首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants encode at least two ancient and divergent classes of actin, reproductive and vegetative, and each class produces several subclasses of actin isovariants. To gain insight into the functional significance of the actin isovariants, we generated transgenic Arabidopsis lines that expressed a reproductive actin, ACT1, under the control of the regulatory sequences of a vegetative actin gene, ACT2. In the wild-type plants, ACT1 is predominantly expressed in the mature pollen, growing pollen tubes, and ovules, whereas ACT2 is constitutively and strongly expressed in all vegetative tissues and organs, but not in pollen. Misexpression of ACT1 in vegetative tissues causes dwarfing of plants and altered morphology of most organs, and the effects are in direct proportion to protein expression levels. Similar overexpression of ACT2 has little effect. Immunolocalization of actin in leaf cells from transgenic plants with highest levels of ACT1 protein revealed massive polymerization, bundling, and reorganization of actin filaments. This phenomenon suggests that misexpression of ACT1 isovariant in vegetative tissues affects the dynamics of actin and actin-associated proteins, in turn disrupting the organization of actin cytoskeleton and normal development of plants.  相似文献   

2.
Structure and Evolution of the Actin Gene Family in Arabidopsis Thaliana   总被引:1,自引:0,他引:1  
Higher plants contain families of actin-encoding genes that are divergent and differentially expressed. Progress in understanding the functions and evolution of plant actins has been hindered by the large size of the actin gene families. In this study, we characterized the structure and evolution of the actin gene family in Arabidopsis thaliana. DNA blot analyses with gene-specific probes suggested that all 10 of the Arabidopsis actin gene family members have been isolated and established that Arabidopsis has a much simpler actin gene family than other plants that have been examined. Phylogenetic analyses suggested that the Arabidopsis gene family contains at least two ancient classes of genes that diverged early in land plant evolution and may have separated vegetative from reproductive actins. Subsequent divergence produced a total of six distinct subclasses of actin, and five showed a distinct pattern of tissue specific expression. The concordance of expression patterns with the phylogenetic structure is discussed. These subclasses appear to be evolving independently, as no evidence of gene conversion was found. The Arabidopsis actin proteins have an unusually large number of nonconservative amino acid substitutions, which mapped to the surface of the actin molecule, and should effect protein-protein interactions.  相似文献   

3.
4.
Two ancient and highly divergent actin-based cytoskeletal systems have evolved in angiosperms. Plant genomes encode complex actin and actin binding protein (ABP) gene families, most of which are phylogenetically grouped into gene classes with distinct vegetative or constitutive and reproductive expression patterns. In Arabidopsis thaliana, ectopic expression of high levels of a reproductive class actin, ACT1, in vegetative tissues causes severe dwarfing of plants with aberrant organization of most plant organs and cell types due to a severely altered actin cytoskeletal architecture. Overexpression of the vegetative class actin ACT2 to similar levels, however, produces insignificant phenotypic changes. We proposed that the misexpression of the pollen-specific ACT1 in vegetative cell types affects the dynamics of actin due to its inappropriate interaction with endogenous vegetative ABPs. To examine the functionally distinct interactions among the major classes of actins and ABPs, we ectopically coexpressed reproductive profilin (PRF4) or actin-depolymerizing factor (ADF) isovariants (e.g., ADF7) with ACT1. Our results demonstrated that the coexpression of these reproductive, but not vegetative, ABP isovariants suppressed the ectopic ACT1 expression phenotypes and restored wild-type stature and normal actin cytoskeletal architecture to the double transgenic plants. Thus, the actins and ABPs appear to have evolved class-specific, protein-protein interactions that are essential to the normal regulation of plant growth and development.  相似文献   

5.
The Actin Depolymerizing Factor (ADF) gene family of Arabidopsis thaliana encodes 11 functional protein isovariants in four ancient subclasses. We report the characterization of the tissue-specific and developmental expression of all Arabidopsis ADF genes and the subcellular localization of several protein isovariants. The four subclasses exhibited distinct expression patterns as examined by qRT-PCR and histochemical assays of a GUS reporter gene under the control of individual ADF regulatory sequences. Subclass I ADFs were expressed strongly and constitutively in all vegetative and reproductive tissues except pollen. Subclass II ADFs were expressed specifically in mature pollen and pollen tubes or root epidermal trichoblast cells and root hairs, and these patterns evolved from an ancient dual expression pattern comprised of both polar tip growth cell types, still observed in the monocot Oryza sativa. Subclass III ADFs were expressed weakly in vegetative tissues, but were strongest in fast growing and/or differentiating cells including callus, emerging leaves, and meristem regions. The single subclass IV ADF was constitutively expressed at moderate levels in all tissues, including pollen. Immunocytochemical analysis with subclass-specific monoclonal antibodies demonstrated that subclass I isovariants localize to both the cytoplasm and the nucleus of leaf cells, while subclass II isovariants predominantly localize to the cytoplasm at the tip region of elongating root hairs and pollen tubes. The distinct expression patterns of the ADF subclasses support a model of ADF s co-evolving with the ancient and divergent actin isovariants.  相似文献   

