首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cell wall lipids of Mycobacterium tuberculosis containing multiple methylbranched fatty acids play critical roles in pathogenesis and thus offer targets for new antimycobacterial drugs. Mycocerosicacid synthase gene (mas) encodes the enzyme that produces one class of such acids. Seven mas-like genes (msls) were identified in the genome. One of them, msl3, originally annotated as two separate genes, pks 3 and pks 4, is now shown to constitute a single open reading frame, which encodes a 220.3 kDa protein. Msl3 was disrupted using a phage mediated delivery system and the gene replacement in the mutant was confirmed by polymerase chain reaction analysis of the flanking regions of the introduced disrupted gene and by Southern analysis. Biochemical analysis showed that the msl3 mutant does not produce mycolipanoic acids and mycolipenic(phthienoic) acids, the major constituents of polyacyl trehaloses and thus lacks this cell wall lipid, but synthesizes all of the other classes of lipids. The absence of the major acyl chains that anchor the surface-exposed acyltrehaloses causes a novel growth morphology; the cells stick to each other, most probably via the intercellular interaction between the exposed hydrophobic cell surfaces, manifesting a bead-like growth morphology without affecting the overall growth rate.  相似文献   

2.
Multidrug-resistant tuberculosis is a major global health emergency. Cell wall lipids of Mycobacterium tuberculosis can play crucial roles in the pathogenesis. The enzymes involved in their synthesis can be ideal new drug targets against tuberculosis, because many such lipids are unique to this pathogen. A variety of multiple methyl-branched fatty acids are among such unique lipids. We have identified seven genes highly homologous to the mas gene, which is known to be involved in the production of one class of such multiple methyl-branched fatty acids. One of these mas-like genes, pks2, was disrupted using a phage-mediated delivery of the disruption construct. Gene disruption by homologous recombination was confirmed by polymerase chain reaction analysis of the flanking regions of the introduced disrupted gene and by Southern analysis. Thin-layer and radio gas-chromatographic analyses of lipids derived from [1-14C]propionic acid and gas chromatography/mass spectrometry analysis of the fatty acids and hydroxy fatty acids showed that the pks2 mutant was incapable of producing hepta- and octamethyl phthioceranic acids and hydroxyphthioceranic acids that are the major acyl constituents of sulfolipids. Consequently, pks2 mutant does not produce sulfolipids. Sulfolipid deficiency in pks2 mutant was confirmed by two-dimensional thin-layer chromatographic analysis of lipids derived from [1-14C]propionic acid and 35SO4(-2). With this sulfolipid-deficient mutant, it should be possible to test for the postulated important roles for sulfolipids in the pathogenesis of M. tuberculosis.  相似文献   

3.
Diesters of phthiocerol and phenolphthiocerol are important virulence factors of Mycobacterium tuberculosis and Mycobacterium leprae, the two main mycobacterial pathogens in humans. They are both long-chain beta-diols, and their biosynthetic pathway is beginning to be elucidated. Although the two classes of molecules share a common lipid core, phthiocerol diesters have been found in all the strains of the M. tuberculosis complex examined although phenolphthiocerol diesters are produced by only a few groups of strains. To address the question of the origin of this diversity 8 reference strains and 10 clinical isolates of M. tuberculosis were analyzed. We report the presence of glycosylated p-hydroxybenzoic acid methyl esters, structurally related to the type-specific phenolphthiocerol glycolipids, in the culture media of all reference strains of M. tuberculosis, suggesting that the strains devoid of phenolphthiocerol derivatives are unable to elongate the putative p-hydroxybenzoic acid precursor. We also show that all the strains of M. tuberculosis examined and deficient in the production of phenolphthiocerol derivatives are natural mutants with a frameshift mutation in pks15/1 whereas a single open reading frame for pks15/1 is found in Mycobacterium bovis BCG, M. leprae, and strains of M. tuberculosis that produce phenolphthiocerol derivatives. Complementation of the H37Rv strain of M. tuberculosis, which is devoid of phenolphthiocerol derivatives, with the fused pks15/1 gene from M. bovis BCG restored phenolphthiocerol glycolipids production. Conversely, disruption of the pks15/1 gene in M. bovis BCG led to the abolition of the synthesis of type-specific phenolphthiocerol glycolipid. These data indicate that Pks15/1 is involved in the elongation of p-hydroxybenzoic acid to give p-hydroxyphenylalkanoates, which in turn are converted, presumably by the PpsA-E synthase, to phenolphthiocerol derivatives.  相似文献   

