共查询到20条相似文献,搜索用时 0 毫秒
1.
Masakazu Sugishima Masato Noguchi Keiichi Fukuyama 《Journal of molecular biology》2009,389(2):376-387
The key steps in the degradation pathway of chlorophylls are the ring-opening reaction catalyzed by pheophorbide a oxygenase and sequential reduction by red chlorophyll catabolite reductase (RCCR). During these steps, chlorophyll catabolites lose their color and phototoxicity. RCCR catalyzes the ferredoxin-dependent reduction of the C20/C1 double bond of red chlorophyll catabolite. RCCR appears to be evolutionarily related to the ferredoxin-dependent bilin reductase (FDBR) family, which synthesizes a variety of phytobilin pigments, on the basis of sequence similarity, ferredoxin dependency, and the common tetrapyrrole skeleton of their substrates. The evidence, however, is not robust; the identity between RCCR and FDBR HY2 from Arabidopsis thaliana is only 15%, and the oligomeric states of these enzymes are different. Here, we report the crystal structure of A. thaliana RCCR at 2.4 Å resolution. RCCR forms a homodimer, in which each subunit folds in an α/β/α sandwich. The tertiary structure of RCCR is similar to those of FDBRs, strongly supporting that these enzymes evolved from a common ancestor. The two subunits are related by noncrystallographic 2-fold symmetry in which the α-helices near the edge of the β-sheet unique in RCCR participate in intersubunit interaction. The putative RCC-binding site, which was derived by superimposing RCCR onto biliverdin-bound forms of FDBRs, forms an open pocket surrounded by conserved residues among RCCRs. Glu154 and Asp291 of A. thaliana RCCR, which stand opposite each other in the pocket, likely are involved in substrate binding and/or catalysis. 相似文献
2.
Partial Purification and Characterization of a Calcium-Dependent Protein Kinase and an Inhibitor Protein Required for Inactivation of Spinach Leaf Nitrate Reductase 总被引:10,自引:0,他引:10
下载免费PDF全文

Evidence is accumulating that the activity of spinach (Spinacia oleracea L.) leaf NADH:nitrate reductase (NR) is modulated both in vitro and in vivo by protein phosphorylation. From the present study we report the partial purification of the two protein factors needed for NR inactivation. We identified NR-protein kinase (NR-PK) as a calcium-dependent and metabolite-regulated protein kinase and have provided additional evidence that phosphorylation of NR is necessary but not sufficient to inactivate the enzyme. The inhibitor protein required for inactivation of phospho-NR was purified 625-fold by polyethylene glycol fractionation and sequential column chromatography. Using partially purified inhibitor protein and NR-PK, we characterized NR inactivation (increased sensitivity to Mg2+ inhibition) in a reconstituted in vitro system. NR-PK activity was inhibited by a variety of metabolic phosphate esters including di-hydroxyacetone phosphate, glucose-6-phosphate, and fructose-1,6-bisphosphate. Light-to-dark transition experiments with a starchless tobacco (Nicotiana sylvestris) mutant, which accumulates phosphate esters during the photoperiod, indicated that NR inactivation in vivo might, indeed, be down-regulated by metabolites. Additionally, we postulate that cytosolic free calcium could play an important role in the regulation of NR activity in vivo. 相似文献
3.