6.
Actin is an essential multifunctional protein encoded by two distinct ancient classes of genes in animals (cytoplasmic and muscle) and plants (vegetative and reproductive). The prevailing view is that each class of actin variants is functionally distinct. However, we propose that the vegetative plant and cytoplasmic animal variants have conserved functional competence for spatial development inherited from an ancestral protist actin sequence. To test this idea, we ectopically expressed animal and protist actins in Arabidopsis thaliana double vegetative actin mutants that are dramatically altered in cell and organ morphologies. We found that expression of cytoplasmic actins from humans and even a highly divergent invertebrate Ciona intestinalis qualitatively and quantitatively suppressed the root cell polarity and organ defects of act8 act7 mutants and moderately suppressed the root-hairless phenotype of act2 act8 mutants. By contrast, human muscle actins were unable to support prominently any aspect of plant development. Furthermore, actins from three protists representing Choanozoa, Archamoeba, and green algae efficiently suppressed all the phenotypes of both the plant mutants. Remarkably, these data imply that actin's competence to carry out a complex suite of processes essential for multicellular development was already fully developed in single-celled protists and evolved nonprogressively from protists to plants and animals.  相似文献   

7.
8.
The Viridiplantae are subdivided into two groups: the Chlorophyta, which includes the Chlorophyceae, Trebouxiophyceae, Ulvophyceae, and Prasinophyceae; and the Streptophyta, which includes the Charophyceae and all land plants. Within the Streptophyta, the actin genes of the angiosperms diverge nearly simultaneously from each other before the separation of monocots and dicots. Previous evolutionary analyses have provided limited insights into the gene duplications that have produced these complex gene families. We address the origin and diversification of land plant actin genes by studying the phylogeny of actins within the green algae, ferns, and fern allies. Partial genomic sequences or cDNAs encoding actin were characterized from Cosmarium botrytis (Zygnematales), Selaginella apoda (Selaginellales), Anemia phyllitidis (Polypodiales), and Psilotum triquetrum (Psilotales). Selaginella contains at least two actin genes. One sequence (Ac2) diverges within a group of fern sequences that also includes the Psilotum Ac1 actin gene and one gymnosperm sequence (Cycas revoluta Cyc3). This clade is positioned outside of the angiosperm actin gene radiation. The second Selaginella sequence (Ac1) is the sister to all remaining land plant actin sequences, although the internal branches in this portion of the tree are very short. Use of complete actin-coding regions in phylogenetic analyses provides support for the separation of angiosperm actins into two classes. N-terminal "signature" sequence analyses support these groupings. One class (VEG) includes actin genes that are often expressed in vegetative structures. The second class (REP) includes actin genes that trace their ancestry within the vegetative actins and contains members that are largely expressed in reproductive structures. Analysis of intron positions within actin genes shows that sequences from both Selaginella and Cosmarium contain the conserved 20-3, 152-1, and 356-3 introns found in many members of the Streptophyta. In addition, the Cosmarium actin gene contains a novel intron at position 76-1.  相似文献   

9.
中国裸子植物的物种多样性格局及其影响因子   总被引:1,自引:0,他引:1  
物种多样性的大尺度空间格局是宏观生态学和生物地理学研究的核心问题之一。本文利用中国裸子植物分布数据, 结合气候、地形等环境信息, 分析了中国裸子植物物种多样性的大尺度格局及其影响因素, 比较了不同类群之间物种多样性格局和主导因子的差异, 并探讨了裸子植物在植物区系中所占比重的地理格局。结果表明, 中国裸子植物的物种多样性总体上呈现南高北低的趋势, 物种多样性在横断山区最高。在裸子植物的三个主要类群中, 松柏亚纲的物种多样性格局与整体相似, 买麻藤亚纲的多样性高值区则出现在中国西北部的干旱地区, 苏铁亚纲的分布区较为狭窄, 主要集中在南方地区。线性回归分析结果表明, 空间异质性和降水因子对中国裸子植物多样性格局的解释率最高, 末次冰期以来的气温变化、海拔高差和能量因子次之。这表明中国裸子植物物种多样性的格局受到了多种因素的影响, 其中空间异质性和降水因子影响最大。进一步分析发现, 物种多样性格局的主导因子在不同类群之间具有显著差异, 这可能反映了这些类群的进化历史以及生理适应的差异。裸子植物与被子植物的比例具有明显的空间格局: 在东部、南部气候环境优越的地区, 裸子植物与被子植物的比例低于0.06; 而在西部、北部等气候环境比较恶劣的地区, 裸子植物的比例则显著上升。回归分析表明, 能量和水分因子显著影响了裸子植物与被子植物的比例。随着能量的降低和降水的减少, 裸子植物与被子植物的比例会显著升高, 这可能是由于被子植物在温暖湿润地区具有较强竞争优势, 但裸子植物对极端环境具有更好的适应。  相似文献   

