首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aim To test the ‘more individuals hypothesis’ as a mechanism for the positive association between energy availability and species richness. This hypothesis predicts that total density and energy use in communities is linearly related to energy availability, and that species richness is a positive function of increased density. We also evaluate whether similar energy–density patterns apply to different migratory groups (residents, short‐distance migrants and tropical migrants) separately. Location European and North American forest bird communities. Methods We collected published breeding bird census data from Europe and North America (n = 187). From each census data we calculated bird density (pairs 10 ha?1), energy use by the community (the sum of metabolic needs of individuals, Watts 10 ha?1) and geographical location with an accuracy of 0.5°. For each bird census data coordinate we extracted the corresponding monthly values of actual evapotranspiration (AET). From these values we calculated corresponding AET values that we expected to explain the density energy use of forest birds: total annual, breeding season (June) and winter AET. We used general linear modelling to analyse these data controlling for the area of census plots, forest type and census method. Results Total density and energy use in European and North American forest bird communities were linear functions of annual productivity, and increased density and energy use then translated into more species. Also resident bird density and energy consumption were positive functions of annual productivity, but the relationship between productivity and density as well as between productivity and energy use was weaker for migrants. Main conclusions Our results are consistent with the more individuals hypothesis that density and energy use in breeding forest bird communities is coupled tightly with the productivity of the environment, and that increased density and energy consumption results in more species. However, not all community members (migratory groups) are limited by productivity on the breeding grounds.  相似文献   

2.
3.
Resources and global avian assemblage structure in forests   总被引:2,自引:0,他引:2  
Explaining spatial variation in a number of bird species, particularly from temperate to tropical regions, has been a longstanding challenge. We test at a global scale whether species‐rich forest assemblages are associated with division of a larger resource pool, a finer division of that pool, or some combination of the two. Species richness increases with increasing assemblage abundance, biomass and energy use. As assemblage abundance, biomass and energy use increase with increasing energy availability, and as per species numbers of individuals, biomass and energy use do not decrease with increasing energy availability, we provide direct evidence that the avian species–energy relationship in forests is associated foremost with an increase in the size of the resource pool and not with a finer level of its subdivision.  相似文献   

4.
ABSTRACT.   Because the winter season is potentially limiting for migratory birds, understanding their nonbreeding distributional patterns is essential. At a given site, patterns of species occurrence and abundance may vary over time and, within a species, wintering strategies may vary with regard to the degree that individuals are site-faithful both within and between winters. We examined long-term patterns in the composition of a winter resident bird community to determine how long a site must be studied to understand the wintering community. Over a 34-yr period of constant-effort mist netting at a site in Guánica, Puerto Rico, we captured 21 species of winter resident birds, with mean total captures varying from 8.3 to 18.9 individuals per net line and 6–14 species captured per year. Species richness capture/recapture models generated numbers similar to actual capture rates. Capture and recapture data allowed us to categorize winter residents into three groups: sporadic winter residents (14 species), regular winter residents (four species captured nearly every year), and dominant winter residents (three species captured each year with high rates of recapture). Our results suggest that sampling for at least three consecutive winters is needed to accurately characterize the bird community at a site. However, sampling for 5 yr is better, and 10-yr samples generate patterns similar to those based on our entire 34-yr sample. A 1-yr sample provides minimal information about the composition and characteristics of a winter resident bird community.  相似文献   

5.
During recent years, predictive modelling techniques have been increasingly used to identify regional patterns of species spatial occurrence, to explore species–habitat relationships and to aid in biodiversity conservation. In the case of birds, predictive modelling has been mainly applied to the study of species with little variable interannual patterns of spatial occurrence (e.g. year‐round resident species or migratory species in their breeding grounds showing territorial behaviour). We used predictive models to analyse the factors that determine broad‐scale patterns of occurrence and abundance of wintering Swainson's hawks (Buteo swainsoni). This species has been the focus of field monitoring in its wintering ground in Argentina due to massive pesticide poisoning of thousands of individuals during the 1990s, but its unpredictable pattern of spatial distribution and the uncertainty about the current wintering area occupied by hawks led to discontinuing such field monitoring. Data on the presence and abundance of hawks were recorded in 30 × 30 km squares (n = 115) surveyed during three austral summers (2001–03). Sixteen land‐use/land‐cover, topography, and Normalized Difference Vegetation Index (NDVI) variables were used as predictors to build generalized additive models (GAMs). Both occurrence and abundance models showed a good predictive ability. Land use, altitude, and NDVI during spring previous to the arrival of hawks to wintering areas were good predictors of the distribution of Swainson's hawks in the Argentine pampas, but only land use and NDVI were entered into the model of abundance of the species in the region. The predictive cartography developed from the models allowed us to identify the current wintering area of Swainson's hawks in the Argentine pampas. The highest occurrence probability and relative abundances for the species were predicted for a broad area of south‐eastern pampas that has been overlooked so far and where neither field research nor conservation efforts aiming to prevent massive mortalities has been established.  相似文献   

