首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neural ganglia of wild type third-instar larvae of Drosophila melanogaster were incubated for 13 hours at various concentrations of BUdR (1, 3, 9, 27 micrograms/ml). Metaphases were collected with colchicine, stained with Hoechst 33258, and scored under a fluorescence microscope. Metaphases in which the sister chromatids were clearly differentiated were scored for the presence of sister-chromatid exchanges (SCEs). At the lowest concentration of BUdR (1 microgram/ml), no SCEs were observed in either male or female neuroblasts. The SCEs were found at the higher concentrations of BUdR (3, 9, And 27 micrograms/ml) and with a greater frequency in females than in males. Therefore SCEs are not a spontaneous phenomenon in D. melanogaster, but are induced by BUdR incorporated in the DNA. A striking nonrandomness was found in the distribution of SCEs along the chromosomes. More than a third of the SCEs were clustered in the junctions between euchromatin and heterochromatin. The remaining SCEs were preferentially localized within the heterochromatic regions of the X chromosome and the autosomes and primarily on the entirely heterochromatic Y chromosome.--In order to find an alternative way of measuring the frequency of SCEs in the Drosophila neuroblasts, the occurrence of double dicentric rings was studied in two stocks carrying monocentric ring-X chromosomes. One ring chromosome, C(1)TR94--2, shows a rate of dicentric ring formation corresponding to the frequency of SCEs observed in the BUdR-labelled rod chromosomes. The other ring studied, R(1)2, exhibits a frequency of SCEs higher than that observed with both C(1) TR94--2 and rod chromosomes.  相似文献   

2.
3.
The existence of a high frequency of spontaneous sister-chromatid exchanges (SCEs) in Bloom syndrome (BS) has thus far been supported by data on a small number of BS cell lines. To examine the cause of baseline SCEs more broadly, the frequencies of SCEs, as well as chromosomal aberrations (CAs) in 4 additional BS fibroblast strains were compared, under different assay and cell culture conditions, with those of normal cells in the range of approximately 0.9-90% 5-bromodeoxyuridine (BrdUrd) substitution into template DNA. SCEs at low levels of BrdUrd substitution were detected by an extremely sensitive immunofluorescent technique. From approximately 0.9% to 4.5% BrdUrd substitution, the SCE frequency in BS cells remained constant, at a level (40/cell) 8 times higher than that of normal cells. As BrdUrd substitution increased further, the SCE frequency in BS cells increased almost linearly, reaching 70-100 per cell at approximately 90% substitution, while the SCE increment in control fibroblasts was less than 5 per cell. Analysis of SCEs in 3 successive replication cycles similarly revealed that the SCE increment in BS cells depended on BrdUrd only at a high BrdUrd substitution level. In contrast to data on SCEs, CA induction by incorporated BrdUrd in BS cells was only slightly higher than that in normal cells. Thus, BS cells are extremely sensitive to BrdUrd for SCE induction, but much less so for CA induction.  相似文献   

4.
Schizophrenic patients who were receiving, or who had received chlorpromazine showed SCE levels similar to those in a normal control population. Of 8 normal individuals whose lymphocytes were exposed in vitro to chlorpromazine (0.05–2.00 μg/ml) for two cell cycles, 4 showed a significant increase in SCE, 3 showed no increase and 1 a decrease compared with untreated lymphocytes. Lymphocytes from a further 8 donors treated with 2.0 μg/ml chlorpromazine prior to mitogen stimulation (G0 lymphocytes) showed a similar SCE response. Only 3 of the 8 donors showed a significant increase in SCEs over the baseline level. When proliferating lymphocytes were exposed to chlorpromazine 38 h after culture initiation and prior to the addition of BrdUrd to the culture medium, metaphase chromosomes from only 3 of the 8 individuals studied showed increased levels of exchange. These results indicate that chlorpromazine can induce SCEs in vitro but that there is considerable variation in SCE response among individuals. Furthermore, our data emphasises the importance of using more than 1 or 2 donors when analysing SCE response in human chromosomes.  相似文献   