10.
Plants contain highly divergent actin isovariants   总被引:5,自引:0,他引:5  
Actin protein isovariants have been identified in animals with distinct cytoplasmic or muscle specific patterns of expression. Analysis of vascular plant actin gene sequences suggests that an even greater diversity should exist within the plant actin protein families, but previous studies on plant proteins have not demonstrated the presence of multiple actin isovariants. Antibodies recognizing a conserved amino-terminal plant actin peptide, a family of plant actin peptides from a variable region, and two monoclonal antibodies to conserved epitopes within animal actins were used to identify isovariants of soybean actin resolved by two-dimensional isoelectric focusing (IEF) sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Approximately six to eight actin isovariants with pI values ranging from 5.1 to 5.8 have been identified from soybean hypocotyls, stems, leaves, and roots with varying amounts of most isovariants present in all four organs. Acidic isovariants were present in much higher levels in leaves and stems. Antisera with lambda-class actin specificity detected a subset of three isovariants in all organs examined. One monoclonal and one antipeptide antisera are shown to react well with a wide variety of plant actin isovariants. Similar patterns of actin isovariants were detected in the distant angiosperms, Arabidopsis, petunia, and maize. It is likely that many of these diverse classes of isovariants have been preserved throughout vascular plant evolution and reflect the ancient diversity within plant actin gene families. The extreme difference among isovariants implies the presence of a complex actin-based cytoskeletal system in plants.  相似文献   

11.
In angiosperms the late pollen actins (LPAs) are strongly expressed in mature pollen and pollen tubes and at much lower levels in ovules. Four Arabidopsis lines with homozygous knockout mutations in the four individual LPA genes displayed normal flowers, pollen, and seed set. However, when all four LPAs were silenced simultaneously with a single RNA interference (RNAi) construct targeting the 3′UTR of each mRNA, obvious reproductive defects were observed. Western analysis of various Late Pollen actin RNA interference (LPRi) epialleles showed total LPA protein and RNA expression levels were knocked down from 0% to 95% compared to wild-type levels. Reciprocal crosses with the RNAi lines demonstrated that lowered LPA expression was associated with defects in both male and female fertility. Strong epialleles showed significant reductions in normal silique and seed production and were nearly sterile. Dissection of the siliques from moderate LPRi epialleles revealed many unfertilized ovules, increased numbers of aborted seeds, and decreased numbers of healthy seeds. Microscopic analysis of LPRi pollen indicated that the pollen shape and size were normal, but pollen germinated poorly. While multiple LPA genes may have some functional redundancy, the combined expression of multiple LPA genes appears essential to normal male and female reproductive development.  相似文献   

12.
13.
Kramer EM  Jaramillo MA  Di Stilio VS 《Genetics》2004,166(2):1011-1023
Members of the AGAMOUS (AG) subfamily of MIKC-type MADS-box genes appear to control the development of reproductive organs in both gymnosperms and angiosperms. To understand the evolution of this subfamily in the flowering plants, we have identified 26 new AG-like genes from 15 diverse angiosperm species. Phylogenetic analyses of these genes within a large data set of AG-like sequences show that ancient gene duplications were critical in shaping the evolution of the subfamily. Before the radiation of extant angiosperms, one event produced the ovule-specific D lineage and the well-characterized C lineage, whose members typically promote stamen and carpel identity as well as floral meristem determinacy. Subsequent duplications in the C lineage resulted in independent instances of paralog subfunctionalization and maintained functional redundancy. Most notably, the functional homologs AG from Arabidopsis and PLENA (PLE) from Antirrhinum are shown to be representatives of separate paralogous lineages rather than simple genetic orthologs. The multiple subfunctionalization events that have occurred in this subfamily highlight the potential for gene duplication to lead to dissociation among genetic modules, thereby allowing an increase in morphological diversity.  相似文献   

