首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SYNOPSIS. Studies on extant bimodally breathing vertebratesoffer us a chance to gain insight into the changes in respiratorycontrol during the evolutionary transition from water to airbreathing. In primitive Actinopterygian air-breathingfishes(Lepisosteus and Amid), gill ventilation is driven by an endogenouslyactive central rhythm generator that is powerfully modulatedby afferent input from internally and externally oriented branchialchemoreceptors, as it is in water-breathing Actinopterygians.The effects of internal or external chemoreceptor stimulationon water and air breathing vary substantially in these aquaticair breathers, suggesting that their roles are evolutionarilymalleable. Air breathing in these bimodal breathers usuallyoccurs as single breaths taken at irregular intervals and isan on-demand phenomenon activated primarily by afferent inputfrom the branchial chemoreceptors. There is no evidence forcentral CO2/pH sensitive chemoreceptors and air-breathing organmechanoreceptors have little influence over branchial- or air-breathingpatterns in Actinopterygian air breathers. In the Sarcopterygianlungfish Lepidosiren and Protopterus, ventilation of the highlyreduced gills is relatively unresponsive to chemoreceptor ormechanoreceptor input. The branchial chemoreceptors of the anteriorarches appear to monitor arterialized blood, while chemoreceptorsin the posterior arches may monitor venous blood. Lungfish respondvigorously to hypercapnia, but it is not known whether theseresponses are mediated by central or peripheral chemoreceptors.A major difference between the Sarcopterygian and Actinopterygianbimodal breathers is that lungfish can inflate their lungs usingrhythmic bouts of air breathing, and lung mechanoreceptors influencethe onset and termination of these lung inflation cycles. Thecontrol of breathing in amphibians appears similar to that oflungfish. Branchial ventilation may persist as rhythmic buccaloscillations in most adults, and stimulation of peripheral chemoreceptorsin the aortic arch or carotid labyrinths initiates short boutsof breathing. Ventilation is much more responsive to hypercapniain adult amphibians than in Actinopterygian fishes because ofcentral CO2/pH sensitive chemoreceptors that act to convertperiodic to more continuous breathing patterns when stimulated.  相似文献   

2.
The carbon dioxide compensation point of the unicellular greenalga, Chloretla saccharophila, was determined in aqueous mediumby a gas chromatographic method. Compensation points decreasedmarkedly from 63 cm3 m–3 at an external pH of 4.0 to 3.2cm3 m–3 at pH 8.0 and were not affected by the O2 concentrationof the medium. The calculated CO2 concentration required tosupport the half-maximum photosynthetic rate of the algal cellsranged from 6.0 mmol m–3 at an external pH of 60 to 1.5mmol m–3 at pH 8.0 and these values were not affectedby O2 concentration. The Km(CO2) of nbulose-l,5-bisphosphatecarboxylase isolated from cells grown either at pH 4.0 or pH8.0 was determined to be 64 mmol m–3. These results indicatethat loss of CO2 by photorespiration does not occur in C. saccharophilacells at acid pH and the disparity between the apparent affinityfor CO2 of the intact cells and that of the carboxylase indicatesthe operation of a ‘CO2 concentrating mechanism’in this alga at acid pH. Key words: Acidophilic alga, bicarbonate transport, Chlorella saccharophila, compensation point, CO2 affinity, PH, RuBP carboxylase  相似文献   

3.
Lungfish represent a probable sister group to the land vertebrates. Lungfish and tetrapods share features of respiratory control, including central, peripheral and intrapulmonary CO2 receptors. We investigated whether or not central chemoreceptors in the lungfish, L. paradoxa, are stimulated by CO2 and/or pH. Ventilation was measured by pneumotachography for diving animals. The fourth cerebral ventricle was equipped with two catheters for superfusion. Initially, two control groups were compared: (1) catheterized animals with no superfusion and (2) animals superfused with mock CSF solutions at pH = 7.45; PCO2 = 21 mmHg. The two groups had virtually the same ventilation of about 40 ml BTPS kg−1 h−1 (P > 0.05). Next, PCO2 was increased from 21 to 42 mmHg, while pHCSF was kept at 7.45, which increased ventilation from 40 to 75 ml BTPS kg−1 h−1. Conversely, a decrease of pHCSF from 7.45 to 7.20 (PCO2 = 21 mmHg) increased ventilation to 111 ml BTPS kg−1 h−1. Further decreases of pHCSF had little effect on ventilation, and the combination of pHCSF = 7.10 and PCO2 = 42 mmHg reduced ventilation to 63 ml BTPS kg−1 h−1.  相似文献   

