首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple approach was used to identify Rhizobium meliloti DNA regions with the ability to convert a nontransmissible vector into a mobilizable plasmid, i.e., to contain origins of conjugative transfer (oriT, mob). RecA-defective R. meliloti merodiploid populations, where each individual contained a hybrid cosmid from an R. meliloti GR4 gene library, were used as donors en masse in conjugation with another R. meliloti recipient strain, selecting transconjugants for vector-encoded antibiotic resistance. Restriction analysis of cosmids isolated from individual transconjugants resulted in the identification of 11 nonoverlapping DNA regions containing potential oriTs. Individual hybrid cosmids were confirmed to be mobilized from the original recA donors at frequencies ranging from 10−2 to 10−5 per recipient cell. DNA hybridization experiments showed that seven mob DNA regions correspond to plasmid replicons: four on symbiotic megaplasmid 1 (pSym1), one on pSym2, and another two on each of the two cryptic plasmids harbored by R. meliloti GR4. Another three mob clones could not be located to any plasmid and were therefore preliminarily assigned to the chromosome. With this strategy, we were able to characterize the oriT of the conjugative plasmid pRmeGR4a, which confirmed the reliability of the approach to select for oriTs. Moreover, transfer of the 11 mob cosmids from R. meliloti into Escherichia coli occurred at frequencies as high as 10−1, demonstrating the R. meliloti gene transfer capacity is not limited to the family Rhizobiaceae. Our results show that the R. meliloti genome contains multiple oriTs that allow efficient DNA mobilization to rhizobia as well as to phylogenetically distant gram-negative bacteria.  相似文献   

2.
Because of the scarcity of literature on the successful use of serological methods for differentiation of Rhizobium meliloti isolates, the objectives of this study were to provide a rationale for selecting isolates to which antisera could be raised and to appraise the suitability of published methods of preparing R. meliloti antigens for the serological identification of field isolates. We used one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis to develop protein profiles of eight field isolates and one commercial inoculant strain of R. meliloti in order to choose candidates that were either identical or distinctly different from each other for the production of antisera. The serological methods of tube agglutination and gel immunodiffusion complemented the sodium dodecyl sulfate-polyacrylamide gel electrophoresis method of identification. On the basis of their agglutination titers and gel immunodiffusion analysis, the isolates were placed in five serogroups which were identical to the groupings based on protein profiles. Antigenic characteristics of gel immunodiffusion antigens were influenced by the composition of the growth medium, sonication of whole-cell antigens, and the addition of Formalin. We recommend that careful attention be given to the effects of varying antigen preparation procedures when analyzing R. meliloti so that experimental protocols do not complicate the results. The wide range of homologous-antiserum titers observed for the nine isolates indicates different inherent degrees of immunogenicity of R. meliloti which cannot be predicted before serum production. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis method is a useful tool for screening a collection of R. meliloti isolates to better ensure that strain-specific antisera representative of different types of organisms will be obtained.  相似文献   

3.
The genome of Sinorhizobium meliloti type strain Rm1021 consists of three replicons: the chromosome and two megaplasmids, pSymA and pSymB. Additionally, many indigenous S. meliloti strains possess one or more smaller plasmids, which represent the accessory genome of this species. Here we describe the complete nucleotide sequence of an accessory plasmid, designated pSmeSM11a, that was isolated from a dominant indigenous S. meliloti subpopulation in the context of a long-term field release experiment with genetically modified S. meliloti strains. Sequence analysis of plasmid pSmeSM11a revealed that it is 144,170 bp long and has a mean G+C content of 59.5 mol%. Annotation of the sequence resulted in a total of 160 coding sequences. Functional predictions could be made for 43% of the genes, whereas 57% of the genes encode hypothetical or unknown gene products. Two plasmid replication modules, one belonging to the repABC replicon family and the other belonging to the plasmid type A replicator region family, were identified. Plasmid pSmeSM11a contains a mobilization (mob) module composed of the type IV secretion system-related genes traG and traA and a putative mobC gene. A large continuous region that is about 42 kb long is very similar to a corresponding region located on S. meliloti Rm1021 megaplasmid pSymA. Single-base-pair deletions in the homologous regions are responsible for frameshifts that result in nonparalogous coding sequences. Plasmid pSmeSM11a carries additional copies of the nodulation genes nodP and nodQ that are responsible for Nod factor sulfation. Furthermore, a tauD gene encoding a putative taurine dioxygenase was identified on pSmeSM11a. An acdS gene located on pSmeSM11a is the first example of such a gene in S. meliloti. The deduced acdS gene product is able to deaminate 1-aminocyclopropane-1-carboxylate and is proposed to be involved in reducing the phytohormone ethylene, thus influencing nodulation events. The presence of numerous insertion sequences suggests that these elements mediated acquisition of accessory plasmid modules.  相似文献   

