首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The 13 major enzymes which compose the glycolytic and fermentative pathways in Zymomonas mobilis are particularly abundant and represent one-half of the soluble protein in exponential-phase cells. One- and two-dimensional polyacrylamide gel electrophoresis maps were developed for 12 of these enzymes. Assignments were made by comigration with purified proteins, comparison with overexpressed genes in recombinant strains, and Western blots (immunoblots). Although most glycolytic enzymes appeared resistant to turnover and accumulated in stationary-phase cells, the protein levels of pyruvate kinase, alcohol dehydrogenase I, and glucokinase declined. Alcohol dehydrogenase II was identified as a major stress protein and was induced both by exposure to ethanol and by elevated temperature (45 degrees C). This enzyme, encoded by the adhB gene, is expressed from tandem promoters which share partial sequence identity with the Escherichia coli consensus sequence for heat shock proteins.  相似文献   

3.
The Zymomonas mobilis genes encoding alcohol dehydrogenase I (adhA), alcohol dehydrogenase II (adhB), and pyruvate decarboxylase (pdc) were overexpressed in Escherichia coli and Z. mobilis by using a broad-host-range vector containing the tac promoter and the lacIq repressor gene. Maximal IPTG (isopropyl-beta-D-thiogalactopyranoside) induction of these plasmid-borne genes in Z. mobilis resulted in a 35-fold increase in alcohol dehydrogenase I activity, a 16.7-fold increase in alcohol dehydrogenase II activity, and a 6.3-fold increase in pyruvate decarboxylase activity. Small changes in the activities of these enzymes did not affect glycolytic flux in cells which are at maximal metabolic activity, indicating that flux under these conditions is controlled at some other point in metabolism. Expression of adhA, adhB, or pdc at high specific activities (above 8 IU/mg of cell protein) resulted in a decrease in glycolytic flux (negative flux control coefficients), which was most pronounced for pyruvate decarboxylase. Growth rate and flux are imperfectly coupled in this organism. Neither a twofold increase in flux nor a 50% decline from maximal flux caused any immediate change in growth rate. Thus, the rates of biosynthesis and growth in this organism are not limited by energy generation in rich medium.  相似文献   

4.
Summary Cell-free extracts ofZymomonas mobilis were capable of fermenting glucose to ethanol and CO2 when stimulated by arsenate to act as an ATP uncoupler. 2M glucose was completely converted resulting in a final concentration of 16.5 % w/v ethanol. 1 M glucose was completely converted at temperatures up to 50°C. The results demonstrate that the glycolytic enzymes are more resistant to temperature and ethanol than are the living cells.  相似文献   

5.
Extracellular proteins of Zymomonas mobilis were analyzed by two-dimensional gel electrophoresis and protein maps drawn up. One of these proteins showed sucrose-hydrolyzing activity, as indicated by activity staining after polyacrylamide gel electrophoresis. It was purified from the extracellular extract of a glucose fermentation by polyacrylamide gel electrophoresis, using a two-step procedure. The molecular mass of the protein was 46 kDa and its isoelectric point 5.0. A rabbit antiserum was raised against this protein. As shown by immunoblotting, the same protein was present in extracellular extracts obtained from glucose, fructose and sucrose fermentations. A cross-reaction was also detected by immunoblotting, with a cellular protein of molecular mass 46 kDa present on the three carbon sources studied. However, activity staining was unsuccessful on gels after electrophoresis of these cellular extracts. The extracellular protein extract obtained from a fermentation run on glucose contained another sucrose-hydrolyzing protein of molecular mass 51 kDa and with an isoelectric point of 4.8. This protein was absent in fructose and sucrose fermentations but showed a positive reaction with the antiserum raised against the 46 kDa extracellular protein. Partially purified sucrose-hydrolyzing proteins also catalyzed transfructosylation reactions, suggesting that they could be of the levansucrase type.  相似文献   

6.
The five glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase and pyruvate kinase were each purified from extracts of Zymomonas mobilis cells, by using dye-ligand chromatography as the principal step. Two procedures, producing three and two of the enzymes respectively, are described in detail. Z. mobilis glyceraldehyde-phosphate dehydrogenase was found to be similar in most respects to the enzyme from other sources, except for having a slightly larger subunit size. Phosphoglycerate kinase has properties typical for this enzyme; however, it did not show the sulphate activation effects characteristic of this enzyme from most other sources. Phosphoglycerate mutase is a dimer, partially independent of 2,3-bisphosphoglycerate, and has a high specific activity. Enolase was found to be octameric; otherwise its properties were very similar to those of the yeast enzyme. Pyruvate kinase is unusual in being dimeric, and not requiring K+ for activity. It is not allosterically activated by sugar phosphates, having a high activity in the absence of any effectors. Some quantitative differences in the relative amounts of these enzymes, compared with eukaryotic species, are ascribed to the fact that Z. mobilis utilizes the Entner-Doudoroff pathway rather than the more common Embden-Meyerhoff glycolytic route.  相似文献   