5.
Culture of cells in high exogenous levels (>10–4 M) of bromodeoxyuridine (BrdUrd) or thymidine will increase the baseline sister chromatid exchange (SCE) frequency. The effect is thought to be related to the balance of the DNA precursors thymidine and deoxycytidine. Exogenous addition of deoxycytidine will reverse this effect. Single and twin SCEs were analysed in Colcemid-induced tetraploid Chinese hamster ovary cells exposed to different concentrations of BrdUrd to determine at what stage SCEs are induced by high levels of BrdUrd. In cells exposed to low concentrations of BrdUrd (10–5 M), equal numbers of SCEs were induced in each of the two cell cycles. With increasing concentrations of BrdUrd (10–4 to 2×10–4 M), SCE frequency increased in both cell cycles, but far more SCEs were induced in the second cell cycle. Deoxycytidine (2×10–4 M) reduced the frequency of SCEs primarily by reducing the frequency of SCEs induced in the second cell cycle. Treatment with 3-aminobenzamide (3AB), a potent inhibitor of poly(ADP-ribose) polymerase, produced effects similar to exposure to high levels of BrdUrd including inducing SCEs in the second replication cycle. This suggests a similar mechanism of action. Deoxycytidine had no effect on 3AB-induced SCEs, however, and there was no interaction between 3AB and high exogenous levels of BrdUrd in SCE induction. Thus these two agents probably act through different mechanisms.  相似文献   

6.
Sister chromatid exchanges (SCE's) induced by [3H]thymidine (3HdT) of increasing specific activities incorporated over one cycle and 5-bromodeoxyuridine (BrdUrd) over the two following cycles were investigated in synchronised Chinese hamster ovary (CHO) cells. SCEs induced during the first cycle on a T.T template (SCE 1) show little increase with dose compared with those induced in the second cycle on a 3HT.T template (SCE 2) where the linear increase with dose reflects that seen after X irradiation. During the third cycle, SCEs 3.1 and 3.2 are induced on unlabelled T.B or labelled 3HT.B templates respectively. These templates are theoretically present in a 11 ratio after random segregation at second metaphase. Over practically the entire dose range however, the ratio 3.1/3.2, which dereased with dose, was >1.0 and similar to the high values obtained by other workers. At increasing times after BrdUrd introduction, the ratio decreased from >1.0 to <1.0. Measurements showed that the expected 50% level of labelled chromosomes at metaphase in the samples could vary between 42%–59%. Cells with >50% labelled chromosomes were more delayed in the cell cycle due to the 3H-irradiation than those with <50%. Early fixations therefore favoured SCE 3.1 while late favoured SCE 3.2. SCEs due to BrdUrd in 3HT.B and T.B templates showed no synergistic interaction with irradiation-induced SCEs. When these BrdUrd-induced SCEs were removed from the totals then the 3H-induced SCE levels in 3HT.T, and 3HT.B templates (SCE 2 and 3.2) were similar and increased at a similar rate with dose. This was 2–3 times faster than in SCE 1 and 3.1 where the SCE levels due to irradiation were again similar but lower than for 2 and 3.2. The -irradiation source is therefore most effective in inducing SCEs when present in the replicating fork and considerably less effective when it is just behind the fork (SCE 1) and/or in the surrounding chromosomes in the cell.  相似文献   

