首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the effects of monounsaturated and polyunsaturated fatty acids from different fat sources (High Oleic Canola, Canola, Canola–Flaxseed (3:1 blend), Safflower, or Soybean Oil, or a Lard-based diet) on adipose tissue function and markers of inflammation in Obese Prone rats fed high-fat (55% energy) diets for 12 weeks. Adipose tissue fatty acid composition reflected the dietary fatty acid profiles. Protein levels of fatty acid synthase, but not mRNA levels, were lower in adipose tissue of all groups compared to the Lard group. Adiponectin and fatty acid receptors GPR41 and GPR43 protein levels were also altered, but other metabolic and inflammatory mediators in adipose tissue and serum were unchanged among groups. Overall, rats fed vegetable oil- or lard-based high-fat diets appear to be largely resistant to major phenotypic changes when the dietary fat composition is altered, providing little support for the importance of specific fatty acid profiles in the context of a high-fat diet.  相似文献   

2.
This study was designed to investigate the effect of dietary adlay oil on plasma lipids, insulin and lipid peroxidation levels in rats. Twenty-four male Wistar rats fed diet containing adlay oil and cholesterol were studied for 4 weeks. The animals were divided into three groups: (1) 10% lard (control) group; (2) 5% lard + 5% adlay oil (5% adlay oil) group; and (3) 10% adlay oil group. Although there was no significant difference in body weight at the end of the feeding study, rats fed a diet containing adlay oil showed a significant decrease in adipose tissue weight and relative adipose weight. In addition, the rats fed the adlay oil showed significantly decreased low-density lipoprotein cholesterol (LDL-C), insulin, leptin and thiobarbituric acid reactive substance (TBARS) concentrations after 4 weeks of the feeding study. Although a significant decrease in total plasma cholesterol was observed in rats fed the 5% adlay oil diet, no significant difference was observed between the 10% adlay oil and control groups, and neither was a significant difference in liver TBARS concentration found between the dietary groups. Results from this study suggest that dietary adlay oil can reduce leptin, adipose tissue and LDL-C levels in rats.  相似文献   

3.
Obesity consists in fat accumulation leading to increase in adipose cells number and size. Adipocyte membrane biophysical properties are critical to maintain cellular viability in metabolically healthy obesity. This study investigated the effect of the genetic background and dietary protein restriction on fat tissue lipid composition, adipocyte membrane fluidity and water permeability using the pig as experimental model. Twenty-four male pigs from distinct genotypes, lean and obese, were fed on normal and reduced protein diets within a 2 × 2 factorial arrangement (two genotypes and two diets). Backfat thickness was twofold higher in obese than in lean pigs but unrelated to dietary protein level. In contrast, total fatty acids in the subcutaneous adipose tissue were dependent on both breed and diet, with increased lipid content promoted by the fatty genotype and by the restriction of dietary protein. Adipose membranes isolated from obese pig's subcutaneous fat tissue showed higher permeability to water, in line with an increased fluidity. Moreover, the reduced content of dietary protein influenced positively the fluidity of adipose membranes. Neither genotype nor diet affected total cholesterol concentration in the adipose membranes. Membrane-saturated fatty acids' content was influenced by genotype, while membrane-polyunsaturated fatty acids, particularly from the n-6 family, was influenced by diet. The ratio of oleic (18:1c9)/linoleic (18:2n-6) acids was positively correlated with membrane fluidity. All together, these findings reinforce the genetic background as a determinant player on adipose membrane biophysical properties and point to the dietary protein level as an important factor for subcutaneous lipid deposition as well as for regulation of membrane function, factors that may have impact on human obesity and metabolic syndrome.  相似文献   