4.
Refixation of respiratory CO2 in the ears of C3 cereals   总被引:6,自引:0,他引:6  
The spatial arrangement of tissues within the ears of cereals,and gas exchange measurements on intact ears of barley and durumwheat suggest that respiratory CO2 associated with grain-fillingprocesses, may be refixed close to its site of evolution. Apparentrefixation of respiratory CO2 in intact ears was compared withthat in flag leaves, by feeding both organs with 14C-labelledsucrose and trapping 14CO2 released by respiration. Apparentrefixation in the ears was twice that measured in flag leafblades of durum wheat genotype Durelle. In ears, the capacityof refixation of respiratory CO2 at 210 mmol mol–1 O2ranged from 55% in barley genotype Roxana to 75% in barley genotypeHatif, and 60% in duwm wheat genotype Bidi 17. A low O2 concentrationincreased refixation of respiratory CO2 by up to 90%, 92% and82%, respectively. The occurrence of CO2 refixation in the field,in a set of 12 barley genotypes grown under irrigated and rainfedMediterranean field conditions, was consistent with observedcarbon isotope ratios (  相似文献   

5.
When Chlorella vulgaris 11h, Chlorella vulgaris C-l, Chlamydomonasreinhardtii, Chlamydomonas moewusii, Scenedesmus obliquus, orDunaliella tertiolecta were illuminated in with 0.5 mM NaHCO3,the pH of the medium increased in a few minutes from 6 to about9 or 10. The alkalization, which was accompanied by O2 evolution,was dependent on light, external dissolved inorganic carbon(DIC) as HCO-3, and algae grown or adapted to a low, air-levelCO2 in order to develop a DIC concentrating mechanism. Therewas little pH increase by algae without a DIC concentratingprocess from growth on 3% CO2 in air. Photosynthetic O2 evolutionwithout alkalization occurred using either internal DIC or externalCO2 at acidic pH. The PH increase stopped between pH 9 to 10,but the alkalization would restart upon re-acidification betweenpH 6 and 8. Alkalization was suppressed by the carbonic anhydraseinhibitors, acetazolamide, ethoxyzolamide or carbon oxysulfide.The pH increase appeared to be the consequence of the externalconversion of HCO3 into CO2 plus OH during photosynthesisby cells with a high affinity for CO2 uptake. Cells grown onhigh CO2 to suppress the DIC pump, when given low levels ofHCO3 in the light, acidified the medium from pH 10 to7. Air adapted Scenedesmus cells with a HCO3 pump, aswell as a CO2 pump, alkalized the medium very rapidly in thelight to a pH of over 10, as well as slower in the dark or inthe light with DCMU or without external DIC and O2 evolution.Alkalization of the medium during photosynthetic DIC uptakeby algae has been considered to be part of the global carboncycle for converting H2CO3 to HCO3 and for the formationof carbonate salts by calcareous algae from the alkaline conversionof bicarbonate to carbonate. These processes seem to be a consequenceof the algal CO2 concentrating process. 1Present address: Department of Biology, Faculty of Science,Niigata University, Niigata, 950-21 Japan.  相似文献   

6.
Soybeans were grown for three seasons in open-top field chambersto determine (1) whether elevated CO2 (360 versus 700 µmolmol–1) alleviates some of the yield loss due to pollutantO3, (2) whether the partial stomatal closure resulting fromchronic O3 exposure (charcoal-filtered air versus 1.5 ambientconcentrations) is a cause or result of decreased photosynthesis,and (3) possible implications of CO2/O3 interactions to climatechange studies using elevated CO2. Leaf conductance was reducedby elevated CO2, regardless of O3 level, or by exposure to O3alone. As.a result of these effects on conductance, high CO2reduced estimated midday O3 flux into the leaf by an averageof 50% in charcoal-filtered air and 35% in the high O3 treatment.However, while exposure to O3 reduced seed yields by 41% atambient CO2 levels, the yield reduction was completely amelioratedby elevated CO2. The threshold midday O3 flux for yield lossappears to be 20–30 nmol m–2 s–1 in this study.Although elevated CO2 increased total biomass production, itdid not increase seed yields. A/Ci curves show a large reductionin the stomatal limitation to photosynthesis due to elevatedCO2 but no effect of O3. These data demonstrate that (1) reducedconductance due to O3 is the result, and not the cause, of reducedphotosynthesis, (2) 700 µmol mol–1 CO2 can completelyameliorate yield losses due to O3 within the limits of theseexperiments, and (3) some reports of increased yields underelevated CO2 treatments may, at least in part, reflect the ameliorationof unrecognized suppression of yield by O3 or other stresses. Key words: Stomatal limitation, elevated CO2, O3 flux, Glycine max, yield suppression  相似文献   