7.
There are conflicting reports on the effect of exogenous thymidine (dThd) on the frequency of sister-chromatid exchanges (SCEs) in Chinese hamster ovary (CHO) cells. Thymidine has been reported either to increase or to have no effect on SCE frequency under similar experimental conditions. To resolve this controversy, we have carried out a series of experiments to examine the effect of dThd on CHO cells cultured with 5-bromodeoxyuridine (BrdUrd). In addition, we have examined the effect of dThd on CHO cells cultured with 5-chlorodeoxyuridine (CldUrd), a much more potent inducer of SCEs than BrdUrd. The addition of 100 microM dThd to the culture medium caused a consistent decrease in the yield of SCEs in cells grown in BrdUrd for two cell cycles. The decrease was even greater when cells were grown in dThd and CldUrd. Analysis of twin and single SCEs indicated that dThd must be present during the first cell cycle to reduce the frequency of SCEs. Because excess dThd is thought to have an effect when DNA replicates on a template substituted with a halogenated nucleoside, dThd at concentrations from 100 microM to 9 mM was added to cultures for the second cell cycle after a first cell cycle in BrdUrd. In this experiment, the presence of dThd increased SCE frequency in a dose-dependent manner. The results suggest that if dThd competes with halogenated nucleosides and thus decreases their incorporation into DNA, SCEs are suppressed in the subsequent cell cycle, whereas if excess dThd creates a dNTP pool imbalance, SCEs can be increased.  相似文献   

8.
Two aphidicolin-resistant cell mutants (AC 12 and AC 41) with a fourfold increase in spontaneous frequency of sister chromatid exchanges (SCEs) were obtained out of over 400 aphidicolin-resistant mutants isolated from mouse lymphoma L5178Y cells. They also exhibited three- to fourfold increases in spontaneous frequency of chromosome aberrations (CAs). To determine whether the high level of SCE frequency in AC 12 is caused by 5-bromodeoxyuridine (BrdUrd) used for visualizing SCEs, the effect of BrdUrd incorporated into DNA on SCE induction was analyzed. The SCE frequencies in AC 12 remained constant at BrdUrd incorporation levels corresponding to 2-90% substitution for thymidine in DNA. In addition, the small amount of BrdUrd incorporated into both daughter and parenteral DNA strands in AC 12 had minimal effect on SCE induction. Furthermore, AC 12 and AC 41 were slightly resistant to BrdUrd with respect to the induction of CAs, the inhibition of cell-cycle progression and the decrease in mitotic activity. These findings suggest that the high incidence of SCEs in AC 12 and AC 41 is formed by their intrinsic defects, not by the effects of BrdUrd used. The analysis of SCE frequencies in hybrid cells between these mutants and the parental L5178Y revealed that the genetic defects in AC 12 and AC 41 appear to be recessive, and that these two mutants belong to the same complementation group. Furthermore, AC 12 belonged to a different complementation group from ES 4, which was isolated previously from L5178Y as an SCE mutant with a twofold higher frequency of spontaneous SCEs. This finding indicates that at least two different genetic defects participate in the formation of the high incidence of spontaneous SCEs in mouse cells. These SCE mutants would provide valuable cell materials for studying the molecular mechanism of SCE formation.  相似文献   

9.
The frequencies of sister chromatid exchanges (SCEs) were examined in phytohaemagglutinin-stimulated blood lymphocytes of a normal individual, a Bloom's syndrome heterozygote (bl/+), and two Bloom's syndrome homozygotes (bl/bl). To determine the baseline SCE frequencies, lymphocytes were cultured with various concentrations of 5-bromodeoxyuridine (BrdUrd) for two cell cycles. The incidence of SCEs per two cell cycles inbl/bl lymphocytes levelled off at BrdUrd concentrations below 10 g/ml while that in normal andbl/+ lymphocytes stayed constant below 7.5 g/ml. The baseline SCE frequency in bl/bl cells was ten times higher than that in normal andbl/+ cells. At BrdUrd concentrations above 15 g/ml, SCEs inbl/bl cells were induced more frequently than in normal andbl/+ cells. These results indicate that at low concentrations BrdUrd has a minimal effect on the induction of SCEs in all individuals, while at higher concentrations the BrdUrd incorporated inbl/bl cells has a larger effect than that in normal andbl/+ cells. To elucidate the effect of BrdUrd incorporated into the daughter and parental DNA strands on SCE induction, SCEs occurring during each cell cycle were examined separately in three-way or two-way differentially stained, third-cycle metaphases. The incidence of SCEs detected in each cell cycle at 5 g/ml BrdUrd was constant in all individuals and the rates of SCEs in each cell cycle inbl/bl cells were remarkably higher than those observed in normal andbl/+ cells. These findings strongly indicate that most of the abnormally increased SCEs in thebl/bl cells used in our study occurred independently of any effect of BrdUrd incorporated into both the daughter and parental DNA strands. In addition, an abnormal response ofbl/bl cells to BrdUrd was not found for cell cycle progression or chromosomal aberration induction. Thus, the bl/bl cells did not exhibit an abnormal hypersensitivity to BrdUrd. From these results, it seems quite probable that the abnormally increased SCEs in thebl/bl lymphocytes used here were spontaneous.  相似文献   