4.
The purpose of this study was to clarify the effect of conjugated linoleic acid on lipid accumulation in adipose tissue. Sprague-Dawley rats were fed a diet containing 2% conjugated linoleic acid for 1, 3, 6, and 12 weeks. In rats fed 2% conjugated linoleic acid, the weight of perirenal white adipose tissue was comparable with that of rats fed a conjugated linoleic acid-free diet. For fatty acid composition of perirenal white adipose tissue, both 16:1/16:0 and 18:1/18:0 ratios were significantly lower in the conjugated linoleic acid-fed group than the control group. Although there was no remarkable difference in serum triglyceride, total cholesterol, and phospholipid levels between dietary groups, serum leptin level was significantly lower than the control group, and lipid content in the perirenal white adipose tissue exerted a tendency toward low compared to the control value at 1-week feeding. On the other hand, leptin level in perirenal white adipose tissue was significantly lower in the conjugated linoleic acid-fed group than the control group at 12-week feeding. In conclusion, these observations suggest dietary conjugated linoleic acid is an acute reducer of serum leptin level. This may afford an explanation of the mechanism of anti-obesity effect in conjugated linoleic acid.  相似文献   

5.
The effects of infant diet (breast milk or formula containing 2, 30 or 60 mg/dl cholesterol) and subsequent dietary cholesterol (0.02, 1.0 or 1.7 mg/kcal) and fat (saturated or unsaturated) on heparin-releasable lipolytic activity from omental adipose tissue was estimated from 99 baboons of 5-8 years of age. This lipase activity was characterized as lipoprotein lipase based on salt inhibition and apolipoprotein C-II activation. Lipoprotein lipase activity released from adipose tissue by heparin was significantly (P less than 0.002) lower in high cholesterol-fed baboons than in those fed low cholesterol. Most of this difference was due to impaired long-term heparin release of lipoprotein lipase. Adipose tissue lipoprotein lipase increased with increasing fat cell size regardless of diet, but there was no effect of diet on adipocyte size. There were no significant effects of infant cholesterol intake nor adult saturated or unsaturated fat on lipoprotein lipase activity. Adult baboons breast fed as infants had lower adipose tissue lipoprotein lipase activity (P less than 0.07) than adults fed formula as infants.  相似文献   

6.
PPARalpha-deficiency in mice fed a high-carbohydrate, low-cholesterol diet was associated with a decreased weight of epididymal adipose tissue and an increased concentration of adipose tissue cholesterol. Consumption of a high (2% w/w) cholesterol diet resulted in a further increase in the concentration of cholesterol and a further decrease in epididymal fat pad weight in PPARalpha-null mice, but had no effect in the wild-type. These reductions in fat pad weight were associated with an increase in hepatic triacylglycerol content, indicating that both PPARalpha-deficiency and cholesterol altered the distribution of triacylglycerol in the body. Adipose tissue de novo lipogenesis was increased in PPARalpha-null mice and was further enhanced when they were fed a cholesterol-rich diet; no such effect was observed in the wild-type mice. The increased lipogenesis in the chow-fed PPARalpha-null mice was accompanied paradoxically by lower mRNA expression of SREBP-1c and its target genes, acetyl-CoA carboxylase and fatty acid synthase. Consumption of a high-cholesterol diet increased the mRNA expression of these genes in the PPARalpha-deficient mice but not in the wild-type. De novo cholesterol synthesis was not detectable in the adipose tissue of either genotype despite a relatively high expression of the mRNA's encoding SREBP-2 and 3-hydroxy-3-methylglutaryl Coenzyme A reductase. The mRNA expression of these genes and of the LDL-receptor in adipose tissue of the PPARalpha-deficient mice was lower than that of the wild-type and was not downregulated by cholesterol feeding. The results suggest that PPARalpha plays a role in adipose tissue cholesterol and triacylglycerol homeostasis and prevents cholesterol-mediated changes in de novo lipogenesis.  相似文献   