4.
格尔德霉素生物合成基因功能的验证   总被引:3,自引:0,他引:3  
格尔德霉素(Geldanamycin, Gdm)作为热休克蛋白90的特异性抑制剂, 是非常有前景的抗肿瘤和抗病毒的药物,我们已从吸水链霉菌17997(Streptomyces hygroscopicus 17997)的基因文库中获得了Gdm大部分生物合成基因。为了研究主要基因的功能, 选择了聚酮合酶基因(Polyketide synthase gene, pks)的第六模块、单加氧酶基因(Mono-oxygenase gene, gdmM)和氨甲酰基转移酶基因(Carbamoyltransferase gene, gdmN)3个基因作为靶点分别进行基因阻断, 获得了基因同源双交换的阻断变株△pks、△gdmM和△gdmN。经HPLC检测证实这些基因的阻断变株均不产生Gdm, 基因回复实验排除了基因阻断所可能造成的极性效应对其它基因表达的影响, 说明所克隆的pks、gdmM和gdmN基因确实是Gdm生物合成所必须的基因。  相似文献   

5.
6.
We show that the disruption of one of the mycocerosic acid synthase (mas)-like genes, msl5 (pks8 plus pks17) in Mycobacterium tuberculosis H37Rv generates a mutant incapable of producing monomethyl branched unsaturated C(16) to C(20) fatty acids that are minor constituents of acyltrehaloses and sulfolipids. The msl5 mutation did not cause any significant change in the acyl lipid composition and also did not affect growth in culture, in mouse alveolar macrophage cell line MH-S, or in the murine lung.  相似文献   

7.
8.
9.
10.
11.
We cloned a polyketide synthase gene (pks12) from Fusarium graminearum, a devastating fungal pathogen of cereals. Transformation-mediated gene disruption led to an easily detectable albino phenotype of the disruptants. We used the disruption of the pks12 gene as a visible marker for transformation-mediated homologous recombination and optimized the transformation procedure to achieve a high rate of homologous recombination. In combination with the published genomic sequence data and the generation of expressed sequence tags (ESTs) for F. graminearum, this is a useful tool to investigate this important plant pathogen on a molecular level. Optimized transformation of F. graminearum resulted in at least 93% homologous recombination events when the homologous genomic DNA fragment in the vector had a size of approximately 800bp and was linearized in the middle. Using a genomic sequence of approximately 500bp in the transformation vector, 70% of the transformants still exhibited homologous recombination. On the contrary, no more than 10% homologous recombination events were observed when less than 400bp DNA fragments were used. We co-transformed F. graminearum with two different vectors. One vector harboured a DNA insert homologous to the pks12 gene, while the other vector consisted of the same vector backbone carrying the selection marker specific for F. graminearum. About 70% of the transformants had a disrupted pks12 gene, and all of these showed an integration of the second vector into the pks disruption vector. Therefore, the time-consuming construction of a single transformation vector can be avoided; furthermore, it is now easily feasible to express a gene construct at a defined and mutated genomic site.  相似文献   

12.
Brucella species are gram-negative bacteria which belong to alpha-Proteobacteria family. These organisms are zoonotic pathogens that induce abortion and sterility in domestic mammals and chronic infections in humans known as Malta fever. The virulence of Brucella is dependent upon its ability to enter and colonize the cells in which it multiplies. The genetic basis of this aspect is poorly understood. Signature-tagged mutagenesis (STM) was used to identify potential Brucella virulence factors. PCR amplification has been used in place of DNA hybridization to identify the STM-generated attenuated mutants. A library of 288 Brucella melitensis 16M tagged mini-Tn5 Km2 mutants, in 24 pools, was screened for its ability to colonize spleen, lymph nodes and liver of goats at three weeks post-i.v. infection. This comparative screening identified 7 mutants (approximately 5%) which were not recovered from the output pool in goats. Some genes were known virulence genes involved in biosynthesis of LPS (lpsA gene) or in intracellular survival (the virB operon). Other mutants included ones which had a disrupted gene homologous to flgF, a gene coding for the basal-body rod of the flagellar apparatus, and another with a disruption in a gene homologous to ppk which is involved in the biosynthesis of inorganic polyphosphate (PolyP) from ATP. Other genes identified encoded factors involved in DNA metabolism and oxidoreduction metabolism. Using STM and the caprine host for screening, potential virulence determinants in B. melitensis have been identified.  相似文献   

13.
14.
We have cloned and characterized a gene cluster for anthracycline biosynthesis from Streptomyces galilaeus. This cluster, 15-kb long, includes eight genes involved in the deoxyhexose biosynthesis pathway, a gene for a glycosyltransferase and one for an activator, as well as two genes involved in aglycone biosynthesis. Gene disruption targeted to the activator gene blocked production of aclacinomycins in S. galilaeus. Plasmid pSgs4, containing genes for a glycosyltransferase (aknS), an aminomethylase (aknX), a glucose-1-phosphate thymidylyltransferase (akn Y) and two genes for unidentified glycosylation functions (aknT and aknV), restored the production of aclacinomycins in the S. galilaeus mutants H063, which accumulates aklavinone, and H054, which produces aklavinone with rhodinose and deoxyfucose residues. Furthermore, pSgs4 directed the production of L-rhamnosyl-epsilon-rhodomycinone and L-daunosaminyl-epsilon-rhodomycinone in S. peucetius strains that produce epsilon-rhodomycinone endogenously. Subcloning of the gene cluster was carried out in order to further define the genes that are responsible for complementation and hybrid anthracycline generation.  相似文献   

