首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Park S  Hong SM  Sung SR 《Life sciences》2008,82(9-10):503-511
Not only exendin-4 but also exercise has been reported to improve glucose homeostasis by enhancing insulinotropic action, but the nature of its molecular mechanism has not been clarified. We investigated a mechanism to promote insulinotropic action by means of exendin-4 and exercise training in 90% pancreatectomized (Px) rats fed 40% energy fat diets. Px diabetic rats were divided into 4 groups: 1) exendin-4, 2) exendin-4 plus exercise, 3) saline (control), and 4) exercise. During the 8-week experimental period, rats in the exendin-4 groups were subcutaneously administered with 150 pmol/kg exendin-4 twice a day, while those in the exercise groups ran on an uphill treadmill with a 15 degree incline at 20 m/min for 30 min 5 days a week. First phase insulin secretion was elevated by both the administration of exendin-4 and exercise training during hyperglycemic clamp. However, second phase insulin secretion did not differ among the groups. Individual treatment of exendin-4 and exercise expanded beta-cell mass by increasing its proliferation and reducing its apoptosis, but the administration of exendin-4 plus exercise training did not produce any additional, positive effects. Both exendin-4 and exercise enhanced insulin receptor substrate (IRS)-2 expression through the activation of cAMP responding element binding protein in the islets, which potentiated their insulin/insulin like growth factor-1 signaling. The potentiation of the signaling increased the expression of pancreas duodenum homeobox-1, involved in beta-cell proliferation. In conclusion, exendin-4 and exercise equivalently improved glucose homeostasis due to the induction of IRS-2 in the islets of diabetic rats through a cAMP dependent common pathway.  相似文献   

2.
3.
Studies in vivo indicate that IRS2 plays an important role in maintaining functional beta-cell mass. To investigate if IRS2 autonomously affects beta-cells, we have studied proliferation, apoptosis, and beta-cell function in isolated rat and human islets after overexpression of IRS2 or IRS1. We found that beta-cell proliferation was significantly increased in rat islets overexpressing IRS2 while IRS1 was less effective. Moreover, proliferation of a beta-cell line, INS-1, was decreased after repression of Irs2 expression using RNA oligonucleotides. Overexpression of IRS2 in human islets significantly decreased apoptosis of beta-cells, induced by 33.3 mM D-glucose. However, IRS2 did not protect cultured rat islets against apoptosis in the presence of 0.5 mM palmitic acid. Overexpression of IRS2 in isolated rat islets significantly increased basal and D-glucose-stimulated insulin secretion as determined in perifusion experiments. Therefore, IRS2 is sufficient to induce proliferation in rat islets and to protect human beta-cells from D-glucose-induced apoptosis. In addition, IRS2 can improve beta-cell function. Our results indicate that IRS2 acts autonomously in beta-cells in maintenance and expansion of functional beta-cell mass in vivo.  相似文献   

4.
Red peppers and red pepper paste are reported to have anti-obesity, analgesic and anti-inflammatory effects in animals and humans due to the capsaicin in red pepper. We investigated whether consuming capsaicin and capsiate, a nonpungent capsaicin analogue, modifies glucose-stimulated insulin secretion, pancreatic β-cell survival and insulin sensitivity in 90% pancreatectomized (Px) diabetic rats, a moderate and non-obese type 2 diabetic animal model. Px diabetic rats were divided into 3 treatment groups: 1) capsaicin (Px-CPA), 2) capsiate (Px-CPI) or 3) dextrose (Px-CON) and provided high fat diets (40 energy % fat) containing assigned components (0.025% capsaicin, capsiate, or dextrose) for 8 weeks. Both capsaicin and capsiate reduced body weight gain, visceral fat accumulation, serum leptin levels and improved glucose tolerance without modulating energy intake in diabetic rats. In comparison to the control, both capsaicin and capsiate potentiated first and second and phase insulin secretion during hyperglycemic clamp. Both also increased β-cell mass by increasing proliferation and decreasing apoptosis of β-cells by potentiating insulin/IGF-1 signaling. However, only capsiate enhanced hepatic insulin sensitivity during euglycemic hyperinuslinemic clamp. Capsiate reduced hepatic glucose output and increased triglyceride accumulation in the hyperinsulinemic state and capsiate alone significantly increased glycogen storage. This was related to enhanced pAkt→PEPCK and pAMPK signaling. Capsaicin and capsiate reduced triglyceride storage through activating pAMPK. In conclusion, capsaicin and capsiate improve glucose homeostasis but they differently enhance insulin sensitivity in the liver, insulin secretion patterns, and islet morphometry in diabetic rats. Capsiate has better anti-diabetic actions than capsaicin.  相似文献   