Masakazu Sugishima Yukihiro Okamoto Takayuki Kohchi Keiichi Fukuyama 《Journal of molecular biology》2010,402(5):879-891
Red chlorophyll catabolite reductase (RCCR) catalyzes the ferredoxin-dependent reduction of the C20/C1 double bond of red chlorophyll catabolite (RCC), the catabolic intermediate produced in chlorophyll degradation. The crystal structure of substrate-free Arabidopsis thaliana RCCR (AtRCCR) demonstrated that RCCR folds into a characteristic α/β/α sandwich, similar to that observed in the ferredoxin-dependent bilin reductase (FDBR) family. Here we have determined the crystal structures of RCC-bound AtRCCR, RCC-bound F218V AtRCCR, and substrate-free F218V AtRCCR, a mutant protein that produces the stereoisomer of primary fluorescent chlorophyll catabolites at the C1 position. RCC is bound to the pocket between the β-sheet and the C-terminal α-helices, as seen in substrate-bound FDBRs, but RCC binding to RCCR is much looser than substrate binding to FDBRs. The loose binding seems beneficial to the large conformational change in RCC upon reduction. Two conserved acidic residues, Glu154 and Asp291, sandwich the C20/C1 double bond of RCC, suggesting that these two residues are involved in site-specific reduction. The RCC in F218V AtRCCR rotates slightly compared with that in wild type to fill in the space generated by the substitution of Phe218 with valine. Concomitantly, the two carboxy groups of Glu154 and Asp291 move slightly away from the C20/C1 double bond. The geometrical arrangement of RCC and the carboxy groups of Glu154 and Asp291 in RCCR would appear to be essential for the stereospecificity of the RCCR reaction. 相似文献
4.
Purification and Characterization of Glutamyl-tRNA Synthetase : An Enzyme Involved in Chlorophyll Biosynthesis
下载免费PDF全文

Chlorophyll biosynthesis starts with the synthesis of glutamyl-tRNA (glu-tRNA) by a glutamyl-tRNA synthetase (Glu RS). The glu-tRNA is subsequently transformed to δ-aminolevulinic acid (ALA), which is a committed and regulated precursor in the chlorophyll biosynthetic pathway. The Glu RS from a green alga, Chlamydomonas reinhardtii, was purified and shown to be able to synthesize glu-tRNA and to participate in ALA synthesis in a coupled enzyme assay. Physical and chemical characterization of the purified Glu RS indicated that the enzyme had been purified to homogeneity. The purified enzyme has a native molecular weight of 60,000, an isoelectric point of 4.6, and it formed a single band of 32,500 daltons when analyzed by a silver stained denaturing gel. The N-terminal amino acid sequence of the 32,500 dalton protein was determined to be Asn-Lys-Val-Ala-Leu-Leu-Gly-Ala-Ala-Gly. The molecular weight analyses together with the unambiguous N-terminal amino acid sequence obtained from the purified enzyme suggested that the native enzyme was composed of two identical subunits. Polyclonal antibodies raised against the purified and denatured enzyme were able to inhibit the activity of the native enzyme and to interact specifically with the 32,500 dalton band on Western blots. Thus, the antibodies provided an additional linkage for the structural and functional identities of the enzyme. In vitro experiments showed that over 90% of the glu RS activity was inhibited by 5 micromolar heme, which suggested that Glu RS may be a regulated enzyme in the chlorophyll biosynthetic pathway. 相似文献
5.
Purification, Characterization, and Overexpression of Flavin Reductase Involved in Dibenzothiophene Desulfurization by Rhodococcus erythropolis D-1 总被引:3,自引:0,他引:3
下载免费PDF全文

Toshiyuki Matsubara Takashi Ohshiro Yoshihiro Nishina Yoshikazu Izumi 《Applied microbiology》2001,67(3):1179-1184
The dibenzothiophene (DBT)-desulfurizing bacterium, Rhodococcus erythropolis D-1, removes sulfur from DBT to form 2-hydroxybiphenyl using four enzymes, DszC, DszA, DszB, and flavin reductase. In this study, we purified and characterized the flavin reductase from R. erythropolis D-1 grown in a medium containing DBT as the sole source of sulfur. It is conceivable that the enzyme is essential for two monooxygenase (DszC and DszA) reactions in vivo. The purified flavin reductase contains no chromogenic cofactors and was found to have a molecular mass of 86 kDa and four identical 22-kDa subunits. The enzyme catalyzed NADH-dependent reduction of flavin mononucleotide (FMN), and the Km values for NADH and FMN were 208 and 10.8 μM, respectively. Flavin adenine dinucleotide was a poor substrate, and NADPH was inert. The enzyme did not catalyze reduction of any nitroaromatic compound. The optimal temperature and optimal pH for enzyme activity were 35°C and 6.0, respectively, and the enzyme retained 30% of its activity after heat treatment at 80°C for 30 min. The N-terminal amino acid sequence of the purified flavin reductase was identical to that of DszD of R. erythropolis IGTS8 (K. A. Gray, O. S. Pogrebinsky, G. T. Mrachko, L. Xi, D. J. Monticello, and C. H. Squires, Nat. Biotechnol. 14:1705–1709, 1996). The flavin reductase gene was amplified with primers designed by using dszD of R. erythropolis IGTS8, and the enzyme was overexpressed in Escherichia coli. The specific activity in crude extracts of the overexpressed strain was about 275-fold that of the wild-type strain. 相似文献
6.