6.
Species richness increases with energy availability, yet there is little consensus as to the exact processes driving this species–energy relationship. The most straightforward explanation is the more‐individuals hypothesis (MIH). It states that higher energy availability promotes a higher total number of individuals in a community, which consequently increases species richness by allowing for a greater number of species with viable populations. Empirical support for the MIH is mixed, partially due to the lack of proper formalisation of the MIH and consequent confusion as to its exact predictions. Here, we review the evidence of the MIH and evaluate the reliability of various predictions that have been tested. There is only limited evidence that spatial variation in species richness is driven by variation in the total number of individuals. There are also problems with measures of energy availability, with scale‐dependence, and with the direction of causality, as the total number of individuals may sometimes itself be driven by the number of species. However, even in such a case the total number of individuals may be involved in diversity regulation. We propose a formal theory that encompasses these processes, clarifying how the different factors affecting diversity dynamics can be disentangled.  相似文献   

7.
In wintering areas where migrant birds meet sedentary conspecifics, early settlement of local residents in the best habitat patches might reduce the availability of suitable sites for arriving migrants. We studied how sympatric migratory and sedentary European Robins Erithacus rubecula occupy two wintering habitats of different quality (forests and shrublands) in southern Spain, and how such a distribution affects individuals of each population sector. In September, before migrants arrived, Robins were only found in forests, and they had already saturated these habitats, so that rather than increasing Robin abundance in these habitats, the arrival of migrants caused a massive occupation of the previously vacant shrublands. During the winter, we captured Robins and identified them as migrants or residents using a discriminant function based on morphological traits. Residents always predominated in forests, and migrants in shrublands, but through the winter around 35% of residents (mainly juveniles) moved to shrublands, having been replaced by some migrants in forests. Although food was more abundant in shrublands, Robins had better body condition in forests, suggesting that other factors determined habitat preferences (e.g. shelter availability or food diversity, which were higher in forests). In addition, we observed a greater variance in body mass relative to body size in forests, suggesting that energy management was less constrained in this habitat (for example owing to a lower exposure to predators or a higher food predictability). Our results suggest that sedentary Robins benefit from an early occupation of the best habitats in the wintering grounds, forcing migrants to colonize apparently less suitable sites. This would explain the persistence of these small southern populations despite the yearly flooding of the area by huge numbers of migrant conspecifics.  相似文献   

8.
Species–energy theory is a commonly invoked theory predicting a positive relationship between species richness and available energy. The More Individuals Hypothesis (MIH) attempts to explain this pattern, and assumes that areas with greater food resources support more individuals, and that communities with more individuals include more species. Using a large dataset for North American birds, I tested these predictions of the MIH, and also examined the effect of habitat complexity on community structure. I found qualitative support for the relationships predicted by the MIH, however, the MIH alone was inadequate for fully explaining richness patterns. Communities in more productive sites had more individuals, but they also had more even relative abundance distributions such that a given number of individuals yielded a greater number of species. Richness and evenness were also higher in structurally complex forests compared to structurally more simple grasslands when controlling for available energy.  相似文献   

9.
When different populations of the same bird species share non‐breeding habitats, competition for food may promote resource partitioning. We studied food choice by resident and migratory Blackcaps Sylvia atricapilla in sympatric wintering grounds in southern Spain. Resident Blackcaps have a larger bill, which may allow them to feed on a broader range of fruit sizes, and they may know the distribution of food better than do migrants. Based on fruit and bird counts, we transformed both fruit crop and bird abundance to a common energy currency. During two winters with low and high fruit production, available energy from fruit in mid‐January was estimated to be 80 and 1300 times, respectively, the daily requirements of Blackcaps. Furthermore, Blackcap numbers did not track between‐winter changes in fruit abundance during 10 consecutive years of monitoring, further suggesting that fruit food is not limiting. Analysis of food items from 760 samples of 717 individuals showed that migrants and residents fed primarily on fruits of Wild Olive Olea europaea sylvestris, the most energetic fruit resource. There was no evidence that the larger bills of resident Blackcaps provided any foraging benefit. Migratory Blackcaps fed on Wild Olives and invertebrates, two resources with high energetic and structural value, more frequently than did residents. This food choice could be more important for migratory Blackcaps because they have lower body mass to reduce wing load. Our results suggest that the wintering grounds of Blackcaps in Iberia provide abundant food that is used by sympatric migrants and residents without resource partitioning. Slight differences in food choice suggest that migrants might benefit from feeding on more nutritive food than residents to counteract the energetic constraints associated with a smaller body size.  相似文献   