4.
Swanson JA  Tu JK  Ogawa J  Sanga R  Fisher RF  Long SR 《Genetics》1987,117(2):181-189
Rhizobium meliloti Nod- mutant WL131, a derivative of wild-type strain 102F51, was complemented by a clone bank of wild-type R. meliloti 1021 DNA, and clone pRmJT5 was recovered. Transfer of pRmJT5 conferred alfalfa nodulation on other Rhizobium species, indicating a role in host range determination for pRmJT5. Mutagenesis of pRmJT5 revealed several segments in which transposon insertion causes delay in nodulation, and/or marked reduction of the number of nodules formed on host alfalfa plants. The set of mutants indicated five regions in which nod genes are located; one mutant, nod-216, is located in a region not previously reported to encode a nodulation gene. Other mutant phenotypes correlated with the positions of open reading frames for nodH, nodF and nodE , and with a 2.2-kb EcoRI fragment. A mutant in nodG had no altered phenotype in this strain. One nodulation mutant was shown to be a large deletion of the common nod gene region. We present a discussion comparing the various studies made on this extended nod gene region.  相似文献   

5.
The soil bacterium Sinorhizobium meliloti establishes nitrogen-fixing symbiosis with its leguminous host plant, alfalfa, following a series of continuous signal exchanges. The complexity of the changes of alfalfa root structures during symbiosis and the amount of S. meliloti genes with unknown functions raised the possibility that more S. meliloti genes may be required for early stages of the symbiosis. A positive functional screen of the entire S. meliloti genome for symbiotic genes was carried out using a modified in vivo expression technology. A group of genes and putative genes were found to be expressed in early stages of the symbiosis, and 23 of them were alfalfa root exudate inducible. These 23 genes were further separated into two groups based on their responses to apigenin, a known nodulation (nod) gene inducer. The group of six genes not inducible by apigenin included the lsrA gene, which is essential for the symbiosis, and the dgkA gene, which is involved in the synthesis of cyclic β-1,2-glucan required for the S. meliloti-alfalfa symbiosis. In the group of 17 apigenin-inducible genes, most have not been previously characterized in S. meliloti, and none of them belongs to the nod gene family. The identification of this large group of alfalfa root exudate-inducible S. meliloti genes suggests that the interactions in the early stages of the S. meliloti and alfalfa symbiosis could be complex and that further characterization of these genes will lead to a better understanding of the symbiosis.  相似文献   

6.
The Rhizobium meliloti exoS gene is involved in regulating the production of succinoglycan, which plays a crucial role in the establishment of the symbiosis between R. meliloti Rm1021 and its host plant, alfalfa. The exoS96::Tn5 mutation causes the upregulation of the succinoglycan biosynthetic genes, thereby resulting in the overproduction of succinoglycan. Through cloning and sequencing, we found that the exoS gene is a close homolog of the Agrobacterium tumefaciens chvG gene, which has been proposed to encode the sensor protein of the ChvG-ChvI two-component regulatory system, a member of the EnvZ-OmpR family. Further analyses revealed the existence of a newly discovered A. tumefaciens chvI homolog located just upstream of the R. meliloti exoS gene. R. meliloti ChvI may serve as the response regulator of ExoS in a two-component regulatory system. By using ExoS-specific antibodies, it was found that the ExoS protein cofractionated with membrane proteins, suggesting that it is located in the cytoplasmic membrane. By using the same antibodies, it was shown that the exoS96::Tn5 allele encodes an N-terminal truncated derivative of ExoS. The cytoplasmic histidine kinase domain of ExoS was expressed in Escherichia coli and purified, as was the R. meliloti ChvI protein. The ChvI protein autophosphorylated in the presence of acetylphosphate, and the ExoS cytoplasmic domain fragment autophosphorylated at a histidine residue in the presence of ATP. The ChvI protein was phosphorylated in the presence of ATP only when the histidine kinase domain of ExoS was also present. We propose a model for regulation of succinoglycan production by R. meliloti through the ExoS-ChvI two-component regulatory system.  相似文献   