d-Lactate accumulation in Chlamydomonas reinhardtii was dependent on anaerobic conditions. As much as 50% of the 14C after 2 minutes of photosynthetic 14CO2 fixation moved into d-lactate from sugar phosphates if the cells became anaerobic for short time periods. No lactate accumulated in the dark until the O2 concentration decreased to less than 0.1%. Lactate was determined to be of the d-configuration using stereospecific lactate dehydrogenases. d-Lactate produced anaerobically by algae grown on 5% CO2 was only slowly metabolized aerobically in the light or dark, and in the dark, only a trace of the lactate was excreted. 相似文献
7.
Anuradha Hora 《Preparative biochemistry & biotechnology》2013,43(8):769-784
Hexavalent chromium contamination is a serious problem due to its high toxicity and carcinogenic effects on the biological systems. The enzymatic reduction of toxic Cr(VI) to the less toxic Cr(III) is an efficient technology for detoxification of Cr(VI)-contaminated industrial effluents. In this regard, a chromate reductase enzyme from a novel Ochrobactrum sp. strain Cr-B4, having the ability to detoxify Cr(VI) contaminated sites, has been partially purified and characterized. The molecular mass of this chromate reductase was found to be 31.53 kD, with a specific activity 14.26 U/mg without any addition of electron donors. The temperature and pH optima for chromate reductase activity were 40°C and 8.0, respectively. The activation energy (Ea) for the chromate reductase was found to be 34.7 kJ/mol up to 40°C and the activation energy for its deactivation (Ed) was found to be 79.6 kJ/mol over a temperature range of 50–80°C. The frequency factor for activation of chromate reductase was found to be 566.79 s?1, and for deactivation of chromate reductase it was found to be 265.66 × 103 s?1. The reductase activity of this enzyme was affected by the presence of various heavy metals and complexing agents, some of which (ethylenediamine tetraacetic acid [EDTA], mercaptoethanol, NaN3, Pb2+, Ni2+, Zn2+, and Cd2+) inhibited the enzyme activity, while metals like Cu2+ and Fe3+ significantly enhanced the reductase activity. The enzyme followed Michaelis–Menten kinetics with Km of 104.29 µM and a Vmax of 4.64 µM/min/mg. 相似文献
8.
A strain (T3) of Bacillus has been screened from paddy field. It secretes large amount of antibacterialproteins which show a strong inhibiting activity against several pathogens of rice. This paper presentsa systematic study of the inhibition spectrum and characteristics of T3 proteins. Total proteins wereprecipitated with ammonium sulfate at 70% saturation from cell-free culture. One of the proteins(Tzl) was purified from the crude extracts with Sephadex G-100, DEAE52 and FPLC Superose 12columns. A single band was demonstrated in both 15% SDS-PAGE and IEF, with an apparent MWof 6,9 kd and a pI of 7.8. Its amino acid composition was analyzed and part of its sequence,determined. 相似文献
9.
Debasis Pattanayak Sukumar R. Chatterjee 《Journal of plant biochemistry and biotechnology.》1999,8(1):41-45
A single isoform, NADH: nitrate reductase (NR), was purified 500 folds from sunflower leaves by affinity chromatography on Blue Sepharose CL-6B. Purified NR had a pH optima of 7.25 and a molecular weight of 210 kD. In SDS-PAGE, two bands of 47 and 56 kD were obtained. NADH: ferric citrate reductase activity was copurified with NR with a specific activity of 2. The Vmax of NADH: ferric citrate reductase was 8.69 units mg-1 protein and the apparent Km for ferric citrate was 0.435 mM. 相似文献
10.