14.
Recent attempts to address the long-debated 'origin' of the angiosperms depend on a phylogenetic framework derived from a matrix of taxa versus characters; most assume that empirical rigour is proportional to the size of the matrix. Sequence-based genotypic approaches increase the number of characters (nucleotides and indels) in the matrix but are confined to the highly restricted spectrum of extant species, whereas morphology-based approaches increase the number of phylogenetically informative taxa (including fossils) at the expense of accessing only a restricted spectrum of phenotypic characters. The two approaches are currently delivering strongly contrasting hypotheses of relationship. Most molecular studies indicate that all extant gymnosperms form a natural group, suggesting surprisingly early divergence of the lineage that led to angiosperms, whereas morphology-only phylogenies indicate that a succession of (mostly extinct) gymnosperms preceded a later angiosperm origin. Causes of this conflict include: (i) the vast phenotypic and genotypic lacuna, largely reflecting pre-Cenozoic extinctions, that separates early-divergent living angiosperms from their closest relatives among the living gymnosperms; (ii) profound uncertainty regarding which (a) extant and (b) extinct angiosperms are most closely related to gymnosperms; and (iii) profound uncertainty regarding which (a) extant and (b) extinct gymnosperms are most closely related to angiosperms, and thus best serve as 'outgroups' dictating the perceived evolutionary polarity of character transitions among the early-divergent angiosperms. These factors still permit a remarkable range of contrasting, yet credible, hypotheses regarding the order of acquisition of the many phenotypic characters, reproductive and vegetative, that distinguish 'classic' angiospermy from 'classic' gymnospermy. The flower remains ill-defined and its mode (or modes) of origin remains hotly disputed; some definitions and hypotheses of evolutionary relationships preclude a role for the flower in delimiting the angiosperms. We advocate maintenance of parallel, reciprocally illuminating programmes of morphological and molecular phylogeny reconstruction, respectively supported by homology testing through additional taxa (especially fossils) and evolutionary-developmental genetic studies that explore genes potentially responsible for major phenotypic transitions.  相似文献   

15.
Dynamic assembly and disassembly of the actin cytoskeleton has been implicated in the regulation of pollen germination and subsequent tube growth. It is widely accepted that actin filaments are arrayed into distinct structures within different regions of the pollen tube. Maintenance of the equilibrium between monomeric globular actin (G‐actin) and filamentous actin (F‐actin) is crucial for actin assembly and array construction, and the local concentration of G‐actin thus directly impacts actin assembly. The localization and dynamics of G‐actin in the pollen tube, however, remain to be determined conclusively. To address this question, we created a series of fusion proteins between green fluorescent protein (GFP) and the Arabidopsis reproductive actin ACT11. Expression of a fusion protein with GFP inserted after methionine at position 49 within the DNase I‐binding loop of ACT11 (GFPMet49–ACT11) rescued the phenotypes in act11 mutants. Consistent with the notion that the majority of actin is in its monomeric form, GFPMet49–ACT11 and GFP fusion proteins of four other reproductive actins generated with the same strategy do not obviously label filamentous structures. In further support of the functionality of these fusion proteins, we found that they can be incorporated into filamentous structures in jasplakinolide (Jasp)‐treated pollen tubes. Careful observations showed that G‐actin is distributed uniformly in the pollen tube and is rapidly redistributed via cytoplasmic streaming during pollen tube growth. Our study suggests that G‐actin is readily available in the cytoplasm to support continuous actin polymerization during rapid pollen tube growth.  相似文献   

16.
The caloric content of pollen for several different species was determined by using a semimicro oxygen bomb calorimeter. The species studied were divided into subsets for statistical comparisons. The subsets considered were wind-pollinated dicots, monocots and gymnosperms; insect-pollinated dicots; and taxonomic subclasses of the wind-pollinated angiosperms (Asteridae, Hamamelidae, Caryophyllidae and Commelinidae). The results indicated a statistically significant caloric content difference (0.05 or higher) between wind-pollinated dicots vs. monocots and gymnosperms. There was no statistical difference between wind-pollinated dicots and insect-pollinated dicots. All subclasses were significantly different from one another. A statistically significant difference was found between two tribes in the Asteraceae which have shifted from insect to wind pollination, providing additional evidence for an independent evolution of the two. The need for future research in this area is discussed.  相似文献   