7.
It was found that S. meliloti strain SmA818, which is cured of pSymA, could not grow on defined medium containing only formate and bicarbonate as carbon sources. Growth experiments showed that Rm1021 was capable of formate/bicarbonate-dependent growth, suggesting that it was capable of autotrophic-type growth. The annotated genome of S. meliloti Rm1021 contains three formate dehydrogenase genes. A systematic disruption of each of the three formate dehydrogenase genes, as well as the genes encoding determinants of the Calvin-Benson-Bassham, cycle was carried out to determine which of these determinants played a role in growth on this defined medium. The results showed that S. meliloti is capable of formate-dependent autotrophic growth. Formate-dependent autotrophic growth is dependent on the presence of the chromosomally located fdsABCDG operon, as well as the cbb operon carried by pSymB. Growth was also dependent on the presence of either of the two triose-phosphate isomerase genes (tpiA or tpiB) that are found in the genome. In addition, it was found that fdoGHI carried by pSymA encodes a formate dehydrogenase that allows Rm1021 to carry out formate-dependent respiration. Taken together, the data allow us to present a model of how S. meliloti can grow on defined medium containing only formate and bicarbonate as carbon sources.  相似文献   

8.
Isolates of the symbiotic nitrogen-fixing species Sinorhizobium meliloti usually contain a chromosome and two large megaplasmids encoding functions that are absolutely required for the specific interaction of the microsymbiont with corresponding host plants leading to an effective symbiosis. The complete genome sequence, including the megaplasmids pSmeSM11c (related to pSymA) and pSmeSM11d (related to pSymB), was established for the dominant, indigenous S. meliloti strain SM11 that had been isolated during a long-term field release experiment with genetically modified S. meliloti strains. The chromosome, the largest replicon of S. meliloti SM11, is 3,908,022 bp in size and codes for 3785 predicted protein coding sequences. The size of megaplasmid pSmeSM11c is 1,633,319 bp and it contains 1760 predicted protein coding sequences whereas megaplasmid pSmeSM11d is 1,632,395 bp in size and comprises 1548 predicted coding sequences. The gene content of the SM11 chromosome is quite similar to that of the reference strain S. meliloti Rm1021. Comparison of pSmeSM11c to pSymA of the reference strain revealed that many gene regions of these replicons are variable, supporting the assessment that pSymA is a major hot-spot for intra-specific differentiation. Plasmids pSymA and pSmeSM11c both encode unique genes. Large gene regions of pSmeSM11c are closely related to corresponding parts of Sinorhizobium medicae WSM419 plasmids. Moreover, pSmeSM11c encodes further novel gene regions, e.g. additional plasmid survival genes (partition, mobilisation and conjugative transfer genes), acdS encoding 1-aminocyclopropane-1-carboxylate deaminase involved in modulation of the phytohormone ethylene level and genes having predicted functions in degradative capabilities, stress response, amino acid metabolism and associated pathways. In contrast to Rm1021 pSymA and pSmeSM11c, megaplasmid pSymB of strain Rm1021 and pSmeSM11d are highly conserved showing extensive synteny with only few rearrangements. Most remarkably, pSmeSM11b contains a new gene cluster predicted to be involved in polysaccharide biosynthesis. Compilation of the S. meliloti SM11 genome sequence contributes to an extension of the S. meliloti pan-genome.  相似文献   

9.

Background

Auxin/indoleacetic acid (Aux/IAA) genes, coding a family of short-lived nuclear proteins, play key roles in wide variety of plant developmental processes, including root system regulation and responses to environmental stimulus. However, how they function in auxin signaling pathway and symbiosis with rhizobial in Medicago truncatula are largely unknown. The present study aims at gaining deeper insight on distinctive expression and function features of Aux/IAA family genes in Medicago truncatula during nodule formation.