7.
SYNOPSIS. Gas exchange in pulmonate snails of the family Helicidaeoccurs through a highly vascularized diffusion lung known asthe mantle. The extent of ventilation of the mantle dependsupon the duration and size of opening of an occlusible poreknown as the pneumostome. In Helix aspersa and Helix pomatia,pneumostomal size and frequency of opening are exquisitely sensitiveto CO2. Respiratory CO2 chemosensitivity resides in a discreteregion of the subesophageal ganglia. The discharge pattern ofmany neurons in the chemoreceptor area changes during stimulationwith CO2. However, the electrophysiological response to CO,stimulation alone does not discriminate between CO2 chemoreceptorcells and CO2-insensitive neurons active in the pneumostomalresponse to CO2. We identified a subset of CO2-sensitive neuronsfrom the larger population of neurons active during CO2 stimulation.The action potential discharge frequency of CO2 chemosensoryneurons increased in response to CO2 stimulation. An increaseddischarge frequency of CO2-sensitive neurons was associatedwith increased pneumostomal opening, and both the size and thefrequency of pneumostomal opening increased during CO2 stimulation.Injecting depolarizing current into individual chemosensoryneurons elicited opening of the pneumostome in the absence ofCO2. Action potential generation in response to CO2 was independentof synaptic transmission. Removal of individual CO2-sensitivecells or inhibition of action potential generation in CO2-sensitivecells reduced or eliminated pneumostomal responses to CO2. CO2sensitivity in chemoreceptor cells required extracellular calcium,but not sodium. Substituting barium for calcium supported chemoreceptoractivity. In summary, we have identified respiratory related,chemosensory neurons that are CO2 sensitive in the absence ofsynaptic input.  相似文献   

8.
SYNOPSIS. The episodic, or intermittent, breathing of frogsand many ectothermic vertebrates results in important fluctuationsof arterial blood gases. This pattern of breathing differs fromthe rhythmic and continuous alternation of inspiration observedin most homeotherms, which maintain O2 and CO2 levels withinnarrow ranges. These differences in pattern of breathing indicatethat the respiratory control systems of ectotherms and homeothermsdiffer substantially. The results of recent studies using invitro brainstemspinal cord preparations of adult frogs and premetamorphictadpoles (Rana catesbeiana and Rana pipiens) demonstrate, however,that the mechanisms for rhythm generation and pattern formationdescribed previously for mammals are also key features of therespiratory control system of frogs. These findings thereforesupport the hypothesis that the respiratory control system ishighly conserved amongst air breathing vertebrates, whetherthey breathe continuously or episodically.  相似文献   

9.
SYNOPSIS. Internal hypoxia in vertebrates occurs during anemia,when blood oxygen (02) carrying capacity is reduced, or duringexposure to environmental hypoxia. In non-altitude adapted vertebrates,exposure to environmental hypoxia results in a change in bloodO2 affinity which, in some cases is beneficial to tissue O2delivery. In contrast, the elevation in blood O2 carrying capacityobserved in almost all vertebrates is always beneficial to tissueO2 delivery (assuming no large changes in blood viscosity) andmay be more important than changes in blood O2 affinity in maintainingtissue O2 delivery. Experimental anemia in vertebrates results in a decrease inblood O2 affinity which is always beneficial to tissue O2 delivery.The reduction in affinity is brought about by an increase inthe organic phosphate to hemoglobin ratio (NTP:Hb) within thered cell. In fish NTP:Hb decreases during environmental hypoxiabut increases during anemia indicating that NTP regulation isquite different between these treatments despite the similarityof these treatments at the tissue level.  相似文献   