10.
Aim To compare the ability of island biogeography theory, niche theory and species–energy theory to explain patterns of species richness and density for breeding bird communities across islands with contrasting characteristics. Location Thirty forested islands in two freshwater lakes in the boreal forest zone of northern Sweden (65°55′ N to 66°09′ N; 17°43′ E to 17°55′ E). Methods We performed bird censuses on 30 lake islands that have each previously been well characterized in terms of size, isolation, habitat heterogeneity (plant diversity and forest age), net primary productivity (NPP), and invertebrate prey abundance. To test the relative abilities of island biogeography theory, niche theory and species–energy theory to describe bird community patterns, we used both traditional statistical approaches (linear and multiple regressions) and structural equation modelling (SEM; in which both direct and indirect influences can be quantified). Results Using regression‐based approaches, area and bird abundance were the two most important predictors of bird species richness. However, when the data were analysed by SEM, area was not found to exert a direct effect on bird species richness. Instead, terrestrial prey abundance was the strongest predictor of bird abundance, and bird abundance in combination with NPP was the best predictor of bird species richness. Area was only of indirect importance through its positive effect on terrestrial prey abundance, but habitat heterogeneity and spatial subsidies (emerging aquatic insects) also showed important indirect influences. Thus, our results provided the strongest support for species–energy theory. Main conclusions Our results suggest that, by using statistical approaches that allow for analyses of both direct and indirect influences, a seemingly direct influence of area on species richness can be explained by greater energy availability on larger islands. As such, animal community patterns that seem to be in line with island biogeography theory may be primarily driven by energy availability. Our results also point to the need to consider several aspects of habitat quality (e.g. heterogeneity, NPP, prey availability and spatial subsidies) for successful management of breeding bird diversity at local spatial scales and in fragmented or insular habitats.  相似文献   

11.
Understanding the winter distributions of migrant birds is important because productivity and recruitment are influenced by conditions at several locations and periods in the life cycle of individuals. The western loggerhead shrike, Lanius ludovicianus excubitorides , is a threatened species in Canada, and its decline is attributed to potential limitations on the wintering grounds. We examined patterns of stable-hydrogen isotope (δD) distributions in feathers of loggerhead shrikes, primarily of L. l. excubitorides , during winter at three regions in north and central Mexico, to establish relative abundance and origins of migrants. We also investigated potential movements of Mexican winter resident individuals. Using shrike museum specimens of known summer provenance, a shrike deuterium base map for Mexico was developed from isotopic measurement of feathers of resident shrikes and use of a recently established feather base map for raptors in North America. Stable hydrogen isotope analyses of inner secondary feather (s9) of all loggerhead shrikes examined in Mexico during winter indicated that north-central (Region A), north-eastern (Region B) and south-central (Region C) sites in Mexico consisted of 28.1%, 73.7% and 63.8% of migrant individuals from northern breeding grounds, respectively. Isotopic evidence suggested movements of a few local residents birds (7.9%) into the Chihuahuan desert from south-western USA and north-eastern Mexico to winter.  相似文献   

12.
Both breeding and wintering assemblages of birds in Britain exhibit positive interspecific relationships between population size and geographic range size, such that the average density of species is greater if they are more widely distributed Species in common to both assemblages, that is resident species, had greater population sizes, geographic range sizes, and densities in winter In contrast, whilst winter migrants had higher abundances than summer migrants, the range sizes of the former were disproportionately larger still, resulting in a lower density for species that only winter in Britain than for those that only breed Such differences aside, the overall form of the abundance-range size relationship is remarkably similar between the two assemblages and their constituent subsets of species  相似文献   