Principal Findings

Using the latest updated draft of the full Medicago truncatula genome, a comprehensive identification and analysis of IAA genes were performed. The data indicated that MtIAA family genes are distributed in all the M. truncatula chromosomes except chromosome 6. Most of MtIAA genes are responsive to exogenous auxin and express in tissues-specific manner. To understand the biological functions of MtIAA genes involved in nodule formation, quantitative real-time polymerase chain reaction (qRT-PCR) was used to test the expression profiling of MtIAA genes during the early phase of Sinorhizobium meliloti (S. meliloti) infection. The expression patterns of most MtIAA genes were down-regulated in roots and up-regulated in shoots by S. meliloti infection. The differences in expression responses between roots and shoots caused by S. meliloti infection were alleviated by 1-NOA application.

Conclusion

The genome-wide identification, evolution and expression pattern analysis of MtIAA genes were performed in this study. The data helps us to understand the roles of MtIAA-mediated auxin signaling in nodule formation during the early phase of S. meliloti infection.  相似文献   

10.
The Rhizobium meliloti dctA gene encodes the C4-dicarboxylate permease which mediates uptake of C4-dicarboxylates, both in free-living and symbiotic cells. Based on the hydrophobicity of the DctA protein, 12 putative membrane spanning regions were predicted. The membrane topology was further analysed by isolating in vivo fusions of DctA to Escherichia coli alkaline phosphatase (PhoA) and E. coli β-galactosidase (LacZ). Of 10 different fusions 7 indicated a periplasmic and 3 a cytoplasmic location of the corresponding region of the DctA protein. From these data a two-dimensional model of DctA was constructed which comprised twelve transmembrane α-helices with the amino-terminus and the carboxy-terminus located in the cytoplasm. In addition, four conserved amino acid motifs present in many eukaryotic and prokaryotic transport proteins were observed.  相似文献   

11.
Zhao H  Li M  Fang K  Chen W  Wang J 《PloS one》2012,7(2):e31287

Background

Sinorhizobium meliloti is a soil bacterium, known for its capability to establish symbiotic nitrogen fixation (SNF) with leguminous plants such as alfalfa. S. meliloti 1021 is the most extensively studied strain to understand the mechanism of SNF and further to study the legume-microbe interaction. In order to provide insight into the metabolic characteristics underlying the SNF mechanism of S. meliloti 1021, there is an increasing demand to reconstruct a metabolic network for the stage of SNF in S. meliloti 1021.

Results

Through an iterative reconstruction process, a metabolic network during the stage of SNF in S. meliloti 1021 was presented, named as iHZ565, which accounts for 565 genes, 503 internal reactions, and 522 metabolites. Subjected to a novelly defined objective function, the in silico predicted flux distribution was highly consistent with the in vivo evidences reported previously, which proves the robustness of the model. Based on the model, refinement of genome annotation of S. meliloti 1021 was performed and 15 genes were re-annotated properly. There were 19.8% (112) of the 565 metabolic genes included in iHZ565 predicted to be essential for efficient SNF in bacteroids under the in silico microaerobic and nutrient sharing condition.

Conclusions

As the first metabolic network during the stage of SNF in S. meliloti 1021, the manually curated model iHZ565 provides an overview of the major metabolic properties of the SNF bioprocess in S. meliloti 1021. The predicted SNF-required essential genes will facilitate understanding of the key functions in SNF and help identify key genes and design experiments for further validation. The model iHZ565 can be used as a knowledge-based framework for better understanding the symbiotic relationship between rhizobia and legumes, ultimately, uncovering the mechanism of nitrogen fixation in bacteroids and providing new strategies to efficiently improve biological nitrogen fixation.  相似文献   

12.
13.
The enterobacterial repetitive intergenic consensus (ERIC)-PCR method was employed to generate genomic amplification products of Sinorhizobium meliloti strain 2011. Eleven distinctive PCR fragments obtained in PCR reactions by using the ERIC2 primer were cloned and their partial or complete nucleotide sequences established. DNA sequences that extended past the ERIC2 primer region were not conserved among the 11 PCR fragments and showed no sequence similarity to the enterobacterial ERIC consensus sequence. Thus, repetitive ERIC or ERIC-like sequences seem not to be an integral part of the S. meliloti genome. An amplification product of S. meliloti 2011 was identified which was present in S. meliloti strains but absent in other rhizobial species. Based on the nucleotide sequence information, a pair of PCR primers was designed and used for PCR amplification of sequences of S. meliloti laboratory strains 2011, L5–30, AK631 and 102F34. Nucleotide sequence analysis of the amplification products revealed a 100% DNA sequence conservation. Database searches showed that the DNA fragment putatively encodes the C-terminal part of a protein displaying similarity to 2-hydroxyacid dehydrogenases of various organisms. The newly designed PCR primers should be useful for the rapid identification of S. meliloti isolates. Received: 17 February 1999 / Accepted: 9 April 1999  相似文献   