10.
Johnson, Stephen M., Rebecca A. Johnson, and Gordon S. Mitchell. Hypoxia, temperature, andpH/CO2 effects on respiratory discharge from a turtle brain stem preparation. J. Appl. Physiol. 84(2): 649-660, 1998.An in vitrobrain stem preparation from adult turtles (Chrysemyspicta) was used to examine the effects of anoxia andincreased temperature and pH/CO2on respiration-related motor output. At pH ~7.45, hypoglossal (XII)nerve roots produced patterns of rhythmic bursts (peaks) of discharge(0.74 ± 0.07 peaks/min, 10.0 ± 0.6 s duration) that werequantitatively similar to literature reports of respiratory activity inconscious, vagotomized turtles. Respiratory discharge was stable for 6 h at 22°C; at 32°C, peak amplitude and frequency progressivelyand reversibly decreased with time. Two hours of hypoxia had no effecton respiratory discharge. Acutely increasing bath temperature from 22 to 32°C decreased episode and peak duration and increased peakfrequency. Changes in pH/CO2increased peak frequency from zero at pH 8.00-8.10 to maxima of0.81 ± 0.01 and 1.44 ± 0.02 peaks/min at 22°C (pH 7.32) and32°C (pH 7.46), respectively;pH/CO2 sensitivity was similar atboth temperatures. We conclude that1) insensitivity to hypoxiaindicates that rhythmic discharge does not reflect gasping behavior,2) increased temperature altersrespiratory discharge, and 3)central pH/CO2 sensitivity isunaffected by temperature in this preparation (i.e.,Q10 ~1.0).

  相似文献   

11.
Uptake and Accumulation of Inorganic Carbon by a Freshwater Diatom   总被引:3,自引:0,他引:3  
Colman, B. and Rotatore, C. 1988. Uptake and accumulation ofinorganic carbon by a freshwater diatom.—J. exp Bot 39:1025–1032. The mechanism of uptake of inorganic carbon and its accumulationhas been studied in the freshwater diatom Navicula pelliculosa.No external carbonic anhydrase could be detected, although itwas detected in cell extracts. The rate of photosynthetic O2evolution, in media in the range pH 7.5–8.5, exceededthe calculated rate of CO2 supply 2- to 5-fold, indicating thatHCO3 was taken up by the cells. At an external pH of7.5, the internal pH, measured by 14C-dimethyloxazolidine-2,4-dione distribution between the cells and the medium, was pH7.6 in the light and pH 7.4 in the dark. Accumulation of inorganiccarbon was determined by the silicone oil centrifugation methodand inorganic carbon pools of 23.5 mol m–3 were found,a concentration 21.6-fold that in the external medium. The resultsindicate an active accumulation of inorganic carbon againstpH and concentration gradients in this diatom, probably by activeHCO3 uptake. Key words: Bicarbonate transport, carbon dioxide, carbonic anhydrase, CO2 affinity, CO2 concentrating mechanism, internal pH, Navicula pelliculosa  相似文献   

12.
Carbonic anhydrase (CA, EC. 4.2.1.1 [EC] ) activity in air-grown Characorallina was detected mainly in the intracellular fraction,most of which composed of chloroplasts and cytoplasmic gel,and not on the cell surface. Only minor levels of CA activity,on the basis of equivalent volumes, were detected in the cellsap and the cytoplasmic sol. The maximum rate of photosynthetic O2 evolution by air-grownChara corallina at pH 6.0 was twice that at pH 7.6, while theapparent Km for external inorganic carbon (Ci) at pH 7.6 wasabout three times that at pH 6.0. However, the apparent Km(CO2)was about three times larger at pH 6.0 than at pH 7.6. The Km(Ci)-valueat pH 7.6 increased severalfold in the presence of acetazolamide(AZA), an inhibitor of CA, but no inhibition was observed atpH 6.0. The pH-dependence may be due to differences in the permeabilityof AZA at the given pH values. Fixation of 14CO2 at 20 µMand of H14CO3 at 200 µM over the course of 5 swas very similar at pH 7.4. Addition of CA significantly suppressedthe photosynthetic 14CO2-fixation but it stimulated the H14CO3-fixation.This result indicates that free CO2 is an active species ofCi that is incorporated into the cell during photosynthesis. These results together suggest the following: (1) Free CO2 isutilized for photosynthesis, (2) CA is mainly located insidethe cell and functions to increase the affinity for CO2 in photosynthesisby facilitating the supply of CO2 from the plasmalemma to thesite of CO2-fixation. 3Present address: Biological Laboratory, The University of theAir, Wakaba 2-11, Chiba, 260 Japan. (Received December 9, 1988; Accepted March 22, 1989)  相似文献   

