosomal structure and function were performed. B. stearothermophilus protein 13 was extracted from 50 S subunits under the same conditions as escherichia coli L7/L12, and the extraction had a similar effect on ribosomal function. When single proteins were omitted from reconstitution mixtures, in most cases the reconstituted 50 S subunits showed decreased activity in polypheylalanine synthesis.  相似文献   

20.
The complements of ribosomal proteins in growing and starved cells of Tetrahymena pyriformis strain GL were examined by two-dimensional gel electrophoresis. In growing cells, the 40-S ribosomal subunit contained 30 proteins, 4 of which migrated toward the anode at pH 8.6, while the 60-S ribosomal subunit contained 46 proteins, 9 of which migrated toward the anode at pH 8.6. When exponentially growing cells were transferred into a non-nutrient medium pronounced phosphorylation of a single 40-S ribosomal subunit protein, S6, was induced. The phosphorylation was very specific; more than 99.5% of the [32P]phosphate incorporated into ribosomal proteins was associated with S6. Phosphate was incorporated into S6 as O-phosphoserine and O-phosphothreonine. Two-dimensional gel electrophoresis indicated that the complement of proteins associated with the ribosomes isolated from starved cells differed from that of growing cells. Careful examination, however, suggested that except for the phosphorylation of certain ribosomal proteins in starved cells, the observed differences did not reflect starvation-induced changes in vivo, but most probably different levels of artifactual modifications (limited proteolysis) during the preparation of the ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号