7.
In the meat industry, the manipulation of fat deposition in cattle is of pivotal importance to improve production efficiency, carcass composition and ultimately meat quality. There is an increasing interest in the identification of key factors and molecular mechanisms responsible for the development of specific fat depots. This study aimed at elucidating the influence of breed and diet on adipose tissue membrane permeability and fluidity and their interplay on fat deposition in bovines. Two Portuguese autochthonous breeds, Alentejana and Barrosã, recognized as late- and early-maturing breeds, respectively, were chosen to examine the effects of breed and diet on fat deposition and on adipose membrane composition and permeability. Twenty-four male bovines from these breeds were fed on silage-based or concentrate-based diets for 11 months. Animals were slaughtered to determine their live slaughter and hot carcass weights, as well as weights of subcutaneous and visceral adipose depots. Mesenteric fat depots were excised and used to isolate adipocyte membrane vesicles where cholesterol content, fatty acid profile as well as permeability and fluidity were determined. Total accumulation of neither subcutaneous nor visceral fat was influenced by breed. In contrast, mesenteric and omental fat depots weights were higher in concentrate-fed bulls relative to silage-fed animals. Membrane fluidity and permeability to water and glycerol in mesenteric adipose tissue were found to be independent of breed and diet. Moreover, the deposition of cholesterol and unsaturated fatty acids, which may influence membrane properties, were unchanged among experimental groups. Adipose membrane lipids from the mesenteric fat depot of ruminants were rich in saturated fatty acids, and unaffected by polyunsaturated fatty acids dietary levels. Our results provide evidence against the involvement of cellular membrane permeability to glycerol on fat accumulation in mesenteric fat tissue of concentrate-fed bovines, which is consistent with the unchanged membrane lipid profile found among experimental groups.  相似文献   

8.
The aim of this study was to determine the impact of dietary plant sterols and stanols on sterol incorporation and sterol-regulatory gene expression in insulin-treated diabetic rats and nondiabetic control rats. Diabetic BioBreeding (BB) and control BB rats were fed a control diet or a diet supplemented with plant sterols or plant stanols (5 g/kg diet) for 4 weeks. Expression of sterol-regulatory genes in the liver and intestine was assessed by real-time quantitative polymerase chain reaction. Diabetic rats demonstrated increased tissue accumulation of cholesterol and plant sterols and stanols compared to control rats. This increase in cholesterol and plant sterols and stanols was associated with a marked decrease in hepatic and intestinal Abcg5 (ATP-binding cassette transporter G5) and Abcg8 (ATP-binding cassette transporter G8) expressions in diabetic rats, as well as decreased mRNA levels of several other genes involved in sterol regulation. Plant sterol or plant stanol supplementation induced the accumulation of plant sterols and stanols in tissues in both rat strains, but induced a greater accumulation of plant sterols and stanols in diabetic rats than in control rats. Surprisingly, only dietary plant sterols decreased cholesterol levels in diabetic rats, whereas dietary plant stanols caused an increase in cholesterol levels in both diabetic and control rats. Therefore, lower expression levels of Abcg5/Abcg8 in diabetic rats may account for the increased accumulation of plant sterols and cholesterol in these rats.  相似文献   

9.
Adipose tissue plays an important role in storing excess nutrients and preventing ectopic lipid accumulation in other organs. Obesity leads to excess lipid storage in adipocytes, resulting in the generation of stress signals and the derangement of metabolic functions. SIRT1 is an important regulatory sensor of nutrient availability in many metabolic tissues. Here we report that SIRT1 functions in adipose tissue to protect from inflammation and obesity under normal feeding conditions, and to forestall the progression to metabolic dysfunction under dietary stress and aging. Genetic ablation of SIRT1 in adipose tissue leads to gene expression changes that highly overlap with changes induced by high-fat diet in wild-type mice, suggesting that dietary stress signals inhibit the activity of SIRT1. Indeed, we show that high-fat diet induces the cleavage of SIRT1 protein in adipose tissue by the inflammation-activated caspase-1, providing a link between dietary stress and predisposition to metabolic dysfunction.  相似文献   