13.
Non-native species are frequently considered to influence urban assemblages. The grey squirrel Sciurus carolinensis is one such species that is widespread in the UK and is starting to spread across Europe; it predates birds’ nests and can compete with birds for supplementary food. Using distance sampling across the urbanisation intensity gradient in Sheffield (UK) we test whether urban grey squirrels influence avian species richness and density through nest predation and competition for supplementary food sources. We also assess how urban bird assemblages respond to supplementary feeding. We find that grey squirrels slightly reduced the abundance of breeding bird species most sensitive to squirrel nest predation by reducing the beneficial impact of woodland cover. There was no evidence that grey squirrel presence altered relationships between supplementary feeding and avian assemblage structure. This may be because, somewhat surprisingly, supplementary feeding was not associated with the richness or density of wintering bird assemblages. These associations were positive during the summer, supporting advocacy to feed birds during the breeding season and not just winter, but explanatory capacity was limited. The amount of green space and its quality, assessed as canopy cover, had a stronger influence on avian species richness and population size than the presence of grey squirrels and supplementary feeding stations. Urban bird populations are thus more likely to benefit from investment in improving the availability of high quality habitats than controlling squirrel populations or increased investment in supplementary feeding.  相似文献   

14.
A major goal of ecology is to understand spatial variation in species richness. The latter is markedly influenced by energy availability and appears to be influenced more by common species than rare ones; species-energy relationships should thus be stronger for common species. Species-energy relationships may arise because high-energy areas support more individuals, and these larger populations may buffer species from extinction. As extinction risk is a negative decelerating function of population size, this more-individuals hypothesis (MIH) predicts that rare species should respond more strongly to energy. We investigate these opposing predictions using British breeding bird data and find that, contrary to the MIH, common species contribute more to species-energy relationships than rare ones.  相似文献   

15.
Remote sensing data have been used in previous studies to assess the effects of winter ecological conditions in Africa on biological parameters recorded in bird populations during the following breeding season in Europe. Based on the results of these studies, we hypothesized that a high productivity of vegetation during the winter and, thus, high resource availability, should advance the arrival of long-distance migrants to the European breeding areas due to enhanced ecological conditions. To test this hypothesis, between 1982 and 2000 we examined the first arrival date to the Iberian Peninsula of five species (White Stork, Cuckoo, Common Swift, Barn Swallow and Nightingale) in relation to several explanatory variables: ecological conditions in their African wintering grounds and passage areas, as reflected by the normalized difference vegetation index (NDVI), temperature and precipitation in their passage areas and the winter North Atlantic Oscillation (NAO). Ecological conditions in the wintering areas were important for White Stork, Cuckoo and Barn Swallow phenology, while both NDVI in passage areas and NAO did not have an effect on any species. Migratory birds arrived earlier after winters with high vegetation productivity in Africa. Temperature in passage areas was important for the later species (i.e. Cuckoo, Common Swift and Nightingale), although in all cases the true relevance of this factor was scarce due to the poor explanatory capacity of the models. These species were recorded in the Iberian Peninsula earlier in the spring of those years with warmer temperatures in passage areas. The nexus between African NDVI and arrival phenology is hypothesized through increases in wintering survival rates and/or the faster acquisition of pre-migratory body condition and progression through sub-Saharan areas. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Increased production of bioenergy crops in North America is projected to exacerbate already heavy demands upon existing agricultural landscapes with potential to impact biodiversity negatively. Grassland specialist birds are an imperilled avifauna for which perennial-based, next-generation agroenergy feedstocks may provide suitable habitat. We take a multi-scaled spatial approach to evaluate the ability of two candidate second-generation agroenergy feedstocks (switchgrass, Panicum virgatum, and mixed grass–forb plantings) to act as spring migratory stopover habitat for birds. In total, we detected 35 bird species in mixed grass–forb plantings and switchgrass plantings, including grassland specialists and species of state and national conservation concern (e.g., Henslow’s Sparrow, Ammodramus henslowii). Some evidence indicated that patches with higher arthropod food availability attracted a greater diversity of migrant bird species, but species richness, total bird abundance, and the abundance of grassland specialist species were similar in fields planted with either feedstock. Species richness per unit area (species density) was relatively higher in switchgrass fields. The percent land cover of forest in landscapes surrounding study fields was negatively associated with bird species richness and species density. Habitat patch size and within-patch vegetation structure were unimportant in predicting the diversity or abundance of spring en route bird assemblages. Our results demonstrate that both switchgrass and mixed grass–forb plantings can attract diverse assemblages of migrant birds. As such, industrialized production of these feedstocks as agroenergy crops has the potential to provide a source of en route habitat for birds, particularly where fields are located in relatively unforested landscapes. Because industrialization of cellulosic biomass production will favor as yet unknown harvest and management regimes, predicting the ultimate value of perennial-based biomass plantings for spring migrants remains difficult.  相似文献   