10.
B N Nayak 《Mutation research》1985,143(1-2):45-49
The baseline sister-chromatid exchanges (SCEs) and the percentage of first (M1), second (M2) and third or higher metaphase (M3+) chromosomes were analysed in bone-marrow cells of male and female C57BL/6 mice and Chinese hamsters following serial intraperitoneal injections of 40 micrograms/g body weight (b.w.) of 5-bromo-2'-deoxyuridine (BrdUrd) and 2 micrograms/g b.w. of 5-fluorodeoxyuridine (FdUrd) or 40 micrograms/g b.w. of BrdUrd and 10 micrograms/g b.w. of deoxycytidine (dC). Female animals receiving BrdUrd/FdUrd showed significantly higher (P less than 0.01) baseline SCEs compared to the other groups. No sex difference in the baseline SCEs was found in animals treated with BrdUrd/dC. The distribution patterns of M1, M2 and M3+ metaphases in BrdUrd/FdUrd-treated animals differ significantly from those in BrdUrd/dC-treated animals.  相似文献   

11.
By applying an adaptation of the method of three-way differentiation to murine bone marrow cells in vivo, the basal frequency of sister-chromatid exchange (SCE) per cell was evaluated. An SCE frequency directly proportional to the estimated relative incorporation of 5-bromodeoxyuridine (BrdU) to the chromosomes was observed for the 3 consecutive cell cycles, implying that the majority, if not all, of the SCEs in vivo were produced by the incorporated BrdU. This conclusion was supported by the finding that in the first cycle of division, a very high frequency of cells without SCE was observed. From these data, a spontaneous frequency of SCE as low as 0.15 SCE/cell/cell cycle was inferred.  相似文献   

12.
Takaji Ikushima 《Chromosoma》1990,99(5):360-364
The cell cycle dependence of sister chromatid exchanges (SCEs) induced by luminol, a new potent inhibitor of poly(ADP-ribose) synthetase, was studied in Chinese hamster V79 cells. Continuous treatment with luminol during two whole cell cycles in the presence of 5-bromo-2-deoxyuridine (BrdUrd), or in the first or second cycle induced SCEs very efficiently in a linear dosedependent manner. However, no enhancement of SCE levels was observed after luminol treatment in a cycle preceding BrdUrd treatment, in contrast to results found with other strong SCE inducers such ascis-diammine-dichloroplatinum (II) (CDDP) and mitomycin C (MMC). Luminol was about ten times as effective in inducing SCEs as 3-aminobenzamide (3AB), an inhibitor of the NAD+ site of poly(ADP-ribose) synthetase. The induction of SCEs by luminol was restricted to the Sphase of the cell cycle with peaks at an early and a late stage, corresponding to the biphasic replication of DNA. The mechanism of SCE appears to be the same at the early and late stages of S-phase for luminol-induced SCE formation.  相似文献   

13.
G Speit  S Haupter 《Mutation research》1987,190(3):197-203
Penicillamine (PA), a drug used for the treatment of rheumatoid arthritis induces sister-chromatid exchanges (SCEs) and chromosome aberrations in cultivated mammalian cells. PA in concentrations from 400 micrograms/ml upward induced SCEs and proliferative delay in human blood cultures when added for the last 24 h of the culture period. In V79 Chinese hamster cells SCE induction was found after acute exposure to PA before the addition of BrdUrd and after chronic exposure during one cell cycle in the presence of BrdUrd. The effect of PA on SCE frequencies occurred both after treatment in complete medium and in serum-free medium and was not influenced by the application of an S9 mix. The simultaneous addition of peroxidase reduced the PA-induced SCEs whereas catalase did not show any effect. Chromosome analysis in the first mitosis after PA treatment revealed a significant increase in the incidence of chromosome aberrations and endoreduplication. The results are discussed with respect to the cause and the significance of the observed effects in connection with mutagenicity testing.  相似文献   