10.
Adipose tissue inflammation is associated with insulin resistance and increased cardiovascular disease risk in obesity. We previously showed that addition of cholesterol to a diet rich in saturated fat and refined carbohydrate significantly worsens dyslipidemia, insulin resistance, adipose tissue macrophage accumulation, systemic inflammation, and atherosclerosis in LDL receptor-deficient (Ldlr−/−) mice. To test whether inhibition of intestinal cholesterol absorption would improve metabolic abnormalities and adipose tissue inflammation in obesity, we administered ezetimibe, a dietary and endogenous cholesterol absorption inhibitor, to Ldlr−/− mice fed chow or high-fat, high-sucrose (HFHS) diets without or with 0.15% cholesterol (HFHS+C). Ezetimibe blunted weight gain and markedly reduced plasma lipids in the HFHS+C group. Ezetimibe had no effect on glucose homeostasis or visceral adipose tissue macrophage gene expression in the HFHS+C fed mice, although circulating inflammatory markers serum amyloid A (SSA) and serum amyloid P (SSP) levels decreased. Nevertheless, ezetimibe treatment led to a striking (>85%) reduction in atherosclerotic lesion area with reduced lesion lipid and macrophage content in the HFHS+C group. Thus, in the presence of dietary cholesterol, ezetimibe did not improve adipose tissue inflammation in obese Ldlr−/− mice, but it led to a major reduction in atherosclerotic lesions associated with improved plasma lipids and lipoproteins.  相似文献   

11.
Glucose oxidation and incorporation into lipid were measured in epididymal adipose tissues and isolated adipose cells of normal and hypophysectomized rats in an effort to determine whether the acute hypoglycemic effect of a systemic growth hormone (GH) injection was related to alterations in the glucose metabolism of adipose tissue. The rats were fed rat chow or a high sucrose diet and received 100 mug GH intraperitoneally 30 minutes or three and one-half hours before sacrifice. Hypophysectomized rats showed a lower plasma glucose as compared with normal rats on both diets. Thirty minutes after a GH injection there was a further decrease of the plasma glucose which, however, was not present in those rats receiving GH three and one-half hours before sacrifice. Adipose tissues from hypophysectomized rats fed the high sucrose diet showed a blunted insulin sensitivity as compared with normal rats on a similar diet. The insulin sensitivity of these tissues was further decreased 30 minutes after a GH injection. Basal glucose metabolism of isolated adipocytes from hypophysectomized rats, as compared with normal rats, was depressed if they were fed rat chow, was at normal levels if they were fed the high sucrose diet and was increased if they were fed the sucrose diet and received triiodothyronine and cortisone supplements. No manipulations of diet or hormonal treatments made the isolated adipocyte from hypophysectomized rats sensitive to insulin either 30 minutes or three and one-half hours after a GH injection. Since basal glucose utilization is not enhanced by GH injection and both the blunted insulin sensitivity of adipose tissue and the absent insulin sensitivity of adipopocytes would be expected to produce hyperglycemia rather than hypoglycemia, it is concluded that immediate systemic effects of a GH injection on carbohydrate metabolism are not related to changes in glucose metabolism of the peripheral adipose tissues.  相似文献   

12.
The primary objective of the current study is to investigate the relationship between adipose tissue chromium and vanadium content and adipose tissue dysfunction in a model of diet-induced obesity. A total of 26 female Wistar rats were fed either standard or high-fat diet (31.6% of fat from total caloric content) for 3 months. High-fat-feeding resulted in 21 and 33% decrease in adipose tissue chromium and vanadium content, respectively. No change was seen in hair chromium or vanadium levels. Statistical analysis revealed a significant inverse correlation of adipose tissue Cr and V with animal morphometric parameters and adipocyte size. Significant inverse dependence was observed between adipose tissue Cr and V and serum leptin and proinflammatory cytokines’ levels. At the same time, adipose tissue Cr and V levels were characterized by positive correlation between serum adiponectin and adiponectin/leptin ratio. Adipose tissue Cr and V were inversely correlated (p < 0.05) with insulin and homeostatic model assessment insulin resistance index (HOMA-IR) levels. Cr and V concentrations were not correlated with serum glucose in either high-fat fed or control rats; however, both serum glucose and HOMA-IR levels were significantly higher in high-fat fed, compared to control, rats. The results allow to hypothesize that impairment of adipose tissue Cr and V content plays a certain role in the development of adipose tissue endocrine dysfunction in obesity.  相似文献   

