首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
R R Ariza  Z Li  N Ringstad    B Demple 《Journal of bacteriology》1995,177(7):1655-1661
Multiple antibiotic resistance in Escherichia coli can be mediated by induction of the SoxS or MarA protein, triggered by oxygen radicals (in the soxRS regulon) or certain antibiotics (in the marRAB regulon), respectively. These small proteins (SoxS, 107 residues; MarA, 127 residues) are homologous to the C terminus of the XylS-AraC family of proteins and are more closely related to a approximately 100-residue segment in the N terminus of Rob protein, which binds the right arm of the replication origin, oriC. We investigated whether the SoxS-MarA homology in Rob might extend to the regulation of some of the same inducible genes. Overexpression of Rob indeed conferred multiple antibiotic resistance similar to that known for SoxS and MarA (against chloramphenicol, tetracycline, nalidixic acid, and puromycin), as well as resistance to the superoxide-generating compound phenazine methosulfate. The Rob-induced antibiotic resistance depended only partially on the micF antisense RNA that down-regulates the OmpF outer membrane porin to limit antibiotic uptake. Similar antibiotic resistance was conferred by expression of a Rob fragment containing only the N-terminal 123 residues that constitute the SoxS-MarA homology. Both intact Rob and the N-terminal fragment activated expression of stress genes (inaA, fumC, sodA) but with a pattern distinct from that found for SoxS and MarA. Purified Rob protein bound a DNA fragment containing the micF promoter (50% bound at approximately 10(-9) M Rob) as strongly as it did oriC, and it bound more weakly to DNA containing the sodA, nfo, or zwf promoter (50% bound at 10(-8) to 10(-7) M). Rob formed multiple DNA-protein complexes with these fragments, as seen previously for SoxS. These data point to a DNA-binding gene activator module used in different protein contexts.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
In Escherichia coli, the MarA protein controls expression of multiple chromosomal genes affecting resistance to antibiotics and other environmental hazards. For a more-complete characterization of the mar regulon, duplicate macroarrays containing 4,290 open reading frames of the E. coli genome were hybridized to radiolabeled cDNA populations derived from mar-deleted and mar-expressing E. coli. Strains constitutively expressing MarA showed altered expression of more than 60 chromosomal genes: 76% showed increased expression and 24% showed decreased expression. Although some of the genes were already known to be MarA regulated, the majority were newly determined and belonged to a variety of functional groups. Some of the genes identified have been associated with iron transport and metabolism; other genes were previously known to be part of the soxRS regulon. Northern blot analysis of selected genes confirmed the results obtained with the macroarrays. The findings reveal that the mar locus mediates a global stress response involving one of the largest networks of genes described.  相似文献   

17.
18.
19.
20.
AcrAB of Escherichia coli, an archetype among bacterial multidrug efflux pumps, exports an extremely wide range of substrates including solvents, dyes, detergents and antimicrobial agents. Its expression is regulated by three XylS/AraC family regulators, MarA, SoxS and Rob. Although MarA and SoxS regulation works by the alteration of their own expression levels, it was not known how Rob, which is constitutively expressed, exerts its regulatory action. We show here that the induction of the AcrAB efflux pump by decanoate and the more lipophilic unconjugated bile salts is mediated by Rob, and that the low-molecular-weight inducers specifically bind to the C-terminal, non-DNA-binding domain of Rob. Induction of Rob is not needed for induction of AcrAB, and we suggest that the inducers act by producing conformational alterations in pre-existing Rob, as was suggested recently (Rosner, Dangi, Gronenborn and Martin, J Bacteriol 184: 1407-1416, 2002). Decanoate and unconjugated bile salts, which are present in the normal habitat of E. coli, were further shown to make the bacteria more resistant to lipophilic antibiotics, at least in part because of the induction of the AcrAB efflux pump. Thus, it is likely that E. coli is protecting itself by the Rob-mediated upregulation of AcrAB against the harmful effects of bile salts and fatty acids in the intestinal tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号