17.
The relative significance of gene regulation and protein isovariant differences remains unexplored for most gene families, particularly those participating in multicellular development. Arabidopsis thaliana encodes three vegetative actins, ACT2, ACT7, and ACT8, in two ancient and highly divergent subclasses. Mutations in any of these differentially expressed actins revealed only mild phenotypes. However, double mutants were extremely dwarfed, with altered cell and organ morphology and an aberrant F-actin cytoskeleton (e.g., act2-1 act7-4 and act8-2 act7-4) or totally root-hairless (e.g., act2-1 act8-2). Our studies suggest that the three vegetative actin genes and protein isovariants play distinct subclass-specific roles during plant morphogenesis. For example, during root development, ACT7 was involved in root growth, epidermal cell specification, cell division, and root architecture, and ACT2 and ACT8 were essential for root hair tip growth. Also, genetic complementation revealed that the ACT2 and ACT8 isovariants, but not ACT7, fully rescued the root hair growth defects of single and double mutants. Moreover, we synthesized fully normal plants overexpressing the ACT8 isovariant from multiple actin regulatory sequences as the only vegetative actin in the act2-1 act7-4 background. In summary, it is evident that differences in vegetative actin gene regulation and the diversity in actin isovariant sequences are essential for normal plant development.  相似文献   

18.
Flowering is an integral developmental process in angiosperms, crucial to reproductive success and continuity of the species through time. Some angiosperms complete their life cycle within a year (annual plants), and others have a longer reproductive life, which is characterized by the generation of new flowering and vegetative shoots every year (perennial plants). Despite the differences in their lifespan, the underlying genetics of flower induction and floral organ formation appears to be similar among these plants. Hence, the knowledge gained from the study of flowering mechanism in Arabidopsis thaliana can be used to better understand similar processes in other plant species, especially the perennials, which usually have a long generation time and are not amenable to genetic analysis. Using Arabidopsis as a model, we briefly discuss the current understanding of the transition from vegetative to reproductive growth and the subsequent formation of individual floral organs, and how this knowledge has been successfully applied to the identification of homologous genes from perennial crops. Although annuals appear to share many similarities with perennials in terms of gene function, they differ in their commitment to flowering. Once an annual reaches the reproductive phase, all meristems are typically converted into either floral or inflorescence meristems. In contrast, each year, each meristem of a mature perennial has the choice to produce either a vegetative or a reproductive shoot. The physiology and genetics of flowering in Citrus are used to highlight the complexity of reproductive development in perennials, and to discus possible future research directions.  相似文献   

19.
The actin cytoskeleton plays a crucial role in many aspects of plant cell development. During male gametophyte development, the actin arrays are conspicuously remodeled both during pollen maturation in the anther and after pollen hydration on the receptive stigma and pollen tube elongation. Remodeling of actin arrays results from the highly orchestrated activities of numerous actin binding proteins (ABPs). A key player in actin remodeling is the actin depolymerizing factor (ADF), which increases actin filament treadmilling rates. We prepared fluorescent protein fusions of two Arabidopsis pollen-specific ADFs, ADF7 and ADF10. We monitored the expression and subcellular localization of these proteins during male gametophyte development, pollen germination and pollen tube growth. ADF7 and ADF10 were differentially expressed with the ADF7 signal appearing in the microspore stage and that of ADF10 only during the polarized microspore stage. ADF7 was associated with the microspore nucleus and the vegetative nucleus of the mature grain during less metabolically active stages, but in germinating pollen grains and elongating pollen tubes, it was associated with the subapical actin fringe. On the other hand, ADF10 was associated with filamentous actin in the developing gametophyte, in particular with the arrays surrounding the apertures of the mature pollen grain. In the shank of elongating pollen tubes, ADF10 was associated with thick actin cables. We propose possible specific functions of these two ADFs based on their differences in expression and localization.  相似文献   

20.
Profilin is a low-molecular weight, actin monomer-binding protein that regulates the organization of actin cytoskeleton in eukaryotes, including higher plants. Unlike the simple human or yeast systems, the model plant Arabidopsis has an ancient and highly divergent multi-gene family encoding five distinct profilin isovariants. Here we compare and characterize the regulation of these profilins in different organs and during microspore development using isovariant-specific monoclonal antibodies. We show that PRF1, PRF2, and PRF3 are constitutive, being strongly expressed in all vegetative tissues at various stages of development. These profilin isovariants are also predominant in ovules and microspores at the early stages of microsporogenesis. In contrast, PRF4 and PRF5 are late pollen-specific and are not detectable in other cell types of the plant body including microspores and root hairs. Immunocytochemical studies at the subcellular level reveal that both the constitutive and pollen-specific profilins are abundant in the cytoplasm. In vegetative cell types, such as root apical cells, profilins showed localization to nuclei in addition to the cytoplasmic staining. The functional diversity of profilin isovariants is discussed in light of their spatio-temporal regulation during vegetative development, pollen maturation, and pollen tube growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号