13.
We previously reported that dietary amino acid restriction induces the accumulation of triglycerides (TAG) in the liver of growing rats. However, differences in TAG accumulation in individual cell types or other tissues were not examined. In this study, we show that TAG also accumulates in the muscle and adipose tissues of rats fed a low amino acid (low-AA) diet. In addition, dietary lysine restriction (low-Lys) induces lipid accumulation in muscle and adipose tissues. In adjusting the nitrogen content to that of the control diet, we found that glutamic acid supplementation to the low-AA diet blocked lipid accumulation, but supplementation with the low-Lys diet did not, suggesting that a shortage of nitrogen caused lipids to accumulate in the skeletal muscle in the rats fed a low-AA diet. Serum amino acid measurement revealed that, in rats fed a low-Lys diet, serum lysine levels were decreased, while serum threonine levels were significantly increased compared with the control rats. When the threonine content was restricted in the low-Lys diet, TAG accumulation induced by the low-Lys diet was completely abolished in skeletal muscle. Moreover, in L6 myotubes cultured in medium containing high threonine and low lysine, fatty acid uptake was enhanced compared with that in cells cultured in control medium. These findings suggest that the increased serum threonine in rats fed a low-Lys diet resulted in lipid incorporation into skeletal muscle, leading to the formation of fatty muscle tissue. Collectively, we propose conceptual hypothesis that “amino-acid signal” based on lysine and threonine regulates lipid metabolism.  相似文献   

14.
The goal of this study was to compare the short-term effects of dietary n-3 polyunsaturated (fish oil) and monounsaturated (olive oil) fatty acids on glucose transport, plasma glucose and lipid controls in a dietary insulin resistance model using sucrose-fed rats. The underlying cellular and molecular mechanisms were also determined in the muscle and adipose tissue. Male Sprague-Dawley rats (5 weeks old) were randomized for diets containing 57.5 % (w/w) sucrose and 14 % lipids as either fish oil (SF), olive oil (SO) or a mixture of standard oils (SC) for 3 weeks. A fourth control group (C) was fed a diet containing 57.5 % starch and 14 % standard oils. After three weeks on the diet, body weight was comparable in the four groups. The sucrose-fed rats were hyperglycemic and hyperinsulinemic in response to glucose load. The presence of fish oil in the sucrose diet prevented sucrose-induced hyperinsulinemia and hypertriglyceridemia, but had no effect on plasma glucose levels. Insulin-stimulated glucose transport in adipocytes increased after feeding with fish oil (p < 0.005). These modifications were associated with increased Glut-4 protein (p < 0.05) and mRNA levels in adipocytes. In the muscle, no effect was found on Glut-4 protein levels. Olive oil, however, could not bring about any improvement in plasma insulin, plasma lipids or Glut-4 protein levels. We therefore conclude that the presence of fish oil, in contrast to olive oil, prevents insulin resistance and hypertriglyceridemia in rats on a sucrose diet, and restores Glut-4 protein quantity in adipocytes but not in muscle at basal levels. Dietary regulation of Glut-4 proteins appears to be tissue specific and might depend on insulin stimulation and/or duration of dietary interventions.  相似文献   