Characterization and Purification of an Aldose Reductase from the Acidophilic and Thermophilic Red Alga Galdieria sulphuraria
下载免费PDF全文

The acidophilic and thermophilic red alga Galdieria sulphuraria is able to grow heterotrophically on at least six different pentoses. These pentoses are reduced in the cell to pentiols by an NADP-dependent aldose reductase. The pentiols are then introduced into the oxidative pentose phosphate pathway via NAD-dependent polyol dehydrogenases and pentulokinases. The aldose reductase was purified 130-fold to apparent homogeneity by column chromatography. The enzyme is a homodimer of about 80 kD, as estimated by size-exclusion chromatography and from the sedimentation behavior. The Michaelis constant values for D-xylose (27 mM), D-ribose (29 mM), D-lyxose (30 mM), and D-arabinose (38 mM) were about three to five times lower than for the L-forms of the sugars. The activity of the enzyme with hexoses, deoxysugars, and sugar phosphates was only about 5 to 10% of the rate with pentoses. In the reverse reaction the activity was low and only detectable with pentiols. No activity was measured with NAD(H) as the cosubstrate in either direction. 相似文献
11.
Partial Purification and Characterization of Complex I, NADH:Ubiquinone Reductase, from the Inner Membrane of Beetroot Mitochondria
下载免费PDF全文

A NADH dehydrogenase was isolated from an inner membrane-enriched fraction of beetroot mitochondria (Beta vulgaris L.) by solubilization with sodium deoxycholate and purified using gel filtration and affinity chromatography. The NADH dehydrogenase preparation contained a minor ATPase contamination. Beetroot mitochondria were chosen as the isolation material for purifying the enzymes responsible for oxidizing matrix NADH due to the absence of the externally facing NADH dehydrogenase in the variety we have used. The purified NADH dehydrogenase complex catalyzed the reduction of various electron acceptors with NADH as the electron donor, was not sensitive to rotenone inhibition, and had a slow NADPH-ubiquinone 5 reductase activity. The isolated complex contained 14 major polypeptides. It was concluded that the dehydrogenase represented a form of the plant mitochondrial complex I and not the internally facing rotenone-insensitive NADH dehydrogenase found in plant mitochondria because of its complex structure, its cross-reactivity with antisera raised against bovine heart mitochondrial complex I, and the similarity of its kinetics and inhibitor responses to rotenone-sensitive NADH oxidation by beetroot submitochondrial particles. 相似文献
12.
13.
嗜酸氧化亚铁硫杆菌APS还原酶的表达、纯化及其性质鉴定 总被引:1,自引:0,他引:1
嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)中APS还原酶是硫同化途径的一个关键酶,其对硫酸盐的还原及硫化物的氧化具有重要调节作用.本文以A.ferrooxidans ATCC23270基因组为模板.通过PCR扩增得到编码APS还原酶的cysH基因,与原核表达载体pLM l构建重组体,转化入大肠杆茵(Escherichia coli,E.coli)DH5a中,测序正确后,加IPTG诱导表达,用一步亲和层析法纯化出浓度和纯度都较高的APS还原酶.由蛋白颜色和紫外分析,确定其含有一个[Fe4S4]簇作为活性中心.表达产物进行SDS-PAGE分析,证实分子量为28 kD.酶活测定表明其具有将APS还原为亚硫酸盐跟AMP的功能. 相似文献
14.