5.
Nutrition during fetal life is a critical factor contributing to diabetes development in adulthood. The aim of our study was to verify: 1) whether a high-fat (HF) diet in young adult mice induces alterations in beta-cell mass, proliferation, neogenesis, and apoptosis, as well as insulin sensitivity and secretion; 2) whether these alterations may be reversible after HF diet suspension; 3) the effects in a first (F1) and second generation (F2) of mice without direct exposure to a HF diet after birth. Type 2 diabetes developed in adult mice on a HF diet, in F1 mice that were HF diet-exposed during fetal or neonatal life, and in F2 mice whose mothers were HF diet-exposed during their fetal life. beta-cell mass, replication, and neogenesis were high in HF diet-exposed mice and decreased after diet suspension. beta-cell mass and replication remained high in F1 mice and decreased in F2 mice whose mothers were exposed to a HF diet. beta-cell neogenesis was present in adult mice on a HF diet and in F1 mice that were HF diet-exposed during fetal and/or neonatal life. We conclude that a HF diet during fetal life, particularly if combined with the same insult during the suckling period, can induce the type 2 diabetes phenotype, which can be directly transmitted to the progeny even in the absence of additional dietary insults.  相似文献   

6.
Although pancreatic beta-cells are capable of adapting their mass in response to insulin requirements, evidence has shown that a dietary insult could compromise this ability. Fetal malnutrition has been linked to low birth weight and the development of type 2 diabetes later in life, while reduced beta-cell mass has been reported in adult rats fed a high-fat diet (HFD). Reported here are the effects of exposure to a HFD, during different periods of gestation, on neonatal rat weight and beta- and alpha-cell development. The experimental groups were composed of neonatal offspring obtained from Wistar rats fed a high-fat (40% as energy) diet for either the first (HF1), second (HF2), or third (HF3) week, or all three (HF1-3) weeks of gestation. Neonatal weights and circulating glucose and insulin concentrations were measured on postnatal day 1, after which the pancreata were excised and processed for histological immunocytochemical examination and image analysis. HF1 and HF2 neonates were hypoglycemic, whereas HF1-3 neonates were hyperglycemic. Low birth weights were observed only in HF1 neonates. No significant differences were detected in the circulating insulin concentrations in the neonates, although beta-cell volume and numbers were reduced in HF1-3 neonates. beta-cell numbers also declined in HF1 and HF3 neonates. alpha-cell volume, number and size were, however, increased in HF1-3 neonates. alpha-cell size was also increased in HF1 and HF3 neonates. In neonates, exposure to a maternal HFD throughout gestation was found to have the most adverse effect on beta-cell development and resulted in hyperglycemia.  相似文献   

7.
Paternal obesity increases, while paternal exercise decreases, offspring obesity and type 2 diabetes (T2D) risk; however, no studies have determined whether a paternal high-fat (HF) diet and exercise interact to alter offspring body weight (BW), adiposity and T2D risk. Three-week-old male C57BL/6 mice were fed a normal-fat (NF) diet (16% fat) or an HF diet (45% fat) and assigned to either voluntary wheel running exercise or cage activity for 3 months prior to mating with NF-diet-fed dams. After weaning, male offspring were fed an NF or HF diet for an additional 3 months. F1 male mice whose fathers ate an HF diet had decreased % body fat accompanied by decreased gene expression of beige adipocyte marker FGF21. However, paternal HF-diet-induced reductions in F1 offspring % body fat normalized but did not reduce T2D risk. Exercise was protective against paternal HF-diet-induced insulin resistance by increasing the expression of insulin signaling (GLUT4, IRS1 and PI3K) markers in skeletal muscle resulting in normal T2D risk. When fathers were fed an HF diet and exercised, a postnatal HF diet increased beiging (PPARγ). Thus, these findings show that increases in T2D risk in male offspring when the father consumes an HF diet can be normalized when the father also exercises preconception and that this protection may occur by increases in insulin signaling potential within offspring skeletal muscle. Future studies should further determine the physiological mechanism(s) underlying the beneficial effects of exercise through the paternal lineage.  相似文献   