14.
V79 Chinese hamster cells were exposed to X-rays at various times through the two cell cycles required to obtain harlequin-stained chromosomes. A two-fold SCE enhancement was found between the first and the second G1 phase when BrdUrd was incorporated during the first S phase only. This BrdUrd effect was not found when MNNG was used. Furthermore, the kinetics of SCE and aberrations were different, suggesting two separate mechanisms for their formation: SCE activity takes place when DNA damage occurs before the DNA replication, and aberration activity when the DNA damage occurs chiefly after the DNA replication.  相似文献   

15.
The relative importance of DNA-DNA cross-links and bulky monoadducts in sister chromatid exchange (SCE) formation was investigated in three human fibroblast cell lines with different repair capabilities. These cell lines included normal cells, which can repair both classes of lesions; xeroderma pigmentosum (XP) cells, which cannot repair either psoralen-induced cross-links or monoadducts; and an XP revertant that repairs only cross-links and not monoadducts. SCEs were induced by two psoralen derivatives, 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) and 5-methylisopsoralen (5-MIP). After activation with long-wave ultraviolet light, HMT produces cross-links and monoadducts in DNA, whereas 5-MIP produces only monoadducts. In normal human cells both psoralens induced SCEs, but if cells were allowed to repair for 18 h before bromodeoxyuridine (BrdUrd) was added for SCE analysis, the SCE frequency was significantly reduced. XP cells showed an SCE frequency that remained high regardless of whether SCEs were analyzed immediately after psoralen exposure or 18 h later. In the XP revertant that repairs only cross-links, both psoralens induced a high yield of SCEs when BrdUrd was added immediately after psoralen treatment. When XP revertant cells were allowed 18 h to repair before addition of BrdUrd, the SCEs induced by HMT were greatly reduced, whereas those induced by 5-MIP were only slightly reduced. These observations indicate that both cross-links and monoadducts are lesions in DNA that can lead to SCE formation.  相似文献   

16.
Although mature mammalian sperm are incapable of DNA repair, repair of damaged sperm DNA can occur after fertilization, as the sperm head decondenses and forms the male pronucleus. To quantify the cytogenetic effects of damage to sperm DNA we adapted the sister-chromatid exchange (SCE) test for use in early mouse embryos. After ultraviolet (UV) irradiation of sperm, eggs were fertilized in vitro and cultured for 2 cell cycles in medium containing fluorodeoxyuridine and bromodeoxyuridine; chromosomes were then prepared for SCE analysis. We found that UV-induced SCEs could be detected at the second cleavage division, and that eggs of different strains showed different frequencies of SCEs when fertilized by damaged sperm of a single strain. These results may indicate strain-specific differences in DNA repair of UV-induced DNA lesions by the early mouse embryo.  相似文献   

17.
This study was designed to obtain sister-chromatid exchange (SCE) frequencies in bone marrow and spleen cells of mice and Chinese hamsters under in vivo and in vivo/in vitro systems following treatment of animals with varying doses (15-405 micrograms/kg) of triethylenemelamine (TEM). A dose-related SCE response was found in both species, tissues, and systems analyzed following TEM treatment. In vivo, similar responses were noted for both tissues in both species. However, in vivo/in vitro, the response was lower than in vivo and it varied with the tissue. The spleen cells were more sensitive and gave higher numbers of SCEs than bone marrow of both species at the two highest doses tested (135 and 405 micrograms/kg). These differences may be attributed to cell-culturing effects, type of cells analyzed, species and tissue specificities, and pharmacokinetic properties of the chemical. This study lends support to recently established in vivo/in vitro cell culture methodologies employing mice and Chinese hamsters for comparative cytogenetic analysis.  相似文献   