Kato Yoshihiro; Urano Jun'ichi; Maki Yasushi; Ushimaru Takashi 《Plant & cell physiology》1997,38(2):173-178
Dehydroascorbate reductase (DHAR; EC 1.8.5.1[EC]) is an enzyme thatis critical for maintenance of an appropriate level of ascorbatein plant cells. This report describes the purification and characterizationof a GSH-dependent DHAR from rice (Oryza saliva) bran and isthe first, to our knowledge, of such an analysis of DHAR froma monocot. The enzyme was a monomeric thiol enzyme, resemblingDHARs purified from dicots, but it was different from them interms of heat stability and antigenicity. The amino-terminalamino acid sequence of the DHAR from rice did not show any obvioussimilarity to those of known proteins with DHAR activity, suchas, glutaredoxin (thioltrans-ferase), protein disulfide isomerase,and trypsin inhibitor. Immunoprecipitation analysis showed thatthis enzyme was a major DHAR in etiolated seedlings. Westernblot analysis indicated that this enzyme was distributed ubiquitouslyin rice tissues. A similar protein was found in barley but notin dicots. (Received July 18, 1996; Accepted December 4, 1996) 相似文献
15.
Partial Purification and Characterization of a Ca2+-Dependent Protein Kinase from Pea Nuclei 总被引:3,自引:8,他引:3
下载免费PDF全文

Almost all the Ca2+-dependent protein kinase activity in nuclei purified from etiolated pea (Pisum sativum, L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.3 molar NaCl. This protein kinase can be further purified 80,000-fold by salt fractionation and high performance liquid chromatography, after which it has a high specific activity of about 100 picomoles per minute per microgram in the presence of Ca2+ and reaches half-maximal activation at about 3 ×10−7 molar free Ca2+, without calmodulin. It is a monomer with a molecular weight near 90,000. It can efficiently use histone III-S, ribosomal S6 protein, and casein as artificial substrates, but it phosphorylates phosvitin only weakly. Its Ca2+-dependent kinase activity is half-maximally inhibited by 0.1 millimolar chlorpromazine, by 35 nanomolar K-252a and by 7 nanomolar staurosporine. It is insensitive to sphingosine, an inhibitor of protein kinase C, and to basic polypeptides that block other Ca2+-dependent protein kinases. It is not stimulated by exogenous phospholipids or fatty acids. In intact isolated pea nuclei it preferentially phosphorylates several chromatin-associated proteins, with the most phosphorylated protein band being near the same molecular weight (43,000) as a nuclear protein substrate whose phosphorylation has been reported to be stimulated by phytochrome in a calcium-dependent fashion. 相似文献
16.
Jung-Kul Lee Sang-Yong Kim Yeon-Woo Ryu Jin-Ho Seo Jung-Hoe Kim 《Applied microbiology》2003,69(7):3710-3718
Erythritol biosynthesis is catalyzed by erythrose reductase, which converts erythrose to erythritol. Erythrose reductase, however, has never been characterized in terms of amino acid sequence and kinetics. In this study, NAD(P)H-dependent erythrose reductase was purified to homogeneity from Candida magnoliae KFCC 11023 by ion exchange, gel filtration, affinity chromatography, and preparative electrophoresis. The molecular weights of erythrose reductase determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography were 38,800 and 79,000, respectively, suggesting that the enzyme is homodimeric. Partial amino acid sequence analysis indicates that the enzyme is closely related to other yeast aldose reductases. C. magnoliae erythrose reductase catalyzes the reduction of various aldehydes. Among aldoses, erythrose was the preferred substrate (Km = 7.9 mM; kcat/Km = 0.73 mM−1 s−1). This enzyme had a dual coenzyme specificity with greater catalytic efficiency with NADH (kcat/Km = 450 mM−1 s−1) than with NADPH (kcat/Km = 5.5 mM−1 s−1), unlike previously characterized aldose reductases, and is specific for transferring the 4-pro-R hydrogen of NADH, which is typical of members of the aldo/keto reductase superfamily. Initial velocity and product inhibition studies are consistent with the hypothesis that the reduction proceeds via a sequential ordered mechanism. The enzyme required sulfhydryl compounds for optimal activity and was strongly inhibited by Cu2+ and quercetin, a strong aldose reductase inhibitor, but was not inhibited by aldehyde reductase inhibitors and did not catalyze the reduction of the substrates for carbonyl reductase. These data indicate that the C. magnoliae erythrose reductase is an NAD(P)H-dependent homodimeric aldose reductase with an unusual dual coenzyme specificity. 相似文献
17.