7.
Glycolytic genes in Zymomonas mobilis are highly expressed and constitute half of the cytoplasmic protein. The first four genes (glf, zwf, edd, glk) in this pathway form an operon encoding a glucose permease, glucose 6-phosphate dehydrogenase (G6-P dehydrogenase), 6-phosphogluconate dehydratase, and glucokinase, respectively. Each gene was overexpressed from a tac promoter to investigate the control of glycolysis during the early stages of batch fermentation when flux (qCO(2)) is highest. Almost half of flux control appears to reside with G6-P dehydrogenase (C(J) (G6-P dehydrogenase) = 0.4). Although Z. mobilis exhibits one of the highest rates of glycolysis known, recombinants with elevated G6-P dehydrogenase had a 10% to 13% higher glycolytic flux than the native organism. A small increase in flux was also observed for recombinants expressing glf. Results obtained did not allow a critical evaluation of glucokinase and this enzyme may also represent an important control point. 6-Phosphogluconate dehydratase appears to be saturating at native levels. With constructs containing the full operon, growth rate and flux were both reduced, complicating interpretations. However, results obtained were also consistent with G6-P dehydrogenase as a primary site of control. Flux was 17% higher in operon constructs which exhibited a 17% increase in G6-P dehydrogenase specific activity, relative to the average of other operon constructs which contain a frameshift mutation in zwf. It is unlikely that all flux control residues solely in G6-P dehydrogenase (calculated C(J) (G6-P dehydrogenase) = 1.0) although these results further support the importance of this enzyme. As reported in previous studies, changes in flux were not accompanied by changes in growth rate providing further evidence that ATP production does not limit biosynthesis in rich complex medium. (c) 1996 John Wiley & Sons, Inc.  相似文献   

8.
《Gene》1998,206(2):223-228
A physical map of the Zymomonas mobilis ZM4 genome has been constructed from the results of reciprocal Southern hybridization with PmeI, PacI, and NotI-digested genomic DNA fragments and linking cosmid clones. Restriction enzyme-digested Z. mobilis ZM4 genome was electrophoresed with phage lambda DNA concatemers as a size standard in a Bio-Rad CHEF-DRII pulsed-field gel electrophoresis (PFGE) system. The restriction enzyme PmeI generated 15 fragments (3–625 kb), and PacI produced 19 fragments (7–525 kb). Each size of restriction fragment was calculated by comparison to the size of phage lambda DNA concatemers, and the genome size of Z. mobilis ZM4 was estimated to be 2085.5 kb. The 19 known genes and three rrn operons were localized on the map.  相似文献   

9.
The energetics of the anaerobic gram-negative bacterium Zymomonas mobilis, a well-known ethanol-producing organism, is based solely on synthesis of 1 mol of ATP per mol of glucose by the Entner-Doudoroff pathway. When grown in the presence of glucose as a carbon and energy source, Z. mobilis had a cytosolic ATP content of 3.5 to 4 mM. Because of effective pH homeostasis, the components of the proton motive force strongly depended on the external pH. At pH 5.5, i.e., around the optimal pH for growth, the proton motive force was about -135 mV and was composed of a pH gradient of 0.6 pH units (internal pH 6.1) and a membrane potential of about -100 mV. Measurement of these parameters was complicated since ionophores and lipophilic probes were ineffective in this organism. So far, only glucose transport by facilitated diffusion is well characterized for Z. mobilis. We investigated a constitutive secondary glutamate uptake system. Glutamate can be used as a nitrogen source for Z. mobilis. Transport of glutamate at pH 5.5 shows a relatively high Vmax of 40 mumol.min-1.g (dry mass) of cells-1 and a low affinity (Km = 1.05 mM). Glutamate is taken up by a symport with two H+ ions, leading to substantial accumulation in the cytosol at low pH values.  相似文献   

10.
R-Plasmid Transfer in Zymomonas mobilis   总被引:10,自引:8,他引:2       下载免费PDF全文
Conjugal transfer of three IncP1 plasmids and one IncFII plasmid into strains of the ethanol-producing bacterium Zymomonas mobilis was obtained. These plasmids were transferred at high frequencies from Escherichia coli and Pseudomonas aeruginosa into Z. mobilis and also between different Z. mobilis strains, using the membrane filter mating technique. Most of the plasmids were stably maintained in Z. mobilis, although there was some evidence of delayed marker expression. A low level of chromosomal gene transfer, mediated by plasmid R68.45, was detected between Z. mobilis strains. Genetic evidence suggesting that Z. mobilis may be more closely related to E. coli than to Pseudomonas or Rhizobium is discussed.  相似文献   