15.
16.
17.
Phthiocerol dimycocerosates (DIM) and phenolglycolipids (PGL) are functionally important surface-exposed lipids of Mycobacterium tuberculosis. Their biosynthesis involves the products of several genes clustered in a 70-kb region of the M. tuberculosis chromosome. Among these products is PpsD, one of the modular type I polyketide synthases responsible for the synthesis of the lipid core common to DIM and PGL. Bioinformatic analyses have suggested that this protein lacks a functional enoyl reductase activity domain required for the synthesis of these lipids. We have identified a gene, Rv2953, that putatively encodes an enoyl reductase. Mutation in Rv2953 prevents conventional DIM formation and leads to the accumulation of a novel DIM-like product. This product is unsaturated between C-4 and C-5 of phthiocerol. Consistently, complementation of the mutant with a functional pks15/1 gene from Mycobacterium bovis BCG resulted in the accumulation of an unsaturated PGL-like substance. When an intact Rv2953 gene was reintroduced into the mutant strain, the phenotype reverted to the wild type. These findings indicate that Rv2953 encodes a trans-acting enoyl reductase that acts with PpsD in phthiocerol and phenolphthiocerol biosynthesis.  相似文献   

18.
To further define the genes and gene products responsible for the in vivo conversion of phosphatidylglycerophosphate to phosphatidylglycerol in Escherichia coli, we disrupted two genes (pgpA and pgpB) which had previously been shown to encode gene products which carried out this reaction in vitro (T. Icho and C. R. H. Raetz, J. Bacteriol. 153:722-730, 1983). Strains with either gene or both genes disrupted had the same properties as the original mutants isolated with mutations in these genes, i.e., reduced in vitro phospholipid phosphatase activities, normal growth properties, and an increase in the level of phosphatidylglycerophosphate (1.6% versus less than 0.1% in wild-type strains). These results demonstrate that these genes are not required for either normal cell growth or the biosynthesis of phosphatidylglycerol in vivo. In addition, the total phosphatidylglycerophosphate phosphatase activity in the doubly disrupted mutant was reduced by only 50%, which indicates that there is at least one other gene that encodes such an activity and thus accounts for the lack of a dramatic effect on the biosynthesis of anionic phospholipids in these mutant strains. The phosphatidic acid and lysophosphatidic acid phosphatase activities of the pgpB gene product were also significantly reduced in gene-interrupted mutants, but the detection of residual phosphatase activities in these mutants indicated that additional genes encoding such phosphatases exist. The lack of a significant phenotype resulting from disruption of the pgpA and pgpB genes indicates that these genes may be required only for nonessential cell function and leaves the biosynthesis of phosphatidylglycerophosphate as the only step in E. coli phospholipid biosynthesis for which a gene locus has not been identified.  相似文献   

19.
红曲菌能产生多种有益的次级代谢产物,但红曲菌也产生一种对人和哺乳动物肝和肾有毒害的毒素,即桔霉素。因此控制毒素的产生是保障红曲产品安全性所必须的。故对桔霉素的合成途径及相关的基因做深入了解。6个桔霉素合成相关的基因成簇位于21 kb的DNA片段上。克隆了一个新基因(orf7基因),其位于该基因簇的外侧。采用基因敲除技术,构建红曲菌orf7基因缺失菌株。并采用紫外分光光度法检测orf7基因缺失菌株的红曲色素产量,HPLC法检测其桔霉素产量。orf7缺失菌株产红曲色素能力与出发菌株As3.4384相比没有变化;产桔霉素培养13~19 d,桔霉素的产量与出发菌株As3.4384相比增加了 142.4%。从而证实orf7基因与桔霉素代谢相关。  相似文献   

20.
Aspergillus oryzae has numerous protease genes that might cause proteolytic degradation of heterologously-produced proteins. The productivity of the heterologous protein can be improved by protease gene disruption, but it is difficult to select disruption targets efficiently. In this study, we monitored the expression of 132 protease genes by DNA microarray. A group of protease genes up-regulated during cultivation was identified by clustering analysis. In this protease group, the nptB gene encoding neutral protease II was included as well as the alpA, tppA, and pepA genes, disruption of which has improved human lysozyme (HLY) production. The nptB gene was disrupted to investigate its involvement in HLY production, and nptB disruptants showed an improvement in the production. These observations suggest that monitoring the expression of protease genes is an efficient strategy in screening potential disruption targets for heterologous protein production in A. oryzae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号