18.
Three types of Giemsa differential staining of sister chromatids were observed in HeLa cells when they were exposed continuously to 5-bromodeoxyuridine (BrdUrd) for three replication cycles. In type-1, about a half set of chromosome complements were composed of pairs of darkly-stained and intermediately-stained chromatids; the other half consisted of pairs of intermediately-stained and lightly-stained chromatids. In type-2, one fourth of chromatids was stained darkly and the remaining ones were stained lightly. In type-3, about a half set of chromosomes consisted of the pairs of darkly-stained and lightly-stained chromatids and the rest of pairs of intermediately-stained and lightly-stained chromatids. Cells showing each differentiation pattern at the third mitotic phase were dependent on the stages of the first DNA synthetic (S) phase at which BrdUrd treatments were initiated. Type-1 cells were observed, when BrdUrd treatment was initiated anywhere from G1 to early S phase, type-2 when treatments were begun in middle S stage, and type-3 when treatments were initiated in the late stages of the first S phase. The appearance of the three types seems to be caused by a different amount of BrdUrd incorporated into DNA between the first (S1) and the second S period (S2). The amount of BrdUrd incorporated is as follows: in type-1 S1>S2, in type-2 S1 S2 and in type-3 S2>S1.By analysing type-1 cells, all of the sister chromatid exchanges (SCEs) occurring during each replication cycle can be accurately counted and distinguished from one another. In cells exposed to BrdUrd above 5 μg/ml, the frequencies of SCEs occurring during S1, S2, and S3 are higher than those detected at lower BrdUrd concentrations. On the other hand, at lower concentrations (0.1–1.0 μg/ml) they occurred at the same frequency during S1, S2, and S3. Thus, SCEs detected at low concentrations are free from the incremental effect of BrdUrd incorporated, and enable us to estimate the spontaneous level of SCE frequency.  相似文献   

19.
The frequency of sister chromatid exchanges (SCEs) was determined for the chromosomes (except Y2) of the Indian muntjac stained by the fluorescence plus Giemsa (FPG) or harlequin chromosome technique. The relative DNA content of each of the chromosomes was also measured by scanning cytophotometry. After growth in bromodeoxyuridine (BrdU) for two DNA replication cycles. SCEs were distributed according to the Poisson formula in each of the chromosomes. The frequency of SCE in each of the chromosomes was directly proportional to DNA content. A more detailed analysis of SCEs was performed for the three morphologically distinguishable regions of the X-autosome composite chromosome. The SCE frequency in the euchromatic long arm and short arm were proportional to the amount of DNA. In contrast, the constitutive heterochromatin in the neck of this chromosome contained far fewer SCEs than expected on the basis of the amount of DNA in this region. A high frequency of SCE, however, was observed at the point junctions between the euchromatin and heterochromatin.  相似文献   

20.
We conducted a series of experiments designed to determine whether DNA damage induced in G0 lymphocytes by mitomycin C (MMC) would be expressed as sister-chromatid exchanges during the second and third post-treatment cell cycles. Lymphocytes from normal donors were exposed to MMC for 2 h prior to culture in the presence of phytohemagglutinin. MMC-treated and control cells were subsequently exposed to bromodeoxyuridine (BrdUrd) for the entire culture period (i.e. 48 h or 72 h) or for the terminal 24 h of 72-h cultures. We observed a 3–4-fold increase in SCEs in MII metaphases from lymphocytes treated with MMC and cultured in the presence of BrdUrd for the entire culture period. In contrast, in replicate cultures of MMC-treated lymphocytes that were exposed to BrdUrd for the terminal 24 h only, the SCE frequency in uniformly harlequinized metaphases was not significantly different from that observed in control cultures. We interpret these data as providing evidence that MMC-induced lesions (or alterations) in the DNA of G0 lymphocytes are probably expressed as SCEs during the first period of mitogeninduced DNA synthesis, and that these lesions do not persist and give rise to SCEs in subsequent cell divisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号