11.
Summary In the metabolism of fructose by Zymomonas, the ethanol yield is decreased due to the formation of dihydroxyacetone, mannitol and glycerol. The reduction of fructose to mannitol by an NADPH-dependent mannitol dehydrogenase is apparently coupled to the oxidation of glucose-6-phosphate by glucose-6-phosphate dehydrogenase, which exhibits higher activity with NADP than with NAD as cofactor. The relatively low cell yield on fructose can partly be explained by the loss of ATP in the formation of dihydroxyacetone and glycerol and partly by the toxic effect of dihydroxyacetone and acetaldehyde on the growth of the organism.  相似文献   

12.
The obligately fermentative aerotolerant bacterium Zymomonas mobilis was shown to possess oxidative phosphorylation activity. Increased intracellular ATP levels were observed in aerated starved cell suspension in the presence of ethanol or acetaldehyde. Ethanolconsuming Z. mobilis generated a transmembrane pH gradient. ATP synthesis in starved Z. mobilis cells could be induced by external medium acidification of 3.5–4.0 pH units. Membrane vesicles of Z. mobilis coupled ATP synthesis to NADH oxidation. ATP synthesis was sensitive to the protonophoric uncoupler CCCP both in starved cells and in membrane vesicles. The H+-ATPase inhibitor DCCD was shown to inhibit the NADH-coupled ATP synthesis in membrane vesicles. The physiological role of oxidative phosphorylation in this obligately fermentative bacterium is discussed.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - CCCP carbonyl cyanide m-chlorophenylhydrazone  相似文献   

13.
The bacterium Zymomonas mobilis is a potentially useful organism for the commercial production of ethanol as it is capable of more than double the rate of alcohol production by yeast. However, industrial application of this bacterium has been restricted in part due to the disadvantages of its limited substrate range (glucose, fructose and sucrose) and by-product formation. Progress in strain improvement and genetic manipulation of this ethanologen is reviewed. Methodologies for gaining reproducible gene transfer in Z. mobilis have recently been developed. Genetic modification has led to its growth on the additional substrates lactose and mannitol. Additionally, a range of by-product negative mutants have also been isolated. Further interest has focused on transfer of Z. mobilis genes to other fermentive organisms in order to gain enhanced product formation. Overall, these genetic approaches should lead to development of novel strains of Z. mobilis and other genera, capable of the use of starch, cellulose and xylan in a manner attractive for industrial ethanol production, besides facilitating over production of products from E. coli strains with enhanced capability to grow at high density.  相似文献   

14.
A bacterium that stereospecifically produces l-valine from 5-isopropylhydantoin was isolated + from soil. It was identified as Bacillus brevis and given the number AJ-12299. l-Valine productivity from l-, d- or dl-5-isopropylhydantoin by B. brevis AJ-12299 was rather low because this bacterium had l-valine degrading-activity. In contrast, the productivity was improved by a mutant the l-valine degradation pathway of which was genetically blocked, and the 5-isopropylhydantoin consumed was stoichiometrically converted to l-valine. The optimal temperature and pH of the reaction were 30°C and 7.0~7.5. The enzyme involved in the reaction was inducible and was strongly induced by the addition of 5-isopropylhydantoin. In addition to l-valine production, this bacterium also produced various aliphatic and aromatic l-amino acids from the corresponding 5-substituted hydantoins.  相似文献   

15.
M. A. Typas  I. Galani 《Genetica》1992,87(1):37-45
Mutagenesis of the facultative anaerobe Zymomonas mobilis was accomplished by three different mutagens. Ultra-violet (UV) irradiation, whose effectiveness relies on misrepair of damaged DNA via an error-prone pathway, was a poor mutagen for this organism. Ethyl methane sulphonate (EMS) gave results very similar to UV-irradiation. N-methyl-N-nitro-N-nitrosoguanidine (MNNG), which is believed to act by multiple mutagenic mechanisms, was the most powerful mutagen, always resulting in a large number of mutants of all types examined (i.e. auxotrophs, antibiotic resistant, heavy metal resistant and ultraviolet sensitive). Reversion frequencies of MNNG-induced mutants were very low. Evidence is provided that mutagenesis of Z. mobilis is affected by photoreactivation, adaptive response and error-prone repair mechanisms. Moreover, cells treated with alkylating agents and allowed to recover under anaerobic conditions clearly demonstrated that anaerobiosis plays a significant role in repair, but not in the induction of mutants.  相似文献   