8.
The prevalence of type 2 diabetes has been rapidly increasing in conjunction with the westernization of diet patterns in Asia. We determined whether the antecedent consumption of traditional Asian-style diets (ADs) deteriorates insulin action, insulin secretion and pancreatic beta-cell mass after subsequent imposition of the diabetogenic challenge of Western-style diets (WDs) in weaning male Sprague-Dawley rats. Rats were provided AD (a low-fat and plant protein diet), WD (a high-fat and animal protein diet) or a control diet (CD) (a low-fat and animal protein diet) for 12 weeks. After 12 weeks, the groups were divided into two subsets; one set of the groups continued to consume their previous diets of WD, AD and CD for another 12 weeks, and the second set was divided into three groups represented by a switch in their designated diets from WD to AD, AD to WD and CD to WD. Whole-body glucose disposal rates and GLUT4 contents in soleus muscles were lower in WD regardless of the antecedent protein sources. The first-phase insulin secretion was higher in the CD group than in the other groups, whereas the second phase was lowered with AD consumption as antecedent and/or present diets. Asian-style diet and AD-WD intake did not compensate for insulin resistance due to the failure of beta-cell expansion via decreased proliferation. These findings suggest that the antecedent consumption of AD possibly accelerates and augments the development of glucose dysregulation via decreased insulin secretion capacity and pancreatic beta-cell mass when the diets switch to WD.  相似文献   

9.
Protein restriction during the suckling phase can malprogram rat offspring to a lean phenotype associated with metabolic dysfunctions later in life. We tested whether protein-caloric restriction during lactation can exacerbate the effect of a high-fat (HF) diet at adulthood. To test this hypothesis, we fed lactating Wistar dams with a low-protein (LP; 4% protein) diet during the first 2 weeks of lactation or a normal-protein (NP; 23% protein) diet throughout lactation. Rat offspring from NP and LP mothers received a normal-protein diet until 60 days old. At this time, a batch of animals from both groups was fed an HF (35% fat) diet, while another received an NF (7% fat) diet. Maternal protein-caloric restriction provoked lower body weight and fat pad stores, hypoinsulinemia, glucose intolerance, higher insulin sensitivity, reduced insulin secretion and altered autonomic nervous system (ANS) function in adult rat offspring. At 90 days old, NP rats fed an HF diet in adulthood displayed obesity, impaired glucose homeostasis and altered insulin secretion and ANS activity. Interestingly, the LP/HF group also presented fat pad and body weight gain, altered glucose homeostasis, hyperleptinemia and impaired insulin secretion but at a smaller magnitude than the NP-HF group. In addition, LP/HF rats displayed elevated insulin sensitivity. We concluded that protein-caloric restriction during the first 14 days of life programs the rat metabolism against obesity and insulin resistance exacerbation induced by an obesogenic HF diet.  相似文献   

10.
In addition to suppressing appetite, leptin may also modulate insulin secretion and action. Leptin was administered here to insulin-resistant rats to determine its effects on secretagogue-stimulated insulin release, whole body glucose disposal, and insulin-stimulated skeletal muscle glucose uptake and transport. Male Wistar rats were fed either a normal (Con) or a high-fat (HF) diet for 3 or 6 mo. HF rats were then treated with either vehicle (HF), leptin (HF-Lep, 10 mg. kg(-1). day(-1) sc), or food restriction (HF-FR) for 12-15 days. Glucose tolerance and skeletal muscle glucose uptake and transport were significantly impaired in HF compared with Con. Whole body glucose tolerance and rates of insulin-stimulated skeletal muscle glucose uptake and transport in HF-Lep were similar to those of Con and greater than those of HF and HF-FR. The insulin secretory response to either glucose or tolbutamide (a pancreatic beta-cell secretagogue) was not significantly diminished in HF-Lep. Total and plasma membrane skeletal muscle GLUT-4 protein concentrations were similar in Con and HF-Lep and greater than those in HF and HF-FR. The findings suggest that chronic leptin administration reversed a high-fat diet-induced insulin-resistant state, without compromising insulin secretion.  相似文献   