14.
In Escherichia coli, the phn operon encodes proteins responsible for the uptake and breakdown of phosphonates. The C-P (carbon-phosphorus) lyase enzyme encoded by this operon which catalyzes the cleavage of C-P bonds in phosphonates has been recalcitrant to biochemical characterization. To advance the understanding of this enzyme, we have cloned DNA from Rhizobium (Sinorhizobium) meliloti that contains homologues of the E. coli phnG, -H, -I, -J, and -K genes. We demonstrated by insertional mutagenesis that the operon from which this DNA is derived encodes the R. meliloti C-P lyase. Furthermore, the phenotype of this phn mutant shows that the C-P lyase has a broad substrate specificity and that the organism has another enzyme that degrades aminoethylphosphonate. A comparison of the R. meliloti and E. coli phn genes and their predicted products gave new information about C-P lyase. The putative R. meliloti PhnG, PhnH, and PhnK proteins were overexpressed and used to make polyclonal antibodies. Proteins of the correct molecular weight that react with these antibodies are expressed by R. meliloti grown with phosphonates as sole phosphorus sources. This is the first in vivo demonstration of the existence of these hitherto hypothetical Phn proteins.  相似文献   

15.
A series of Rhizobium meliloti and Rhizobium trifolii strains were used as inocula for alfalfa and clover, respectively, grown under bacteriologically controlled conditions. Replicate samples of nodules formed by each strain were assayed for rates of H2 evolution in air, rates of H2 evolution under Ar and O2, and rates of C2H2 reduction. Nodules formed by all strains of R. meliloti and R. trifolii on their respective hosts lost at least 17% of the electron flow through nitrogenase as evolved H2. The mean loss from alfalfa nodules formed by 19 R. meliloti strains was 25%, and the mean loss from clover nodules formed by seven R. trifolii strains was 35%. R. meliloti and R. trifolii strains also were cultured under conditions that were previously established for derepression of hydrogenase synthesis. Only strains 102F65 and 102F51 of R. meliloti showed measurable activity under free-living conditions. Bacteroids from nodules formed by the two strains showing hydrogenase activity under free-living conditions also oxidized H2 at low rates. The specific activity of hydrogenase in bacteroids formed by either strain 102F65 or strain 102F51 of R. meliloti was less than 0.1% of the specific activity of the hydrogenase system in bacteroids formed by H2 uptake-positive Rhizobium japonicum USDA 110, which has been investigated previously. R. meliloti and R. trifolii strains tested possessed insufficient hydrogenase to recycle a substantial proportion of the H2 evolved from the nitrogenase reaction in nodules of their hosts. Additional research is needed, therefore, to develop strains of R. meliloti and R. trifolii that possess an adequate H2-recycling system.  相似文献   

16.
To detect the presence of NO, ROS and RNS in nodules of crack entry legumes, we used Arachis hypogaea functional nodule. The response of two cognate partner rhizobia was compared towards NO and GSNO using S. meliloti and Bradyrhizobium sp NC921001. ROS, NO, nitrosothiol and bacteroids were detected by fluorescence microscopy. Redox enzymes and thiol pools were detected biochemically. Nitrosothiols were found to be present but ROS and NO were absent in A. hypogaea nodule. A number of S-nitrosylated proteins were also detected. The total thiol pool and most of the redox enzymes were low in nodule cytosolic extract but these were found to be high in the partner microorganisms indicating partner rhizobia could protect the nodule environment against the nitrosothiols. Both S. meliloti and Bradyrhizobium sp NC921001 were found to contain GSNO reductase. Interestingly, there was a marked difference in growth pattern between S. meliloti and Bradyrhizobium sp in presence of sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO). Bradyrhizobium sp was found to be much more tolerant to NO donor compounds than the S. meliloti. In contrast, S. meliloti showed resistance to GSNO but was sensitive to SNP. Together our data indicate that nodule environment of crack entry legumes is different than the nodules of infection mode entry in terms of NO, ROS and RNS. Based on our biochemical characterization, we propose that exchange of redox molecules and reactive chemical species is possible between the bacteroid and nodule compartment.  相似文献   