16.
The cryptic plasmid pRUT41 from Zymomonas mobilis was examined for its biological properties. This plasmid was found to be conjugally transferred from Z. mobilis CP4 to Escherichia coli BM21 and to carry genes for antibiotic resistance (gentamicin, kanamycin, and streptomycin). Covalently closed circular plasmid DNA was isolated from eight transconjugants of E. coli BM21. These plasmids were identical in mobility on agarose gels and exhibited the same restriction patterns as the native pRUT41 plasmid isolated from Z. mobilis. The plasmid location of the antibiotic resistance genes was further confirmed by transforming E. coli BM21 with isolated pRUT41 plasmid from strain CP4 and with plasmids from the transconjugants of BM21. Resistance to streptomycin, kanamycin, and gentamicin was tightly linked and transferred together in all cases.  相似文献   

17.
The kinetics of transformation of Zymomonas mobilis with plasmid DNA using a modification of the CaCl2 procedure for transformation of Escherichia coli was investigated. Transformation by the plasmid, pNSW301, followed second-order kinetics indicating that two molecules react co-operatively to produce a single transformant.  相似文献   

18.
Production of Acetaldehyde by Zymomonas mobilis   总被引:2,自引:1,他引:1       下载免费PDF全文
Mutants of Zymomonas mobilis were selected for decreased alcohol dehydrogenase activity by using consecutively higher concentrations of allyl alcohol. A mutant selected by using 100 mM allyl alcohol produced acetaldehyde at a level of 4.08 g/liter when the organism was grown in aerated batch cultures on a medium containing 4.0% (wt/wt) glucose. On the basis of the amount of glucose utilized, this level of acetaldehyde production represents nearly 40% of the maximum theoretical yield. Acetaldehyde produced during growth was continuously air stripped from the reactor. Acetaldehyde present in the exhaust stream was then trapped as the acetaldehyde-bisulfite addition product in an aqueous solution of sodium bisulfite and released by treatment with base. Acetaldehyde was found to inhibit growth of Z. mobilis at concentrations as low as 0.05% (wt/wt) acetaldehyde. An acetaldehyde-tolerant mutant of Z. mobilis was isolated after both mutagenesis with nitrosoguanidine and selection in the presence of vapor-phase acetaldehyde. The production of acetaldehyde has potential advantages over that of ethanol: lower energy requirements for product separation, efficient separation of product from dilute feed streams, continuous separation of product from the reactor, and a higher marketplace value.  相似文献   

19.
The interaction of the membrane-bound glucose dehydrogenase from the anaerobic but aerotolerant bacterium Zymomonas mobilis with components of the electron transport chain has been studied. Cytoplasmic membranes showed reduction of oxygen to water with the substrates glucose or NADH. The effects of the respiratory chain inhibitors piericidin, capsaicin, rotenone, antimycin, myxothiazol, HQNO, and stigmatellin on the oxygen comsumption rates in the presence of NADH or glucose as substrates indicated that a complete and in the most parts identical respiratory chain is participating in the glucose as well as in the NADH oxidation. Furthermore, the presence of coenzyme Q10 (ubiquinone 10) in Z. mobilis was demonstrated. Extraction from and reincorporation of the quinone into the membranes revealed that ubiquinone is essential for the respiratory activity with glucose and NADH. In addition, a membrane-associated tetramethyl-p-phenylene-diamine-oxidase activity could be detected in Z. mobilis.Abbreviations ABTS 2,2-Azino-di-[3-ethyl-benzthiazolinesulfonate (6)] - GDH glucose dehydrogenase - HQNO 2-heptyl-4-hydroxy-quinoline-N-oxide - PQQ pyrroloquinoline quinone - TMPD N,N,N,N-tetramethyl-p-phenylene-diamine  相似文献   

20.
The properties of the d-glucose transport system of Zymomonas mobilis were determined by measuring the uptake of nonmetabolizable analogs (2-deoxy-d-glucose and d-xylose) by wild-type cells and the uptake of d-glucose itself by a mutant lacking glucokinase. d-Glucose was transported by a constitutive, stereospecific, carrier-mediated facilitated diffusion system, whereby its intracellular concentration quickly reached a plateau close to but not above the external concentration. d-Xylose was transported by the d-glucose system, as evidenced by inhibition of its uptake by d-glucose. d-Fructose was not an efficient competitive inhibitor of d-glucose uptake, indicating that it has a low affinity for the d-glucose transport system. The apparent K(m) of d-glucose transport was in the range of 5 to 15 mM, with a V(max) of 200 to 300 nmol min mg of protein. The K(m) of Z. mobilis glucokinase (0.25 to 0.4 mM) was 1 order of magnitude lower than the K(m) for d-glucose transport, although the V(max) values for transport and phosphorylation were similar. Thus, glucose transport cannot be expected to be rate limiting at concentrations of extracellular glucose normally used in fermentation processes, which greatly exceed the K(m) for the transport system. The low-affinity, high-velocity, nonconcentrative system for d-glucose transport described here is consistent with the natural occurrence of Z. mobilis in high-sugar environments and with the capacity of Z. mobilis for rapid conversion of glucose to metabolic products with low energetic yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号