13.
One of the most important physiological changes during the conquest of land by vertebrates was the increasing reliance on lung breathing, with the concomitant decrease in importance of gill breathing. The main problem involved here was to cope with the excessive accumulation of CO2 in the body and to avoid respiratory acidosis. In the past, several often mutually contradicting hypotheses of CO2‐elimination via skin, lungs and gills in early tetrapods have been proposed, based on theoretical physiological considerations and comparison with extant air‐breathing fishes and amphibians. This study proposes a revised scenario of CO2‐elimination in early tetrapods based on fossil evidence, that is recently identified osteological correlates of gills, skin structure and mode of lung ventilation. In stem tetrapods of the Devonian and Carboniferous, O2‐uptake via the lungs by buccal pumping was decoupled from CO2‐release via internal gills, and the rather gas‐impermeable skin played a minor role in gaseous exchange. The two main lineages of crown‐group tetrapods, the amphibian and amniote lineage, used different strategies of CO2‐elimination. As in stem tetrapods, O2‐uptake and CO2‐release remained always largely decoupled in temnospondyls, which ventilated their lungs via buccal pumping and relied mainly on their internal gills for CO2‐release. Temnospondyls were not able to reduce their internal gills before their skin became more gas permeable and their body size was reduced, to shift from internal gills to the skin as the major site of CO2‐elimination, a pattern that is retained in most lissamphibians. In contrast, internal gills were lost very early in stem amniote evolution. This was associated with the evolution of the more effective aspiration pump that allowed the elimination of the bulk of CO2 via the lungs, leading to a coupled O2‐uptake and CO2‐loss in stem amniotes and later in amniotes.  相似文献   

14.
Modern wheat (Triticum aestivum L.) is one of the most ozone(O3)-sensitive crops. However, little is known about its geneticbackground of O3 sensitivity, which is fundamental for breedingO3-resistant cultivars. Wild and cultivated species of winterwheat including donors of the A, B and D genomes of T. aestivumwere exposed to 100 ppb O3 or charcoal-filtered air in opentop chambers for 21 d. Responses to O3 were assessed by visibleO3 injury, gas exchange, chlorophyll fluorescence, relativegrowth rate, and biomass accumulation. Ozone significantly decreasedlight-saturated net photosynthetic rate (–37%) and instantaneoustranspiration efficiency (–42%), but increased stomatalconductance (+11%) and intercellular CO2 concentration (+11%).Elevated O3 depressed ground fluorescence (–8%), maximumfluorescence (–26%), variable fluorescence (–31%),and maximum photochemical efficiency (–7%). Ozone alsodecreased relative growth rate and the allometric coefficient,which finally reduced total biomass accumulation (–54%),but to a greater extent in roots (–77%) than in the shoot(–44%). Winter wheat exhibited significant interspeciesvariation in the impacts of elevated O3 on photosynthesis andgrowth. Primitive cultivated wheat demonstrated the highestrelative O3 tolerance followed by modern wheat and wild wheatshowed the lowest. Among the genome donors of modern wheat,Aegilops tauschii (DD) behaved as the most O3-sensitive followedby T. monococcum (AA) and Triticum turgidum ssp. durum (AABB)appeared to be the most O3-tolerant. It was concluded that thehigher O3 sensitivity of modern wheat was attributed to theincreased O3 sensitivity of Aegilops tauschii (DD), but notto Triticum turgidum ssp. durum (AABB) during speciation. Key words: Biomass, Chl a fluorescence, genome, ozone sensitivity, relative growth rate, stomatal conductance, winter wheat Received 20 September 2007; Revised 30 November 2007 Accepted 16 January 2008  相似文献   