11.
Exercise improves glucose tolerance in obese rodent models and humans; however, effects with respect to mechanisms of beta-cell compensation remain unexplained. We examined exercise's effects during the progression of hyperglycemia in male Zucker diabetic fatty (ZDF) rats until 19 wk of age. At 6 wk old, rats were assigned to 1) basal--euthanized for baseline values; 2) exercise--swam individually for 1 h/day, 5 days/wk; and 3) controls (n = 8-10/group). Exercise (13 wk) resulted in maintenance of fasted hyperinsulinemia and prevented increases in fed and fasted glucose (P < 0.05) compared with sham-exercised and sedentary controls (P < 0.05). Beta-cell function calculations indicate prolonged beta-cell adaptation in exercised animals alone. During an intraperitoneal glucose tolerance test (IPGTT), exercised rats had lower 2-h glucose (P < 0.05) vs. controls. Area-under-the-curve analyses from baseline for IPGTT glucose and insulin indicate improved glucose tolerance with exercise was associated with increased insulin production and/or secretion. Beta-cell mass increased in exercised vs. basal animals; however, mass expansion was absent at 19 wk in controls (P < 0.05). Hypertrophy and replication contributed to expansion of beta-cell mass; exercised animals had increased beta-cell size and bromodeoxyuridine incorporation rates vs. controls (P < 0.05). The relative area of GLUT2 and protein kinase B was significantly elevated in exercised vs. sedentary controls (P < 0.05). Last, we show formation of ubiquitinated protein aggregates, a response to cellular/oxidative stress, occurred in nonexercised 19 wk-old ZDF rats but not in lean, 6 wk-old basal, or exercised rats. In conclusion, improved beta-cell compensation through increased beta-cell function and mass occurs in exercised but not sedentary ZDF rats and may be in part responsible for improved glucoregulation.  相似文献   

12.
The proper regulation of blood glucose homeostasis in mammals requires an adequate relation between the capacity to produce insulin and metabolic demand. Insulin receptor substrate proteins (IRS) are signalling intermediates that are required to keep this balance because they are needed for insulin action in target tissues but also for insulin production in pancreatic beta-cells. The total functional beta-cell mass in an individual sets the limit of how much insulin can be produced at a given time. It can change adaptively to meet demand and studies in vivo indicate that the regulation of beta-cell mass involves IRS2, while IRS1 is only required for proper insulin production in beta-cells. Overexpression studies in isolated islets have shown that IRS2, but not IRS1 or Shc, is sufficient to induce proliferation of beta-cells and to protect against d-glucose-induced apoptosis. In light of the finding that many growth factors can regulate Irs2 in islets, this signalling intermediate could balance capacity for insulin production with demand. This review summarizes observations in mouse models and in primary beta-cells and proposes a new hypothetical model of how IRS2 might control beta-cell mass.  相似文献   

13.
During insulin resistance, glucose homeostasis is maintained by an increase in plasma insulin via increased secretion and/or decreased first-pass hepatic insulin extraction. However, the relative importance of insulin secretion vs. clearance to compensate for insulin resistance in obesity has yet to be determined. This study utilizes the fat-fed dog model to examine longitudinal changes in insulin secretion and first-pass hepatic insulin extraction during development of obesity and insulin resistance. Six dogs were fed an isocaloric diet with an approximately 8% increase in fat calories for 12 wk and evaluated at weeks 0, 6, and 12 for changes in 1) insulin sensitivity by euglycemic-hyperinsulinemic clamp, 2) first-pass hepatic insulin extraction by direct assessment, and 3) glucose-stimulated insulin secretory response by hyperglycemic clamp. We found that 12 wk of a fat diet increased subcutaneous and visceral fat as assessed by MR imaging. Consistent with increased body fat, the dogs exhibited a approximately 30% decrease in insulin sensitivity and fasting hyperinsulinemia. Although insulin secretion was substantially increased at week 6, beta-cell sensitivity returned to prediet levels by week 12. However, peripheral hyperinsulinemia was maintained because of a significant decrease in first-pass hepatic insulin extraction, thus maintaining hyperinsulinemia, despite changes in insulin release. Our results indicate that when obesity and insulin resistance are induced by an isocaloric, increased-fat diet, an initial increase in insulin secretion by the beta-cells is followed by a decrease in first-pass hepatic insulin extraction. This may provide a secondary physiological mechanism to preserve pancreatic beta-cell function during insulin resistance.  相似文献   