17.
Sinorhizobium fredii strain USDA208 is a nitrogen-fixing bacterium that forms nodules on roots of soybean and other legume plants. We previously found that the Tn5-containing mutant 208T3, which was derived from strain USDA208, is both deficient in production of exopolysaccharides and more competitive than the wild-type strain in competing against other rhizobia for nodulation of soybean. We now demonstrate that the transposon insertion of the mutant lies in a locus that is highly homologous to a portion of the exo region, which functions in exopolysaccharide biosynthesis by Sinorhizobium meliloti. We sequenced 2906 bp surrounding the insertion site and identified three genes: exoA, exoM, and exoO. The transposon lies within exoM, a glucosyl transferase. A cosmid containing exoHKLAMONP of S. meliloti restores exopolysaccharide production by mutant 208T3 to wild-type levels. Although exo mutants of S. meliloti are defective in their abilities to form indeterminate nodules, the capacities of mutant 208T3 and its wild-type parent to form such nodules on five legume species are indistinguishable. Thus the symbiotic function of exopolysaccharide in S. fredii appears to differ fundamentally from that in S. meliloti.  相似文献   

18.
Reduction in crop yield and contamination of food crops are major problems in many areas due to high soil arsenic content. In this study an aquaglyceroporin (AqpS) disrupted Sinorhizobium meliloti smk956 strain was found to accumulate 70.5% more arsenic than its parental strain S. meliloti Rm1021 under free living condition. This strain was inoculated onto alfalfa host plants under different arsenic concentrations (0, 1 and 5 mg/L) and its ability to alleviate arsenic toxicity in the host plant was investigated. At 1 and 5 mg/L arsenic concentrations the average arsenic contents in the shoots of the plants inoculated with the strain S. meliloti smk956 were 45.5 and 27.5% less than those of the plants inoculated with S. meliloti Rm1021, respectively. Under arsenic stress conditions the strain S. meliloti smk956 showed increased symbiotic efficiency than its parental strain. These results demonstrate a novel method to alleviate arsenic toxicity in alfalfa plants.  相似文献   

19.
In proteobacteria, genes whose expression is modulated in response to the external concentration of inorganic phosphate are often regulated by the PhoB protein which binds to a conserved motif (Pho box) within their promoter regions. Using a position weight matrix algorithm derived from known Pho box sequences, we identified 96 putative Pho regulon members whose promoter regions contained one or more Pho boxs in the Sinorhizobium meliloti genome. Expression of these genes was examined through assays of reporter gene fusions and through comparison with published microarray data. Of 96 genes, 31 were induced and 3 were repressed by Pi starvation in a PhoB dependent manner. Novel Pho regulon members included several genes of unknown function. Comparative analysis across 12 proteobacterial genomes revealed highly conserved Pho regulon members including genes involved in Pi metabolism (pstS, phnC and ppdK). Genes with no obvious association with Pi metabolism were predicted to be Pho regulon members in S.meliloti and multiple organisms. These included smc01605 and smc04317 which are annotated as substrate binding proteins of iron transporters and katA encoding catalase. This data suggests that the Pho regulon overlaps and interacts with several other control circuits, such as the oxidative stress response and iron homeostasis.  相似文献   

20.
The Sin/ExpR quorum-sensing system of Sinorhizobium meliloti plays an important role in the symbiotic association with its host plant, Medicago sativa. The LuxR-type response regulators of the Sin system include the synthase (SinI)-associated SinR and the orphan regulator ExpR. Interestingly, the S. meliloti Rm1021 genome codes for four additional putative orphan LuxR homologs whose regulatory roles remain to be identified. These response regulators contain the characteristic domains of the LuxR family of proteins, which include an N-terminal autoinducer/response regulatory domain and a C-terminal helix-turn-helix domain. This study elucidates the regulatory role of one of the orphan LuxR-type response regulators, NesR. Through expression and phenotypic analyses, nesR was determined to affect the active methyl cycle of S. meliloti. Moreover, nesR was shown to influence nutritional and stress response activities in S. meliloti. Finally, the nesR mutant was deficient in competing with the wild-type strain for plant nodulation. Taken together, these results suggest that NesR potentially contributes to the adaptability of S. meliloti when it encounters challenges such as high osmolarity, nutrient starvation, and/or competition for nodulation, thus increasing its chances for survival in the stressful rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号