15.
An increase in CO2/H+ is a major stimulus for increased ventilation and is sensed by specialized brain stem neurons called central chemosensitive neurons. These neurons appear to be spread among numerous brain stem regions, and neurons from different regions have different levels of chemosensitivity. Early studies implicated changes of pH as playing a role in chemosensitive signaling, most likely by inhibiting a K+ channel, depolarizing chemosensitive neurons, and thereby increasing their firing rate. Considerable progress has been made over the past decade in understanding the cellular mechanisms of chemosensitive signaling using reduced preparations. Recent evidence has pointed to an important role of changes of intracellular pH in the response of central chemosensitive neurons to increased CO2/H+ levels. The signaling mechanisms for chemosensitivity may also involve changes of extracellular pH, intracellular Ca2+, gap junctions, oxidative stress, glial cells, bicarbonate, CO2, and neurotransmitters. The normal target for these signals is generally believed to be a K+ channel, although it is likely that many K+ channels as well as Ca2+ channels are involved as targets of chemosensitive signals. The results of studies of cellular signaling in central chemosensitive neurons are compared with results in other CO2- and/or H+-sensitive cells, including peripheral chemoreceptors (carotid body glomus cells), invertebrate central chemoreceptors, avian intrapulmonary chemoreceptors, acid-sensitive taste receptor cells on the tongue, and pain-sensitive nociceptors. A multiple factors model is proposed for central chemosensitive neurons in which multiple signals that affect multiple ion channel targets result in the final neuronal response to changes in CO2/H+. hypercapnia; brain stem; ventilation; peripheral chemoreceptor; glia; gap junction; glomus; channel; calcium; potassium; carbonic anhydrase; taste receptor; nociception  相似文献   

16.
SYNOPSIS. Pulmonary surfactant is a mixture of phospholipids(including disaturated phospholipids), cholesterol and proteinslining the air-liquid interface within the lung. Surfactantacts to reduce surface tension, thereby increasing lungcomplianceand also preventing edema. The saccular lungs, or other gas-holdingstructures, of nonmammals have 7–70% more surfactant/cm2of surface than lungs of mammals. Nonmammalian surfactant actsas an antiglue that decreases the inflation pressures of collapsedlungs by reducing the adherence of apposing epithelial surfaces.The autonomic nervous system appears to be the primary systemcontrolling release of surfactant in nonmammals. The lipid compositionis highly conserved within the vertebrates, except that surfactantof teleost fish is dominated by cholesterol whereas tetrapodsurfactant consists primarily of disaturated phospholipids (DSP).The dipnoan Neoceratodus forsteri demonstrates a "fish-type"surfactant profile while the other derived dipnoans demonstratea surfactant profile similar to that of tetrapods. Homologyof the surfactant protein SP-A within the vertebrates pointsto a single evolutionaryorigin for the system and indicatesthat fish surfactant is a "protosurfactant". Amongst the tetrapods,the relative proportions of DSP and cholesterol vary in responseto lung structure, habitat, and body temperature (Tb) but notin relation to phytogeny. The cholesterol content of surfactantis elevated in species with simple saccular lungs, in aquaticspecies, and in species with low Tb. The DSP content is highestin complex lungs, particularly ofaquatic species or specieswith high Tb. The cholesterol content of surfactant also increasesin response to acute decreases in Tb in lizards and torpid marsupials,presumably to maintain fluidity of the lipid mixture.  相似文献   

17.
The effects of elevated carbon dioxide (CO2 and ozone (O3) onsoybean (Glycine max (L.) Merr.] photosynthesis and photorespiration-relatedparameters were determined periodically during the growing seasonby measurements of gas exchange, photorespiratory enzyme activitiesand amino acid levels. Plants were treated in open-top fieldchambers from emergence to harvest maturity with seasonal meanconcentrations of either 364 or 726 µmol mol–1 CO2in combination with either 19 or 73 nmol mol–1 O3 (12h daily averages). On average at growth CO2 concentrations,net photosynthesis (A) increased 56% and photorespiration decreased36% in terminal mainstem leaves with CO2 enrichment. Net photosynthesisand photorespiration were suppressed 30% and 41%, respectively,by elevated O3 during late reproductive growth in the ambientCO2 treatment, but not in the elevated CO2 treatment. The ratioof photorespiration to A at growth CO2 was decreased 61% byelevated CO2 There was no statistically significant effect ofelevated O3 on the ratio of photorespiration to A. Activitiesof glycolate oxidase, hydroxypyruvate reductase and catalasewere decreased 10–25% by elevated CO2 and by 46–66%by elevated O3 at late reproductive growth. The treatments hadno significant effect on total amino acid or glycine levels,although serine concentration was lower in the elevated CO2and O3 treatments at several sampling dates. The inhibitoryeffects of elevated O3 on photorespiration-related parameterswere generally commensurate with the O3-induced decline in A.The results suggest that elevated CO2 could promote productivityboth through increased photoassimilation and suppressed photorespiration. Key words: Photorespiration, CO2-enrichment, ozone, climate change, air pollution  相似文献   