Abstract: The PO protein of the myelin of chick sciatic nerve was isolated and purified by propanoic acid extraction of peripheral nervous system (PNS) myelin, delipidation, Sepharose CL-6B chromatography in the presence of sodium dodecyl sulfate (SDS), and preparative SDS-polyacrylamide gel electro-phoresis (PAGE). Approximately 15% of the PO protein in the sciatic nerve myelin was recovered in a homogeneous state. The purified protein monomer has an apparent molecular weight of 32.1K as determined by gel electrophoresis. The PO protein undergoes extensive aggregation during exhaustive dialysis and freeze-drying and yields stable dimers, trimers, and tetramers. The aggregation of the PO protein after freeze-drying is independent of the presence of a reducing agent (2-mercaptoethanol) in the solubilizing medium. The PO protein is a glycoprotein. The amino acid composition of the chick PO protein indicates a definite species difference when compared with mammalian PO proteins although the NH2 -terminal isoleucine residue seems to have been retained during evolution. 相似文献
18.
A thermostable amylase, possibly a beta-amylase from Thermoactinomyces sp. no. 2 isolated from soil, is reported. The enzyme was purified 36-fold by acetone precipitation, ion-exchange chromatography, and Sephadex G-200 gel filtration, and the molecular weight was estimated at 31,600. The enzyme was characterized by demonstration of optimum activity at 60 degrees C and pH 7 and by retention of 70% activity at 70 degrees C (30 min). It was stimulated by Mn and Fe but strongly inhibited by Hg. Maltose was the only detectable product of hydrolysis of starches and was quantitatively highest in plantain starch hydrolysate. 相似文献
19.
Partial Purification and Characterization of a Ca2+-Dependent Protein Kinase from the Green Alga, Dunaliella salina 总被引:1,自引:6,他引:1
下载免费PDF全文

A calcium-dependent protein kinase was partially purified and characterized from the green alga Dunaliella salina. The enzyme was activated at free Ca2+ concentrations above 10−7 molar. and half-maximal activation was at about 3 × 10−7 molar. The optimum pH for its Ca2+-dependent activity was 7.5. The addition of various phospholipids and diolein had no effects on enzyme activity and did not alter the sensitivity of the enzyme toward Ca2+. The enzyme was inhibited by calmodulin antagonists, N-(6-aminohexyl)-1-naphthalene sulfonamide and N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide in a dose-dependent manner while the protein kinase C inhibitor, sphingosine, had little effect on enzyme activity up to 800 micromolar. Immunoassay showed some calmodulin was present in the kinase preparations. However, it is unlikely the kinase was calmodulin regulated, since it still showed stimulation by Ca2+ in gel assays after being electrophoretically separted from calmodulin by two different methods. This gel method of detection of the enzyme indicated that a protein band with an apparent molecular weight of 40,000 showed protein kinase activity at each one of the several steps in the purification procedure. Gel assay analysis also showed that after native gel isoelectric focusing the partially purified kinase preparations had two bands with calcium-dependent activity, at isoelectric points 6.7 and 7.1. By molecular weight, by isoelectric point, and by a comparative immunoassay, the Dunaliella kinase appears to differ from at least some of the calcium-dependent, but calmodulin and phospholipid independent kinases described from higher plants. 相似文献
20.
Heterologous Expression, Purification, and Characterization of a Highly Active Xylose Reductase from Neurospora crassa
下载免费PDF全文

Ryan Woodyer Michael Simurdiak Wilfred A. van der Donk Huimin Zhao 《Applied microbiology》2005,71(3):1642-1647
A xylose reductase (XR) gene was identified from the Neurospora crassa whole-genome sequence, expressed heterologously in Escherichia coli, and purified as a His6-tagged fusion in high yield. This enzyme is one of the most active XRs thus far characterized and may be used for the in vitro production of xylitol. 相似文献