15.
Adipose tissue (AT) inflammation is linked to the pathogenesis of diabetes in obesity. Here, we compare the AT inflammatory state of 2 animal models of obesity and obesity plus diabetes, respectively. Obese nondiabetic ZF rats exhibited a trend towards increased proportions of CD11b positive cells in the adipose tissue stroma vascular fraction suggesting a state of increased AT inflammation compared to their lean littermates, but no alterations in systemic inflammatory parameters. In contrast, obese diabetic ZDF rats exhibited systemic as well as local AT inflammation with elevated levels of circulating Regulated upon Activation, Normal T-cell Expressed and Secreted Protein (Rantes), interleukin 1β (IL-1β) and monocyte chemotactic protein 1 (MCP-1), and an increased infiltration of adipose tissue CD11b positive cells. Our data provide a novel phenotypic characterisation of 2 common metabolic animal models and suggest an association of obesity with local inflammation in adipose tissue, and an association of diabetes with local inflammation in adipose tissue plus systemic inflammation. AT inflammation in obesity might therefore initiate a process that above a certain limits finally results in systemic inflammation and diabetes.  相似文献   

16.
In an attempt to elucidate the role of the dietary fermentable fiber in reduction of hyperlipidemia, we substituted 30% wheat starch with 30% sugar-beet fiber in rats fed a fructose-based (41% fructose), low-fat (2% corn oil) diet. Male Wistar rats ate the test diets for 3 weeks. Feeding the sugar-beet fiber (SBF) diet resulted in a significant enlargement of the cecum; it also increased the concentration of volatile fatty acids compared with rats fed a fiber-free (FF) diet. Feeding SBF decreased plasma triglyceride and cholesterol concentrations in the postprandial as well as the postabsorptive period. In the liver, triglyceride levels were depressed in concert with the decreased liver lipogenesis and the post-Triton triglyceride secretion. Liver cholesterol levels were unaffected by SBF diet feeding. SBF-fed animals were markedly less fat compared with fiber-free-diet-fed rats. Adipose tissue lipogenesis was depressed in the postprandial period in SBF-fed animals. In short, this study suggests that substitution of easily digested carbohydrates by certain fermentable fibers may play an interesting role in the reduction of hyperlipidemia and obesity.  相似文献   

17.
Numerous studies have demonstrated that conjugated linoleic acid (CLA) modulates body composition, reducing body fat accumulation in various mammalian species. However, very few studies have been carried out to assess the effect of CLA on previously stored body fat. The aim of the present work was to analyse the effectiveness of trans-10,cis-12 CLA in improving alterations produced by high-fat feeding in body fat and serum parameters when it was included in an energy-restricted diet. For this purpose male Syrian Golden hamsters were fed on high-fat diet for 7 weeks in order to increase their body fat content, and a further 25% energy-restricted diet supplemented or not with 0.5% trans-10,cis-12 CLA for 3 weeks. Adipose tissues, liver and gastrocnemious muscles were dissected and weighed. Adipocyte diameter and number were assessed in epididymal adipose tissue. Total cholesterol, triacylglycerols, non-esterified fatty acids and glucose were measured in serum. Three weeks of energy restriction resulted in a reduction in body weight and white adipose tissue size in all anatomical locations, without changes in liver and gastrocnemious muscle weights. Epididymal adipocyte size was reduced, but total adipocyte number remained unchanged. Serum cholesterol, triacylglycerols and glucose were significantly reduced. No differences were observed between the restricted groups (control and CLA supplemented). In conclusion, under our experimental conditions, the addition of trans-10,cis-12 CLA to the diet does not increase the benefits produced by energy restriction.  相似文献   

18.
Lipid storage and breakdown is mainly controlled by lipoprotein lipase and hormone-sensitive lipase. The aim of this work was to elucidate whether growth hormone mediated loss of adipose tissue involves a concerted action on tissue lipases, and to what degree such events are modulated by dietary regimen. Twelve-month-old rats fed first a high-fat diet or a low-fat diet for 14 weeks were injected with saline or growth hormone (4 mg/kg/d) for four days or three weeks in different combinations with either high- or low-fat diets. In adipose tissue, growth hormone generally inhibited lipoprotein lipase and also attenuated the inhibiting effect of insulin on hormone-sensitive lipase activity. Growth hormone treatment combined with restricted high-fat feeding reduced the activity of both lipases in adipose tissue and stimulated hormone-sensitive lipase in muscle. Generally, plasma levels of free fatty acids, glycerol and cholesterol were reduced by growth hormone, and in combination with restricted high-fat feeding, triglyceride levels improved too. We conclude that growth hormone inhibits lipid storage in adipose tissue by reducing both lipoprotein lipase activity and insulin's inhibitory action on hormone-sensitive lipase. We also propose that growth hormone's effects on tissue lipases and blood lipids are modulated by dietary regimen.  相似文献   