18.
The response of photosynthesis in the flag leaf of rice (Oryzasativa) to elevated CO2 or reduced O2 was investigated relativeto other environmental factors using steady-state gas exchangetechniques. We found under moderate conditions of temperatureand photosynthetic flux density (PFD) (26°C and 700µmolquanta m–2s–1 similar to growth conditions) photosynthesisin the flag leaf of rice during heading and grain filling saturatedat near ambient levels of CO2, with a concomitant loss of O2sensitivity, when a high stomatal conductance was maintainedby high humidity (low vapor pressure deficit). Under 18°Cthere was near complete loss of O2 sensitivity of photosynthesisat normal ambient levels of CO2. This is in contrast to thelarge enhancement of photosynthesis by supra-atmospheric levelsof CO2 and sub-atmospheric levels of O2 by suppression of photorespirationwhen there is no limitation on utilizing the initial productof CO2 assimilation (triose-P) as predicted from Ribulose-l,5-bisphosphatecarboxylase/oxygenase (Rubisco) kinetic properties. Thus, lossof sensitivity to CO2 and O2 has been previously explained asa limitation on utilization of triose-P to synthesize carbohydrates.Under high PFD at 25°C, the rate of photosynthesis in ricedeclined over a period of hours around midday, while the intercellularlevels of CO2 remained constant suggesting a limitation on utilizationof photosynthate. Short-term fluctuations in climatic factorsincluding temperature, light and humidity could result in afeedback limitation on photosynthesis in rice which may be exacerbatedby rising CO2. (Received March 12, 1998; Accepted May 14, 1998)  相似文献   

19.
Lungfish (Dipnoi) are the closest living relatives to tetrapods, and they represent the transition from water to land during vertebrate evolution. Lungfish are armed with immunoglobulins (Igs), one of the hallmarks of the adaptive immune system of jawed vertebrates, but only three Ig forms have been characterized in Dipnoi to date. We report here a new diversity of Ig molecules in two African lungfish species (Protopterus dolloi and Protopterus annectens). The African lungfish Igs consist of three IgMs, two IgWs, three IgNs, and an IgQ, where both IgN and IgQ originated evidently from the IgW lineage. Our data also suggest that the IgH genes in the lungfish are organized in a transiting form from clusters (IgH loci in cartilaginous fish) to a translocon configuration (IgH locus in tetrapods). We propose that the intraclass diversification of the two primordial gnathostome Ig classes (IgM and IgW) as well as acquisition of new isotypes (IgN and IgQ) has allowed lungfish to acquire a complex and functionally diverse Ig repertoire to fight a variety of microorganisms. Furthermore, our results support the idea that “tetrapod-specific” Ig classes did not evolve until the vertebrate adaptation to land was completed ~360 million years ago.  相似文献   

20.
In a study on metabolic consumption of photosynthetic electronsand dissipation of excess light energy under water stress, O2and CO2 gas exchange was measured by mass spectrometry in tomatoplants using 18O2 and 13CO2. Under water stress, gross O2 evolution(EO), gross O2 uptake (UO), net CO2 uptake (PN), gross CO2 uptake(TPS), and gross CO2 evolution (EC) declined. The ratio PN/EOfell during stress, while the ratios UO/EO and EC/TPS rose.Mitochondrial respiration in the light, which can be measureddirectly by 12CO2 evolution during 13CO2 uptake at 3000 µll–1 13CO2, is small in relation to gross CO2 evolutionand CO2 release from the glycolate pathway. It is concludedthat PSII, the Calvin cycle and mitochondrial respiration aredown-regulated under water stress. The percentages of photosyntheticelectrons dissipated by CO2 assimilation, photorespiration andthe Mehler reaction were calculated: in control leaves morethan 50 % of the electrons were consumed in CO2 assimilation,23 % in photorespiration and 13 % in the Mehler reaction. Undersevere stress the percentages of electrons dissipated by CO2assimilation and the Mehler reaction declined while the percentageof electrons used in photorespiration doubled. The consumptionof electrons in photorespiration may reduce the likelihood ofdamage during water deficit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号