17.
In a Mediterranean patchy wetland of central Italy, we analyzed the relationship between the number of bird species, expressed in terms of bird alpha diversity, and plant alpha diversity, expressed as Hill number. This number (the exponential of the Shannon entropy) is considered one of the most strong and reliable indexes of alpha-diversity, synthesizing the information on evenness, richness and diversity in one single metric. We observed a progressive increase of the mean values of bird alpha diversity when plant alpha diversity increases along Hill number. Bird alpha diversity shows an abrupt increase between the first and the second of four categories of plant alpha diversity (0–1, >1–2, >2–3, >3), indicating a threshold response in all the groups considered (breeding, wintering and total bird assemblages). This marked decline of bird species richness at around 1 in the Hill index should represent an alarm for managers: wetland sites at or below this level of plant alpha diversity are likely to be experiencing a drastic decrease in bird species richness, both in spring (breeding birds) and in winter (wintering birds).  相似文献   

18.
Capsule Long-distance migrant birds show less favourable trends than sedentary/short-distance species.

Aims To use breeding bird surveys to contrast population trends amongst common species according to their migration pattern.

Methods Changes in abundance of 62 Danish breeding sedentary, short-distance (Europe/North Africa) or long-distance (trans-Saharan) migrants were described by fitting log linear regression models to point-count census data gathered during 1976–2005.

Results Trans-Saharan migrants declined by 1.3% per annum during this period, while short-distance migrants and sedentary species increased by 1.4% and 1.0% per annum, respectively. There were no significant decadal declines amongst species using different summer breeding habitats, except for wetlands, and there was no consistent variation in trends associated with wintering regions or habitats or diet.

Conclusions More information is urgently needed on diet, feeding ecology, habitat requirements, winter distribution and intra-African movements of the commoner European summer visitors to identify causes of the declines and highlight when in the annual cycle detrimental effects occur. Studies linking individuals on their breeding, staging and wintering grounds are especially needed. Danish trends resemble those from elsewhere in Europe, confirming that restoration to favourable conservation status requires inter-continental action to meet European and global targets to reduce or halt biodiversity loss.  相似文献   

19.
Yee DA  Juliano SA 《Oecologia》2007,153(1):153-162
The more individuals hypothesis (MIH) postulates that productivity increases species richness by increasing mean equilibrium population size, thereby reducing the probability of local extinction. We tested the MIH for invertebrates colonizing microcosms that simulated tree holes by manipulating productivity through additions of leaf or animal detritus and subsequently determining the relationships among richness, total abundance, abundance per species, and measures of productivity. We quantified productivity as the rate of microorganism protein synthesis, microorganism metabolic rate, nutrient ion concentration, and type and amount of detritus. Microcosms with animal detritus attracted more species, more individuals per species, and more total individuals than did microcosms with similar amounts of leaf detritus. Relationships between richness or abundance and productivity varied with date. Richness in June increased as a linear function of productivity, whereas the power function predicted by the MIH fit best in July. Abundance in June and July was best described by a power function of productivity, but the linear function predicted by the MIH fit best in September. Abundance per species was best described by a power function of productivity in June and July. Path analysis showed that the indirect effect of productivity through abundance on richness that is predicted by MIH was important in all months, and that direct links between productivity and richness were unnecessary. Our results support many of the predictions of the MIH, but they also suggest that the effects of abundance on richness may be more complex than expected.  相似文献   

20.
Variation in wing morphology results from the combination of diverse selection pressures. Wing feather morphology within species varies with sex and ontogenetic effects, and also with ecological factors. Yet, the direction of causation for the wing morphology–ecology association remains to be elucidated. Under the ‘ecology-dependence’ hypothesis, wing morphology covaries with ecological conditions, because the latter affect feather molt. Alternatively, the ‘habitat choice’ hypothesis posits that individuals with different wing morphology choose different habitats because of the habitat-dependent advantages of a specific wing morphology. We tested these competing hypotheses in the migratory, aerially insectivorous barn swallow (Hirundo rustica). We quantified wing morphology (isometric size, pointedness, and convexity) on the same individuals during consecutive breeding seasons (i.e., before and after molt in sub-Saharan wintering areas) and located wintering areas using light-level geolocators. Wing pointedness of females but not males during 1 year negatively correlated with vegetation vigor (gauged by the Normalized Difference Vegetation Index; NDVI) in the African area where individuals spent the next winter. Partial least-squares path modelling showed that the association between wing morphology and NDVI was sex-dependent. Conversely, NDVI during wintering did not predict wing morphology in the next breeding season. Because wing morphology can have carry-over effects on subsequent performance, we investigated selection on wing traits and found strong positive fecundity selection on wing size of females. Our results suggest that female barn swallows choose their wintering habitat depending on their wing morphology. In addition, directional fecundity selection operates on females, suggesting sex-dependence of current selection on the flight apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号