14.
Obesity is frequently associated with the consumption of high carbohydrate/fat diets leading to hyperinsulinemia. We have demonstrated that soy protein (SP) reduces hyperinsulinemia, but it is unclear by which mechanism. Thus, the purpose of the present work was to establish whether SP stimulates insulin secretion to a lower extent and/or reduces insulin resistance, and to understand its molecular mechanism of action in pancreatic islets of rats with diet-induced obesity. Long-term consumption of SP in a high fat (HF) diet significantly decreased serum glucose, free fatty acids, leptin, and the insulin:glucagon ratio compared with animals fed a casein HF diet. Hyperglycemic clamps indicated that SP stimulated insulin secretion to a lower extent despite HF consumption. Furthermore, there was lower pancreatic islet area and insulin, SREBP-1, PPARgamma, and GLUT-2 mRNA abundance in comparison with rats fed the casein HF diet. Euglycemic-hyperinsulinemic clamps showed that the SP diet prevented insulin resistance despite consumption of a HF diet. Incubation of pancreatic islets with isoflavones reduced insulin secretion and expression of PPARgamma. Addition of amino acids resembling the plasma concentration of rats fed casein stimulated insulin secretion; a response that was reduced by the presence of isoflavones, whereas the amino acid pattern resembling the plasma concentration of rats fed SP barely stimulated insulin release. Infusion of isoflavones during the hyperglycemic clamps did not stimulate insulin secretion. Therefore, isoflavones as well as the amino acid pattern seen after SP consumption stimulated insulin secretion to a lower extent, decreasing PPARgamma, GLUT-2, and SREBP-1 expression, and ameliorating hyperinsulinemia observed during obesity.  相似文献   

15.
To evaluate the relationship between the development of obesity, nervous system activity, and insulin secretion and action, we tested the effect of a 2-mo high-fat diet in rats (HF rats) on glucose tolerance, glucose-induced insulin secretion (GIIS), and glucose turnover rate compared with chow-fed rats (C rats). Moreover, we measured pancreatic and hepatic norepinephrine (NE) turnover, as assessment of sympathetic tone, and performed hypothalamic microdialysis to quantify extracellular NE turnover. Baseline plasma triglyceride, free fatty acid, insulin, and glucose concentrations were similar in both groups. After 2 days of diet, GIIS was elevated more in HF than in C rats, whereas plasma glucose time course was similar. There was a significant increase in basal pancreatic NE level of HF rats, and a twofold decrease in the fractional turnover constant was observed, indicating a change in sympathetic tone. In ventromedian hypothalamus of HF rats, the decrease in NE extracellular concentration after a glucose challenge was lower compared with C rats, suggesting changes in overall activity. After 7 days, insulin hypersecretion persisted, and glucose intolerance appeared. Later (2 mo), there was no longer insulin hypersecretion, whereas glucose intolerance worsened. At all times, HF rats also displayed hepatic insulin resistance. On day 2 of HF diet, GIIS returned to normal after treatment with oxymetazoline, an alpha(2A)-adrenoreceptor agonist, thus suggesting the involvement of a low sympathetic tone in insulin hypersecretion in response to glucose in HF rats. In conclusion, the HF diet rapidly results in an increased GIIS, at least in part related to a decreased sympathetic tone, which can be the first step of a cascade of events leading to impaired glucose homeostasis.  相似文献   

16.
Improper eating habits such as high-fat or high-carbohydrate diets are responsible for metabolic changes resulting in impaired glucose tolerance, hyperinsulinemia, insulin resistance, and ultimately diabetes. Although the essentiality of trivalent chromium for humans has been recently questioned by researchers, pharmacological dosages of this element can improve insulin sensitivity in experimental animals and diabetic subjects. The aim of the study was to assess the preventive potential of the supplementary chromium(III) propionate complex (CrProp) in rats fed a high-fat diet. The experiment was conducted on 32 male Wistar rats divided into four groups and fed the following diets: the control (C, AIN-93G), high-fat diets (HF, 40 % energy from fat), and a high-fat diet supplemented with CrProp at dosages of 10 and 50 mg Cr/kg diet (HF?+?Cr10 and HF?+?Cr50, respectively). After 8 weeks, high-fat feeding led to an increased body mass, hyperinsulinemia, insulin resistance, a decreased serum urea concentration, accumulation of lipid droplets in hepatocytes, and increased renal Fe and splenic Cu contents. Supplementary CrProp in both dosages did not alleviate these changes but increased renal Cr content and normalized splenic Cu content in high-fat-fed rats. Supplementary CrProp does not prevent the development of insulin resistance in rats fed a high-fat diet.  相似文献   