19.
The effects of feeding condition and dietary lipid level on lipoprotein lipase (LPL) gene expression in the liver and visceral adipose tissue of red sea bream Pagrus major were investigated by competitive polymerase chain reaction. Not only visceral adipose tissue but also liver of red sea bream showed substantial LPL gene expression. In the liver, starvation (at 48 h post-feeding) drastically stimulated LPL gene expression in the fish-fed low lipid diet, but had no effect in the fish fed high lipid diet. Dietary lipid level did not significantly affect the liver LPL mRNA level under fed condition (at 5 h post-feeding). In the visceral adipose tissue, LPL mRNA number per tissue weight was significantly higher in the fed condition than in the starved condition, irrespective of the dietary lipid levels. Dietary lipid levels did not affect the visceral adipose tissue LPL mRNA levels under fed or starved conditions. Our results demonstrate that both feeding conditions and dietary lipid levels alter the liver LPL mRNA levels, while only the feeding conditions but not dietary lipid levels cause changes in the visceral adipose LPL mRNA level. It was concluded that the liver and visceral adipose LPL gene expression of red sea bream seems to be regulated in a tissue-specific fashion by the nutritional state.  相似文献   

20.
The ratio of fatty acids namely linoleic acid (LA, 18:2, n-6) and alpha linolenic acid (ALA, 18:3, n-3) in the diet plays an important role in enrichment of ALA in tissues and further conversion to long-chain polyunsaturated fatty acids (LC-PUFA) like eicosapentaenoic acid (EPA, 20:5, n-3) and docosahexaenoic acid (DHA, 22:6, n-3). Garden cress seed oil (GCO) is one of the richest sources of omega-3 fatty acid and contains 29-34.5% of ALA. In this study, dietary supplementation of GCO on bio-availability and metabolism of alpha-linolenic acid was investigated in growing rats. Male wistar rats were fed with semi-purified diets supplemented with 10.0% sunflower oil (SFO 10%); 2.5% GCO and 7.5% SFO (GCO 2.5%); 5% GCO and 5% SFO (GCO 5.0%); 10% GCO (GCO 10%) for a period of 8 weeks. There was no significant difference with regard to the food intake, body weight gain and organ weights of rats in different dietary groups. Rats fed with GCO showed significant increase in ALA levels in serum and tissues compared to SFO fed rats. Feeding rats with 10% GCO lowered hepatic cholesterol by 12.3% and serum triglycerides by 40.4% compared to SFO fed group. Very low density lipoprotein cholesterol (VLDL-C) and low density lipoprotein cholesterol (LDL-C) levels decreased by 9.45% in serum of 10% GCO fed rats, while HDL remained unchanged among GCO fed rats. Adipose tissue showed incorporation of 3.3-17.4% of ALA and correlated with incremental intake of ALA. Except in adipose tissue, the EPA, DHA levels increased significantly in serum, liver, heart and brain tissues in GCO fed rats. A maximum level of DHA was registered in brain (11.6%) and to lesser extent in serum and liver tissues. A significant decrease in LA and its metabolite arachidonic acid (AA) was observed in serum and liver tissue of rats fed on GCO. Significant improvement in n-6/n-3 fatty acid ratio was observed in GCO based diets compared to diet containing SFO. This is the first study to demonstrate that supplementation of GCO increases serum and liver ALA, EPA, DHA and decreases LA and AA in rats. Therefore, the GCO can be considered as a potential, alternate dietary source of ALA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号