17.
Park S  Hong SM  Lee JE  Sung SR 《Life sciences》2007,80(26):2428-2435
Investigated in this study are the effects and mechanisms of exercise and chlorpromazine (CPZ), a widely used conventional antipsychotic drug, on the hepatic insulin sensitivity of 90% pancreatectomized (Px) male Sprague–Dawley rats. The Px diabetic rats were provided with 0, 5, or 50 mg CPZ per kg of body weight (No-CPZ, LCPZ, or HCPZ) for 8 weeks, and half of each group had regular exercise. LCPZ did not exacerbate hepatic insulin sensitivity through insulin and leptin signaling in diabetic rats. However, HCPZ decreased whole-body glucose infusion rates in hyperinsulinemic clamped states, but not whole-body glucose uptake. This was due to the elevated hepatic glucose output in hyperinsulinemic states. The decreased hepatic insulin sensitivity was associated with insulin receptor substrate-2 (IRS2) protein levels in the liver. Decreased IRS2 levels attenuated hepatic insulin and leptin signaling pathways in hyperinsulinemic states, which elevated glucose production by inducing phosphoenolpyruvate carboxykinase expression. Long-term exercise recovered hepatic insulin sensitivity attenuated by HCPZ to reduce the hepatic glucose output in hyperinsulinemic clamped states. This recovery was related to enhanced insulin and leptin signaling via increased IRS2 gene and protein levels by activating the cAMP responding element-binding protein, but exercise improved only insulin signaling. In conclusion, HCPZ exacerbates hepatic insulin action by attenuating insulin and leptin signaling in type 2 diabetic rats, while regular exercise partially reverses the attenuation of hepatic insulin sensitivity by improving insulin signaling. Enhancement of insulin and leptin signaling through an induction of IRS2 may play an important role in improving hepatic glucose homeostasis.  相似文献   

18.
19.
Recent studies have revealed that beta-cell dysfunction is an important factor in developing type 2 diabetes. beta-cell dysfunction is related to impairment of the insulin/IGF-1 signaling cascade through insulin receptor substrate-2 (IRS2). The induction of IRS2 in beta-cells plays an important role in potentiating beta-cell function and mass. In this study, we investigated whether herbs used for treating diabetes in Chinese medicine-Galla rhois, Rehmanniae radix, Machilus bark, Ginseng radix, Polygonatum radix, and Scutellariae radix-improved IRS2 induction in rat islets, glucose-stimulated insulin secretion and beta-cell survival. R. radix, Ginseng radix and S. radix significantly enhanced glucose-stimulated insulin secretion compared to the control, i.e., by 49, 67 and 58%, respectively. These herbs induced the expression of IRS2, pancreas duodenum homeobox-1 (PDX-1), and glucokinase. The increased level of glucokinase could explain the enhancement of glucose-stimulated insulin secretion with these extracts. Increased PDX-1 expression was associated with beta-cell proliferation, which was consistent with the cell viability assay. In conclusion, R. radix, Ginseng radix and S. radix had an insulinotropic action similar to that of exendin-4.  相似文献   

20.
Resveratrol (RSV), a natural compound, is known for its effects on energy homeostasis. Here we investigated the effects of RSV and possible mechanism in insulin secretion of high-fat diet rats. Rats were randomly divided into three groups as follows: NC group (animals were fed ad libitum with normal chow for 8 weeks), HF group (animals were fed ad libitum with high-fat diet for 8 weeks), and HFR group (animals were treated with high-fat diet and administered with RSV for 8 weeks). Insulin secretion ability of rats was assessed by hyperglycemic clamp. Mitochondrial biogenesis genes, mitochondrial respiratory chain activities, reactive oxidative species (ROS), and several mitochondrial antioxidant enzyme activities were evaluated in islet. We found that HF group rats clearly showed low insulin secretion and mitochondrial complex dysfunction. Expression of silent mating type information regulation 2 homolog- 1 (SIRT1) and related mitochondrial biogenesis were significantly decreased. However, RSV administration group (HFR) showed a marked potentiation of glucose-stimulated insulin secretion. This effect was associated with elevated SIRT1 protein expression and antioxidant enzyme activities, resulting in increased mitochondrial respiratory chain activities and decreased ROS level. This study suggests that RSV may increase islet mitochondrial complex activities and antioxidant function to restore insulin secretion dysfunction induced by high-fat diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号